Chapter 7 : Entry of Bacteria into Nonphagocytic Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Entry of Bacteria into Nonphagocytic Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap07-2.gif


Entry of bacteria into nonphagocytic cells (NPCs) has, perhaps more than any other postadhesion event, captured the interest of investigators within the field of host-pathogen interactions. There are three categories of bacterial growth in the presence of NPCs: obligate intracellular, facultative intracellular, and extracellular. The zipper mechanism of bacterial uptake is exemplified by and spp. Proteins encoded by the / locus appear to make up the secretion system, while the proteins encoded by the operon are effectors. Internalin binds to E-cadherin, and invasin binds to β-integrins. Currently, it appears that is example of the pathogenic organisms that utilize M cells to gain access to the subepithelial compartment. The invasome mechanism of entry has been described for species, which are able to penetrate and multiply within both nucleated and nonnucleated cells. The fact that a large bacterial aggregate is an apparent requisite for triggering of internalization via this mechanism suggests that expression of the effector molecules may require a quorum-sensing signaling cascade. There is little clear-cut evidence to date that the entry of predominantly extracellular pathogens into NPCs in vitro truly reflects a process that is important in the pathophysiology of infections. However, the fact that this phenomenon has been described for such a large and growing list of pathogens suggests that it must play an important role in the overall survival of the species in a susceptible host.

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 7.1
Figure 7.1

Schematic diagram illustrating the three primary mechanisms of bacterial internalization by NPCs. (A) Internalization of or species is accomplished by surrounding the microorganism via a tight phagosome. High-affinity binding of bacterial cell surface components to their cognate receptors on animal cells (see Table 7.3 ) is required to initiate cytoskeleton-mediated zippering of the host cell plasma membrane around the bacterium. (B) In internalization of and spp. by the trigger mechanism, bacterial effectors translocate through a type III secretion apparatus into the host cell cytosol and trigger a cascade of reactions including activation of small G proteins, which regulate the actin cytoskeleton, to induce membrane extensions. (C) Internalization by the invasome mechanism, described for spp. Internalization by NPCs involves the formation of a bacterial aggregate which is engulfed and subsequently internalized.

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.2
Figure 7.2

Structural analysis of the needle complex by electron microscopy. Negative staining of isolated needle complexes is shown. Arrows point to incomplete needle complexes, lacking the base. Bar, 100 nm. The model of a central axial section of the needle complex indicates the tripartite structure of a base (a), upper ring doublet (b), and needle (c). (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.3
Figure 7.3

Electron micrographs of the trigger mechanism of bacterial entry. (A) Transmission electron micrograph of the ruffling response of the epithelial cell membrane to (Micrograph courtesy of Philippe Sansonetti.) (B) Morphological response of HeLa cells to latex beads bearing the Ipa complex. Semiconfluent HeLa cells were incubated for 2 h at 37°C with Ipa beads. The ultrastructural appearance of the HeLa cell apical plasma membrane in response to Ipa beads is reminiscent of the dramatic membrane-ruffling response to (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.4
Figure 7.4

Electron micrographs illustrating the invasome mechanism of bacterial entry. (A) Scanning electron micrograph of a invasome on the surface of a cultured endothelial cell. (Micrograph courtesy of Christoph Dehio.) (B) Transmission electron micrograph of a thin section through the invasome. (Reprinted from C. Dehio, M. Meyer, J. Berger, H. Schwarz, and C. Lanz, 110:2141–2154, 1997, with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Beckert, S.,, B. Kreikemeyer,, and A. Podbielski. 2001. Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 69: 534 537.
2. Beekhuizen, H.,, J. S. van de Gevel,, B. Olsson,, I. J. van Benten,, and R. van Furth. 1997. Infection of human vascular endothelial cells with Staphylococcus aureus induces hyperadhesiveness for human monocytes and granulocytes. J. Immunol. 158: 774 782.
3. Bermudez, L. E.,, M. Petrofsky,, and J. Goodman. 1997. Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect. Immun. 65: 3768 3773.
4. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147: 683 693.
4a.. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri ‘needle complex,’ a part of its type III secreton. Mol. Microbiol. 39: 652 663.
5. Burns, J. L.,, M. Jonas,, E. Y. Chi,, D. K. Clark,, A. Berger,, and A. Griffith. 1996. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. I nfect. Immun. 64: 4054 4059.
6. Cornelis, G. R. 2002. The Yersinia Ysc-Yop ‘type III’ weaponry. Nat. Rev. Mol. Cell Biol. 3: 742 752.
7. Cossart, P.,, P. Bouquet,, S. Normark,, and R. Rappuoli (ed.). 2000. Cellular Microbiology. ASM Press, Washington, D.C.
8. Cue, D. R.,, and P. P. Cleary. 1997. Highfrequency invasion of epithelial cells by Streptococcus pyogenes can be activated by fibrinogen and peptides containing the sequence RGD. Infect. Immun. 65: 2759 2764.
9. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435 438.
10. Darwin, K. H.,, and V. L. Miller 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12: 405 428.
11. de Boer, E. C.,, R. F. Bevers,, K. H. Kurth,, and D. H. Schamhart. 1996. Double fluorescent flow cytometric assessment of bacterial internalization and binding by epithelial cells. Cytometry 25: 381 387.
12. Dehio, C.,, S. D. Gray-Owen,, and T. F. Meyer. 1998. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6: 489 494.
13. Dehio, C. 1999. Interactions of Bartonella henselae with vascular endothelial cells. Curr. Opin. Microbiol. 2: 78 82.
14. Dogan, S.,, F. Gunzer,, H. Guenay,, G. Hillmann,, and W. Geurtse. 2000. Infection of primary human gingival fibroblasts by Porphyromonas gingivalis and Prevotella intermedia. Clin. Oral Investig. 4: 35 41.
15. Dombek, P. E.,, D. Cue,, J. Sedgewick,, H. Lamb,, S. Ruschkowski,, B. B. Finlay,, and P. P. Cleary. 1999. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 31: 859 870.
16. Feltis, B. A.,, S. M. Wiesner,, A. S. Kim,, S. L. Erlandsen,, D. L. Lyerly,, T. D. Wilkins,, and C. L. Wells. 2000. Clostridium difficile toxins A and B can alter epithelial permeability and promote bacterial paracellular migration through HT-29 enterocytes. Shock 14: 629 634.
17. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718 725.
18. Fleiszig, S. M.,, T. S. Zaidi,, and G. B. Pier. 1995. Pseudomonas aeruginosa invasion of and multiplication within corneal cells in vitro. Infect. Immun. 63: 4072 4077.
19. Fleiszig, S. M.,, T. S. Zaidi,, M. J. Preston,, M. Grout,, D. J. Evans,, and G. B. Pier. 1996. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect. Immun. 64: 2288 2294.
20. Fluckiger, U.,, K. F. Jones,, and V. A. Fischetti. 1998. Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells. Infect. Immun. 66: 974 979.
21. Francis, C.,, M. N. Starnback,, and S. Falkow. 1992 Morphological cytoskletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low oxygen conditions. Mol. Microbiol. 6: 3077 3087.
22. Franklin, C. L.,, D. A. Kinden,, P. L. Stogsdill,, and L. K. Riley. 1993. In vitro model of adhesion and invasion by Bacillus piliformis. Infect. Immun. 61: 876 883.
23. Gaillard, J. L.,, and B. B. Finlay. 1996. Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte- like Caco-2 cell line. Infect. Immun. 64: 1299 1308.
24. Galán, J. E. 1994. Interactions of bacteria with non-phagocytic cells. Curr. Opin. Immunol. 6: 590 595.
25. Galán, J. E. 1996. Molecular and cellular bases of Salmonella entry into host cells. Curr. Top. Microbiol. Immunol. 209: 43 60.
26. Galán, J. E. 2000. Alternative strategies for becoming an insider: lessons from the bacterial world. Cell 103: 363 366.
27. Galán, J. E.,, and D. Zhou. 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97: 8754 8761.
28. Galán, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17: 53 86.
29. Garduño, R. A.,, A. R. Moore,, G. Olivier,, A. L. Lizama,, E. Garduño,, and W. W. Kay. 2000. Host cell invasion and intracellular residence by Aeromonas salmonicida: role of the S-layer. Can. J. Microbiol. 46: 660 668.
30. Ginocchio, C.,, S. B. Olmsted,, C. L. Wells,, and J. E. Galan. 1994 Contact with epithelial cells induces the formation of surface apendages on Salmonella typhimurium. Cell 76: 717 724.
31. Goodfellow, A. M.,, M. Hibble,, S. R. Talay,, B. Kreikemeyer,, B. J. Currie,, K. S. Sriprakash,, and G. S. Chhatwal. 2000. Distribution and antigenicity of fibronectin-binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the Northern Territory, Australia. J. Clin. Microbiol. 38: 389 392.
32. Greco, R.,, L. De Martino,, G. Donnarumma,, M. P. Conte,, L. Seganti,, and P. Valenti. 1995. Invasion of cultured human cells by Streptococcus pyogenes. Res. Microbiol. 146: 551 560.
33. Griffin, F. M.,, J. A. Griffin,, J. E. Leider,, and S. C. Silverstein. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particlebound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142: 1263 1282.
34. Hamill, R. J.,, J. M. Vann,, and R. A. Proctor. 1986. Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect. Immun. 54: 833 836.
35. Han, Y. W.,, W. Shi,, G. T. Huang,, S. Kinder Haake,, N. H. Park,, H. Kuramitsu,, and R. J. Genco. 2000. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun. 68: 3140 3146.
36. Hartland, E. L.,, V. Huter,, L. M. Higgins,, N. S. Goncalves,, G. Dougan,, A. D. Phillips,, T. T. MacDonald,, and G. Frankel. 2000. Expression of intimin gamma from enterohemorrhagic Escherichia coli in Citrobacter rodentium. Infect. Immun. 68: 4637 4646.
37. Hasty, D. L.,, I. Ofek,, H. S. Courtney,, and R. J. Doyle. 1992. Multiple adhesins of streptococci. Infect. Immun. 60: 2147 2152.
38. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36: 1015 1023.
39. Hulse, M. L.,, S. Smith,, E. Y. Chi,, A. Pham,, and C. E. Rubens. 1993. Effect of type III group B streptococcal capsular polysaccharide on invasion of respiratory epithelial cells. Infect. Immun. 61: 4835 4841.
40. Isberg, R. R.,, and G. Tranh Van Nhieu. 1994. Two mammalian cell internalization strategies used by pathogenic bacteria. Annu. Rev. Genet. 28: 395 422.
41. Jadoun, J.,, V. Ozeri,, E. Burstein,, E. Skutelsky,, E. Hanski,, and S. Sela. 1998. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J. Infect. Dis. 178: 147 158.
42. Jadoun, J.,, and S. Sela. 2000. Mutation in csrR global regulator reduces Streptococcus pyogenes internalization. Microb. Pathog. 29: 311 317.
43. Jerse, A. E.,, and R. F. Rest. 1997. Adhesion and invasion by the pathogenic neisseria. Trends Microbiol. 5: 217 221.
44. Jones, A. L.,, D. DeShazer,, and D. E. Woods. 1997. Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei. Infect. Immun. 65: 4972 4977.
45. Jouve, M.,, M. I. Garcia,, P. Courcoux,, A. Labigne,, P. Gounon,, and C. le Bouguenec. 1997. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect. Immun. 65: 4082 4089.
46. Kubori, T.,, Y. Matsuchima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Skhan,, J. E. Galán,, and S. I. Aizawa. 1998. Supramolecular structure of Salmonella typhimurium type III protein secretion. Science 280: 602 605.
47. Kubori, T.,, A. Sukhan,, S. I. Aizawa,, and J. E. Galán. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97: 10225 10230.
48. Kupsch, E. M.,, B. Knepper,, T. Kuroki,, I. Heuer,, and T. F. Meyer. 1993. Variable opacity (Opa) outer membrane proteins account for the cell tropism displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 12: 641 650.
49. Lalonde, M.,, M. Segura,, S. Lacouture,, and M. Gottschalk. 2000. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiolology 146: 1913 1921.
50. LaPenta, D.,, C. Rubens,, E. Chi,, and P. P. Cleary. 1994. Group A streptococci efficiently invade human respiratory epithelial cells. Proc. Natl. Acad. Sci. USA 91: 12115 12119.
51. Lee, C. A.,, and S. Falkow 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87: 4304 4308.
52. Lowy, F. D. 2000. Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol. 8: 341 343.
53. Makino, S.,, J. P. van Putten,, and T. F. Meyer. 1991. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoea into human epithelial cells. EMBO J. 10: 1307 1315.
54. Marra, A.,, and R. R. Isberg. 1996. Bacterial pathogenesis: common entry mechanisms. Curr. Biol. 6: 1084 1086.
55. McCallum, S. J.,, and J. A. Theriot,. 2000. Bacterial manipulation of the host cell cytoskeleton, p. 171 191. In P. Cossart,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.), Cellular Microbiology. ASM Press, Washington, D.C.
56. Meier, C.,, T. A. Oelschlaeger,, H. Merkert,, T. K. Korhonen,, and J. Hacker. 1996. Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells. Infect. Immun. 64: 2391 2399.
57. Ménard, R.,, M. C. Prevost,, P. Gounon,, P. Sansonetti,, and C. Dehio. 1996. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad..Sci. USA 93: 1254 1258.
58. Merien, F.,, G. Baranton,, and P. Perolat. 1997. Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect. Immun. 65: 729 738.
59. Meyer, D. H.,, J. E. Lippmann,, and P. M. Fives-Taylor. 1996. Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic, multistep process. Infect. Immun. 64: 2988 2997.
60. Meyer, T. F. 1999. Pathogenic Neisseriae: complexity of pathogen-host cell interplay. Clin. Infect. Dis. 28: 433 441.
61. Miller, V. L. 1995. Tissue-culture invasion: fact or artefact? Trends Microbiol. 3: 69 71.
62. Minnick, M. F.,, S. J. Mitchell,, and S. J. McAllister. 1996. Cell entry and the pathogenesis of Bartonella infections. Trends Microbiol. 4: 343 347.
63. Molinari, G.,, S. R. Talay,, P. Valentin- Weigand,, M. Rohde,, and G. S. Chhatwal. 1997. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65: 1357 1363.
64. Molinari, G.,, and G. S. Chhatwal. 1999. Streptococcal invasion. Curr. Opin. Microbiol. 2: 56 61.
65. Molinari, G.,, and G. S. Chhatwal. 1999. Role played by the fibronectin-binding protein SfbI (protein F1) of Streptococcus pyogenes in bacterial internalization by epithelial cells. J. Infect. Dis. 179: 1049 1050.
66. Molinari, G.,, M. Rhode,, S. R. Talay,, G. S. Chhatwal,, S. Beckert,, and A. Podbielski. 2001. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol. Microbiol. 40: 99 114.
67. Nassif, X. 1999. Interaction mechanisms of encapsulated meningococci with eukaryotic cells: what does this tell us about the crossing of the blood-brain barrier by Neisseria meningitidis? Curr. Opin. Microbiol. 2: 71 77.
68. Nassif, X.,, and M. So. 1995. Interaction of pathogenic neisseriae with nonphagocytic cells. Clin. Microbiol. Rev. 8: 376 388.
69. Natanson, S.,, S. Sela,, A. E. Moses,, J. M. Musser,, M. G. Caparon,, and E. Hanski. 1995. Distribution of fibronectin-binding proteins among group A streptococci among different M types. J. Infect. Dis. 171: 871 878.
70. Neeman, R.,, N. Keller,, A. Barzilai,, Z. Korenman,, and S. Sela. 1998. Prevalence of internalization-associated gene, prtF1, among persisting group-A streptococcus strains isolated from asymptomatic carriers. Lancet 352: 1974 1977.
71. Oelschlaeger, T. A.,, P. Guerry,, and D. J. Kopecko. 1993. Unusual microtubult-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. USA 90: 6884 6888.
72. Oelschlaeger, T. A.,, and B. Tall. 1997. Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect. Immun. 65: 2950 2958.
73. Oelschlaeger, T. A. 2001. Adhesins as invasins. Int. J. Med. Microbiol. 291: 7 14.
74. Osterlund, A.,, R. Popa,, T. Nikkila,, A. Scheynius,, and L. Engstrand. 1997. Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope 107: 640 647.
75. Ozeri, V.,, I. Rosenshine,, D. F. Mosher,, R. Fässler,, and E. Hanski. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30: 625 637
76. Perez-Casal, J.,, M. G. Caparon,, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarities to the receptor proteins of two-component regulatory systems. J. Bacteriol. 173: 2617 2624.
77. Perraud, A. L.,, V. Weiss,, and R. Gross. 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol. 7: 115 120.
78. Phalipon, A.,, and P. J. Sansonetti. 1999. Microbial-host interactions at mucosal sites. Host response to pathogenic bacteria at mucosal sites. Curr. Top. Microbiol. Immunol. 236: 163 189.
79. Pier, G. B.,, M. Grout,, and T. S. Zaidi. 1997. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl. Acad. Sci. USA 94: 12088 12093.
80. Pizaro-Cerda, J.,, E. Moreno,, and J. P. Gorvel. 2000. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect. 2: 829 835.
81. Rasmussen-Lathrop, S. J.,, K. Koshiyama,, N. Phillips,, and R. S. Stephens. 2000. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell. Microbiol. 2: 137 144.
82. Raupach, B.,, J. Mecsas,, U. Heczko,, S. Falkow,, and B. B. Finlay. 1999. Bacterial epithelial cell cross talk. Curr. Top. Microbiol. Immunol. 236: 137 161.
83. Sahly, H.,, R. Podschun,, T. A. Oelschlaeger,, M. Greiwe,, H. Parolis,, D. Hasty,, J. Kekow,, U. Ullmann,, I. Ofek,, and S. Sela. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect. Immun. 68: 6744 6749.
84. Schülein R.,, A. Seubert,, C. Gille,, C. Lanz,, Y. Hansmann,, Y. Piemont,, and C. Dehio. 2001. Invasion and persistence intracellular colonization of erythrocytes: a unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med. 193: 1077 1086.
85. Sela, S.,, R. Neeman,, N. Keller,, and A. Barzilai. 2000. Relationship between asymptomatic carriage of Streptococcus pyogenes and ability of the strains to adhere and internalise cultured epithelial cells. J. Med. Microbiol. 49: 499 502.
86. Simpson, W. J.,, D. LaPenta,, C. Chen,, and P. P. Cleary. 1990. Coregulation of type 12 M protein and streptococcal C5a peptidase genes in group A streptococci: evidence for a virulence regulon controlled by the VirR locus. J. Bacteriol. 172: 696 700.
87. Sola-Landa, A.,, J. Pizarro-Cerda,, M. J. Grillo,, E. Moreno,, I. Moriyon,, J. M. Blasco,, J. P. Gorvel,, and I. Lopez-Goni. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29: 125 138.
88. Stephens, R. S.,, F. S. Fawaz,, K. A. Kennedy,, K. Koshiyama,, B. Nichols,, C. van Ooij,, and J. N. Engel. 2000. Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect. Immun. 68: 1080 1085.
89. Tran Van Nhieu, G.,, and P. J. Sansonetti. 1999. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2: 51 55.
90. Valentin-Wiegand, P.,, S. R. Talay,, A. Kaufhold,, K. N. Timmis,, and G. S. Chhatwal. 1994. The fibronectin-binding domain of Sfb protein of Streptococcus pyogenes occurs in many group A streptococci and does not cross-react with heart myosin. Microb. Pathog. 17: 111 120.
91. Valentin-Weigand, P.,, P. Benkel,, M. Rohde,, and G. S. Chhatwal. 1996. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect. Immun. 64: 2467 2473.
92. van Schilfgaarde, M.,, P. van Ulsen,, W. van Der Steeg,, V. Winter,, P. Eijk,, V. Everts,, J. Dankert,, and L. van Alphen. 2000. Cloning of genes of nontypeable Haemophilus influenzae involved in penetration between human lung epithelial cells. Infect. Immun. 68: 4616 4623.
93. Virji, M.,, K. Makepeace,, D. G. P. Ferguson,, M. Achtman,, J. Sarkari,, and E. R. Moxon. 1992. Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol. Microbiol. 6: 2785 2795.
94. Virji, M.,, K. Makepeace,, D. G. P. Ferguson,, M. Achtman,, and E. R. Moxon. 1993. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol. 10: 499 510.
95. Vogel, P. J.,, and R. R. Isberg. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2: 30 34.
96. Watarai, M.,, S. Funato,, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5-beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183: 991 999.
97. Weel, J. F. L.,, C. T. P. Hopman,, and J. P. M. van Putten. 1991. In situ expression and localization of Neisseria gonorrhoeac opacity proteins in infected epithelial cells: apparant role of Opa proteins in cellular invasion. J. Exp. Med. 173: 1395 1405.
98. Weinberg, A.,, C. M. Belton,, Y. Park,, and R. J. Lamont. 1997. Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 65: 313 316.
99. Wells, C. L.,, E. M. A. van de Westerlo,, R. P. Jechorek,, H. M. Haines,, and S. L. Erlandsen. 1998. Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect. Immun. 66: 2410 2419.
100. Wyrick, P. B.,, J. Choong,, C. H. Davis,, S. T. Knight,, M. O. Royal,, A. S. Maslow,, and C. R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378 2389.
101. Zaidi, T. S.,, J. Lyczak,, M. Preston,, and G. B. Pier. 1999. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun. 67: 1481 1492.
102. Zaretzky, F. R.,, and T. H. Kawula. 1999. Examination of early interactions between Haemophilus ducreyi and host cells by using cocultured HaCaT keratinocytes and foreskin fibroblasts. Infect. Immun. 67: 5352 5360.
103. Zhang, J. R.,, K. E. Mostov,, M. E. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827 837.
104. Zierler, M. K.,, and J. E Galán. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella invasion protein InvJ. Infect. Immun. 63: 4024 4028.


Generic image for table
Table 7.1

Relationship between bacterial entry into and growth within NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Generic image for table
Table 7.2

Examples of extracellular bacteria with the capacity to enter NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Generic image for table
Table 7.3

Examples of bacterial ligands and receptors involved in adhesion to and entry into NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error