1887

Chapter 11 : Microbial Interference with Host Inflammatory Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbial Interference with Host Inflammatory Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap11-2.gif

Abstract:

This chapter discusses recent findings that may shed light on how pathogens circumvent the usually effective intestinal inflammatory defenses. Additionally, it discusses how nonpathogens and commensals may also have developed signals that inhibit or dampen host inflammatory pathways. Immune and inflammatory evasion by pathogens is an expected facet of parasitic life cycles, especially those that involve invasion into the corpus of the host. Prokaryotic life has an understandable affinity for intimate relationships with eukaryotic organisms. One, AvrBsT, is found in members of phytopathogenic bacteria ( spp.) that mediate the ‘’avirulence’’ function described. An AvrA homolog is present in most enteropathogenic spp. The blockade of proinflammatory pathways by chronic pathogens such as or may allow for long-term carriage that is characteristic of these infections. The chapter addresses how bacteria in the gut are capable of modifying host epithelia for their own purposes, and describes a biochemical pathway in human cells (NF-ΚB) by which both nonpathogens and pathogens may be able to attenuate host defense systems and noted specific effector proteins (Avr/Yop) that may mediate these effects.

Citation: Neish A. 2003. Microbial Interference with Host Inflammatory Responses, p 175-190. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch11

Key Concept Ranking

Bacterial Proteins
0.50551295
African swine fever virus
0.46605617
Type III Secretion System
0.44107303
0.50551295
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The Rel family and IB family. Each member is a separate gene. The 300-amino-acid Rel homology domain is shown as a black rectangle; the 33-amino-acid ankyrin repeats are shown as gray ovals.

Citation: Neish A. 2003. Microbial Interference with Host Inflammatory Responses, p 175-190. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The NF-B activation pathway. See text. In unstimulated cells, NF-B (a heterodimer of p50/p65) is sequestered in the cytoplasm by IB. Activation of proinflammatory signaling receptors, such as the TLR, sets in motion a series of enzymatic modifications of IB: phosphorylation, ubiquitination, and degradation. Loss of IB allows NF-B to translocate to the nucleus, bind to the promoters of numerous proinflammatory effector genes, and activate the epithelial proinflammatory program. Perturbation of any of these enzymatic steps could inhibit the entire pathway.

Citation: Neish A. 2003. Microbial Interference with Host Inflammatory Responses, p 175-190. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap11
1. Akari, H.,, S. Bour,, S. Kao,, A. Adachi,, and K. Strebel. 2001. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappa-B dependent expression of anti-apoptotic factors. J. Exp. Med. 194: 1299 1312.
2. Alcamo, E.,, J. Mizgerd,, B. Horwitz,, R. Bronson,, A. Beg,, M. Scott,, C. Coerschuk,, R. Hynes,, and D. Baltimore. 2001. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NFkappa B in leukocyte recruitment. J. Immunol. 167: 1592 1560.
3. Alvarez-Olmos, M.,, and R. Oberhelman. 2001. Probiotics and infectious diseases: a modern perspective on a traditional therapy. Clin. Infect. Dis. 32: 1567 1576.
4. Bauerle, P. 1998. Pro-inflammatory signalling: last pieces in the NF-κB puzzle? Curr. Biol. 8: 19 22.
5. Baumler, A.,, R. Tsolis,, T. Ficht,, and L. Adams. 1998. Evolution of host adaptation in Salmonella enterica. Infect. Immun. 66: 4579 4587.
6. Beg, A.,, W. Sha,, R. Bronson,, S. Ghosh,, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappaB. Nature 376: 167 170.
7. Bour, S.,, C. Perrin,, H. Akari,, and K. Strebel. 2001. The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J. Biol. Chem. 276: 15920 15928.
8. Bry, L.,, P. Falk,, T. Midtvedt,, and J. Gordon. 1996. A model of host-microbial interactions in an open intestinal ecosystem. Science 273: 1380 1383.
9. Butcher, B.,, L. Kim,, P. Johnson,, and E. Denkers. 2001. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB. J. Immunol. 167: 2193 2201.
10. Chen, Z.,, J. Hagler,, V. Palombella,, F. Melandri,, D. Scherer,, D. Ballard,, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitinproteasome pathway. Genes Dev. 9: 1586 1597.
11. Chen, Z.,, L. Parent,, and T. Maniatis. 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853 862.
12. Ciesiolka, L.,, T. Hwin,, J. Gearlds,, G. Minsavage,, R. Saenz,, M. Bravo,, V. Handley,, S. Conover,, H. Zhang,, J. Caporgno,, N. Phengrasamy,, A. Toms,, R. Stall,, and M. Whalen. 1999. Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBst. Mol. Plant Microbe Interact. 12: 35 44.
13. Collins, T.,, M. Read,, A. Neish,, M. Whitley,, D. Thanos,, and T. Maniatis. 1995. Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J. 9: 899 909.
14. Cornelis, G.,, and F. Van Gijsegem. 2000. Assembly and function of type III secretion systems. Annu. Rev. Microbiol. 54: 735 774.
15. Cotran, R.,, V. Kumar,, and T. Collins. 1999. The Pathologic Basis of Disease, 6th ed. The W. B. Saunders Co., Philadelphia, Pa.
16. Cummings, C.,, and D. Relman. 2000. Using DNA microarrays to study host-microbe interactions. Emerg. Infect. Dis. 6: 513 525.
17. Dale, C.,, S. Young,, D. Haydon,, and S. Welburn. 2001. The insect symbiont Sodalis glossindus utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. USA 98: 1883 1888.
18. Dangl, J.,, and J. Jones. 2001. Plant pathogens and integrated defense responses to infection. Nature 411: 826 833.
19. Day, D.,, B. Mandall,, and B. Morrson. 1978. The rectal biopsy appearances of Salmonella colitis. Histopathology 2: 117 131.
20. Deng, L.,, C. Wang,, E. Spencer,, L. Yang,, A. Braun,, X. You,, C. Slaughter,, C. Pickart,, and Z. Chen. 2000. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351 361.
21. DiDonato, J.,, M. Hayakawa,, D. Rothwarf,, E. Zandi,, and M. Karin. 1997. A cytokine-responsive IκB kinase that activated the transcription factor NF-κB. Nature 388: 548 554.
22. Donnenberg, M. 2000. Pathogenic strategies of enteric bacteria. Nature 406: 768 774.
23. Elewaut, D.,, J. DiDonato,, J. Kim,, F. Truong,, L. Eckmann,, and M. Kagnoff. 1999. NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J. Immunol. 163: 1457 1466.
24. Falk, P.,, L. Hooper,, T. Midtvedt,, and J. Gordon. 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62: 1157 1170.
25. Falkow, S.,, R. Isberg,, and D. Portnoy. 1992. The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8: 333 363.
26. Foo, S.,, and G. Nolan. 1999. NF-κB to the rescue. Rel’s, apoptosis and cellular transformation. Trends Genet. 15: 229 235.
27. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. Broughton,, A. Rosenthal,, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 352 353.
28. Galyov, E.,, M. Wood,, R. Rosqvist,, P. Mullan,, P. Watson,, S. Hedges,, and T. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25: 903 912.
29. Gewirtz, A.,, A. Rao,, P. Simon,, D. Merlin,, D. Carnes,, J. Madara,, and A. Neish. 2000. Salmonella typhimurium induces epithelial IL-8 expression via Ca +2-mediated activation of the NF-κB pathway. J. Clin. Invest. 105: 79 92.
30. Hacker, J.,, and J. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641 679.
31. Hardt, W.-D.,, and J. Galan. 1997. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proc. Natl. Acad. Sci. USA 94: 9887 9892.
32. Heissmeyer, V.,, D. Krappmann,, E. Hatada,, and C. Scheidereit. 2001. Shared pathways of IκB kinase-induced SCF (beta-TrCP)-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκB alpha. Mol. Cell. Biol. 21: 1024 1035.
33. Hobbie, S.,, L. Chen,, R. Davis,, and J. Galan. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159: 5550 5559.
34. Hoffman, J.,, F. Kafatos,, C. Janeway,, and R. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313 1318.
35. Hooper, L.,, L. Bry,, P. Falk,, and J. Gordon. 1998. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 20: 336 343.
36. Hooper, L.,, and J. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292: 1115 1118.
37. Hooper, L.,, M. Wong,, A. Thelin,, L. Hansson,, P. Falk,, and J. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881 884.
38. Jobin, C.,, and R. Sartor. 2000. The IκB/NF-κB system; a key determinant for mucosal inflammation and protection. Am. J. Physiol. 278: 451 462.
39. Karin, M. 1999. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274: 27339 27342.
40. Karin, M.,, and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18: 621 663.
41. Klumpp, D.,, A. Weiser,, S. Sengupta,, S. Forrestal,, R. Batler,, and A. Schaeffer. 2001. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun. 69: 6689 6695.
42. Kopp, E.,, and S. Ghosh. 1995. NF-κB and Rel proteins in innate immunity. Adv. Immunol. 58: 1 12.
43. Kunsch, C.,, and C. Rosen. 1993. NF-κB subunit-specific regulation of the interleukin-8 promoter. Mol. Cell. Biol. 13: 6137 6146.
44. Lee, C.,, M. Silva,, A. Siber,, A. Kelly,, E. Galyov,, and B. McCormick. 2000. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl. Acad. Sci. USA 97: 12283 12288.
45. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J.-M. Reichart,, and J. Hoffman. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973 983.
46. Looney, R.,, and R. Steigbigel. 1986. Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J. Lab. Clin. Med. 108: 506 516.
47. Maniatis, T. 1999. A ubiquitin ligase complex essential for the NF-κB, Wnt/wingless, and hedgehog signalling pathways. Genes Dev. 13: 505 510.
48. Masden, K.,, J. S. Doyle,, L. D. Jewell,, M. M. Tavernini,, and R. N. Fedorak. 1999. Lactobacillus sp. prevents olitis in interleukin-10 gene deficient mice. Gastroenterology 116: 1107 1114.
49. May, M.,, and S. Ghosh. 1999. IκB kinases: kinsmen with different crafts. Science 284: 271 273.
50. Mozaffarian, N.,, A. Casadevall,, and J. Berman. 2000. Inhibition of human endothelial cell chemokine production by the opportunistic fungal pathogen Cryptococcus neoformans. J. Immunol. 165: 1541 1547.
51. Neish, A.,, A. Gewirtz,, H. Zeng,, A. Young,, M. Hobert,, V. Karmali,, A. Rao,, and J. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289: 1560 1563.
52. Oie, K.,, and D. Pickup. 2001. Cowpox virus and other members of the orthopoxvirus group interfere with the regulation of NF-κB activation. Virology 288: 175 187.
53. Orth, K.,, L. Palmer,, Z. Bao,, S. Stewart,, A. Rudolph,, J. Bliska,, and J. Dixon. 1999. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285: 1920 1923.
54. Orth, K.,, Z. Xu,, M. Mudgett,, Z. Bao,, L. Palmer,, J. Bliska,, W. Mangel,, B. Staskawicz,, and J. Dixon. 2000. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290: 1594 1597.
55. Palmer, L.,, A. Pancetti,, S. Greenberg,, and J. Bliska. 1999. YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect. Immun. 67: 708 716.
56. Palombella, V.,, O. Rando,, A. Goldberg,, and T. Maniatis. 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78: 773 785.
57. Powell, P.,, L. Dixon,, and R. Parkhouse. 1996. An IκB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J. Virol. 70: 8527 8533.
58. Read, M.,, J. Brownell,, T. Gladysheva,, M. Hottelet,, L. Parent,, M. Coggins,, J. Pierce,, V. Podust,, R.-S. Luo,, V. Chau,, and J. Palombella. 2000. Nedd8 modification of Cul-1 activates SCF-β-TrCP-dependent ubiquitination of IκBa. Mol. Cell. Biol. 20: 2326 2333.
59. Read, M.,, A. Neish,, F. Luscinskas,, V. Palombella,, T. Maniatis,, and T. Collins. 1995. The proteosome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2: 493 505.
60. Revilla, Y.,, M. Callejo,, J. Rodriguez,, E. Culebras,, M. Nogal,, M. Salas,, E. Vinulea,, and M. Fresno. 1998. Inhibition of nuclear factor κB activation by a virus-encoded IκB-like protein. J. Biol. Chem. 273: 5405 5411.
61. Rosenberger, C.,, A. Pollard,, and B. Finlay. 2001. Gene array technology to determine host responses to Salmonella. Microbes Infect. 3: 1353 1360.
62. Ruckdeschel, K.,, O. Mannel,, K. Richter,, C. Jacobi,, K. Trulzsch,, B. Rouot,, and J. Heesemann. 2001. Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-κB pathway and exploits lipopolysac charide signaling to trigger apoptosis in macrophages. J. Immunol. 166: 1823 1831.
63. Sangari, F.,, M. Petrofsky,, and L. Bermudez. 1999. Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. Infect. Immun. 67: 5069 5075.
64. Schesser, K.,, A.-K. Spiik,, J.-M. Dukuzumuremyi,, M. Neurath,, S. Petterson,, and H. Wolf-Watz. 1998. The yopJ locus is required for Yersinia-mediated inhibition of the NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28: 1067 1079.
65. Schwartz, A.,, and A. Ciechanover. 1999. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50: 57 74.
66. Senfteben, U.,, Y. Cao,, G. Xiao,, F. Greten,, G. Krahn,, G. Bonnizzi,, Y. Chen,, Y. Hu,, A. Fong,, S.-C. Sun,, and M. Karin. 2001. Activation by IKKα of a second evolutionary conserved, NF-κB signaling pathway. Science 293: 1495 1499.
67. Sha, W.,, H. Liou,, E. Tuomanen,, and D. Baltimore. 1995. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80: 321 330.
68. Silverman, N.,, and T. Maniatis. 2001. NF-κB signaling pathways in mammalian and insect immunity. Genes Dev. 15: 2321 2342.
69. Spencer, E.,, J. Jiang,, and Z. Chen. 1999. Signal induced ubiquitination of IκBα by the F-box protein slimb/β-TrCP. Genes Dev. 13: 284 294.
70. Thanos, D.,, and T. Maniatis. 1995. NF-κB: a lesson in family values. Cell 80: 529 532.
71. Varel, V. 1987. Activity of fiber degrading microorganisms in the pig large intestine. J. Anim. Sci. 65: 488 496.
72. Viprey, V.,, A. Del Greco,, W. Golinowski,, W. Broughton,, and X. Perret. 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381 1389.
73. Wang, C.,, L. Deng,, M. Hong,, G. Akkaraju,, J.-I. Inoue,, and Z. Chen. 2001. Tak1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346 351.
74. Wang, C.-Y.,, M. Mayo,, R. Korneluk,, D. Goeddel,, and A. Baldwin. 1998. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680 1683.
75. Wilkinson, F. 1997. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11: 1245 1256.
76. Wilson, K., 1995. The gastrointestinal microflora, p. 607 615. In T. Yamada (ed.), Textbook of Gastroenterology, vol. 1. J. P. Lippincott, Philadelphia, Pa.
77. Wilson, M.,, R. Seymour,, and B. Henderson. 1998. Bacterial perturbation of cytokine networks. Infect. Immun. 66: 2401 2409.
78. Winston, J.,, P. Strack,, P. Beer-Romero,, C. Chu,, S. Elledge,, and J. Harper. 1999. The SCF β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13: 270 283.
79. Yeh, E.,, L. Gong,, and T. Kamitani. 2000. Ubiquitin-like proteins: new wines in new bottles. Gene 248: 1 14.
80. Yuk, M. H.,, E. Harvill,, P. Cotter,, and J. F. Miller. 2000. Modulation of host immune responses, induction of apoptosis and inhibition of NF-κB activation by the Bordetella type III secretion system. Mol. Microbiol. 35: 991 1004.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error