Chapter 15 : Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap15-2.gif


This chapter focuses on the disruption of transcellular chloride secretion by microbial pathogens, with emphasis on recent advances in this field. A brief review of normal chloride secretion is outlined in the chapter. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that lead to mislocalization, altered function, or expression of this protein have serious pathophysiological consequences. Cholera toxin (CT) from and the type I and type II heat-labile enterotoxins (LTI and LTII) from are the primary agents that mediate the diarrhea caused by these organisms. These toxins belong to the AB5 enterotoxin family. , the leading cause of nosocomial enteric infections, is a noninvasive pathogen that causes colitis entirely by the action of two potent exotoxins, toxin A and toxin B. Unlike CT and enterotoxin, which elicit secretion without an acute inflammatory component, toxin triggers marked intestinal inflammation. In the normal intestine, increases in cyclic guanosine monophosphate (cGMP) lead to the phosphorylation and activation of the CFTR by the membrane-bound cGMP-dependent protein kinase II (PKGII) or by cross-activation of the cyclic AMP (cAMP)-dependent protein kinase. Calcium-dependent chloride secretion is a transient response even in the continued presence of the agonist. Secretion via the transcellular pathway is an exquisitely regulated process. Various pathogens and their toxins can directly disrupt these pathways, frequently by invoking multiple mechanisms.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Intestinal epithelial cells display a polarized distribution of various ion transporters. Electroneutral transport of chloride across the basolateral surface is primarily driven by the sodium concentration gradient established by the NaK ATPase. Potassium channels on the basolateral surface are involved in potassium recycling, thereby preventing cellular depolarization. Accumulation of chloride within the cell beyond its electrochemical equilibrium is the electrical driving force for chloride movement across apical chloride channels. While the bulk of this transport occurs via the CFTR, the CaCC also contribute, especially toward acute secretory responses. The intermediate messengers cAMP and cGMP potentiate chloride secretion by acting primarily on CFTR and NKCC1. Figure adapted from Barrett and Keely ( ).

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Cholera toxin and the heat-labile toxins bind to ganglioside receptors and enter epithelial cells as an AB5 complex by retrograde membrane trafficking through the Golgi and ER. Dissociation and cleavage of the A subunit result in the A1-peptide-mediated ADPribosylation of G . This results in a sustained activation of adenylate cyclase and elevation of cAMP, which in turn increases electrogenic chloride secretion.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

toxins A and B bind to an as yet undefined receptor on human intestinal epithelial cells and enter cells via an endosomal compartment. These toxins inactivate low-molecular-weight GTPases of the Rho family by glucosylation. In addition, the toxins rapidly localize to the mitochondria, leading to cytotoxic effects. The effect of toxin A on secretion may involve the induction of COX-2-mediated elevation of PGE levels. PGE, in turn, is known to induce cAMP-mediated chloride secretion in intestinal epithelial cells.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Guanylin, uroguanylin, and the homologous peptides from bacteria, EAST-1 and ST, bind to the guanylate cyclase C receptor, leading to the production of cGMP. cGMP mediates the phosphorylation and activation of CFTR by either the cGMP-or cAMP-dependent protein kinase.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

TDH and TDH-related hemolysin of and NSP4 of rotavirus elevate intracellular calcium concentrations by a protein kinase C-dependent mechanism. This results in the activation of the CaCC.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Phosphorylated inositol derivatives are involved in regulating Ca-mediated chloride secretion and may have stimulatory or inhibitory effects. Derivatives such as Ins(3,4,5)P3 inhibit basolateral potassium channels, thereby elevating the positive charge within the cell, thus favoring the retention of chloride ions within the cell. Proteins injected into epithelial cells by sp. promote the production of Ins(1,4,5,6)P4, which in turn blocks Ins(3,4,5)P-mediated K channel inhibition. In addition, the protein SopB also hydrolyzes Ins(3,4,5)P. Removal of K channel inhibition results in the export of potassium ions and renders the cell with a net negative charge, thereby favoring the exit of chloride ions through the apical channels.

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aman, A. T.,, S. Fraser,, E. A. Merritt,, C. Rodighiero,, M. Kenny,, M. Ahn,, W. G. Hol,, N. A. Williams,, W. I. Lencer,, and T. R. Hirst. 2001. A mutant cholera toxin B subunit that binds GM1-ganglioside but lacks immunomodulatory or toxic activity. Proc. Natl. Acad. Sci. USA 98: 8536 8541.
2. Badizadegan, K.,, B. L. Dickinson,, H. E. Wheeler,, R. S. Blumberg,, R. K. Holmes,, and W. I. Lencer. 2000. Heterogeneity of detergent insoluble membranes from human epithelia containing caveolin-1 and ganglioside GM1. Am. J. Physiol. 278: G895 G904.
3. Bastiaens, P. I. H.,, I. V. Majoul,, P. J. Verveer,, H.-D. Söling,, and T. M. Jovin. 1996. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15: 4246 4253.
4. Bonifacino, J. S.,, and A. M. Weissman,. 1998. Ubiquitin and the control of protein fate in the secretory and endocytic pathways, p. 19 57. In J. A. Spudich (ed.), Annual Review of Cell and Developmental Biology, vol. 14. Annual Reviews, Palo Alto, Calif.
5. Brodsky, J. L.,, and A. A. McCracken. 1999. ER protein quality control and proteasomemediated protein degradation. Semin. Cell Dev. Biol. 10: 507 513.
6. Cassel, D.,, and T. Pfeuffer. 1978. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75: 2669 2673.
7. Chaudry, V. K.,, Y. Jinno,, D. Fitzgerald,, and I. Pastan. 1990. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc. Natl. Acad. Sci. USA 87: 308 312.
8. Chege, N. W.,, and S. R. Pfeffer. 1990. Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J. Cell Biol. 111: 893 899.
9. De, S. N. 1959. Enterotoxicity of bacterial-free culture-filtrate of Vibrio cholerae. Nature 183: 1533 1534.
10. De, S. N.,, K. Bhattacharva,, and J. K. Sarkar. 1956. A study on the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J. Pathol. Bacteriol. 71: 201 209.
11. Donaldson, J. G.,, J. Lippincott-Schwartz,, and R. D. Klausner. 1991. Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kD peripheral membrane protein with the Golgi apparatus. J. Cell Biol. 112: 579 588.
12. Donta, S. T.,, S. Beristain,, and T. K. Tomicic. 1993. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect. Immun. 61: 3282 3286.
13. Drab, M.,, P. Verkade,, M. Elger,, M. Kasper,, M. Lohn,, B. Lauterbach,, J. Menne,, C. Lindschau,, F. Mende,, F. C. Luft,, A. Schedl,, H. Haller,, and T. V. Kurzchalia. 2001. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293: 2449 2452.
14. Dutta, N. K.,, M. V. Panse,, and D. R. Kulkami. 1959. Role of cholera toxin in experimental cholera. J. Bacteriol. 78: 594 595.
15. Endo, Y.,, K. Mitsui,, M. Motizuki,, and K. Tsurugi. 1987. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J. Biol. Chem. 262: 5908 5912.
16. Falguieres, T.,, F. Mallard,, C. Baron,, D. Hanau,, C. Lingwood,, B. Goud,, J. Salamero,, and L. Johannes. 2001. Targeting of Shiga toxin b-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell 12: 2453 2468.
17. Finkelstein, R. A.,, and J. J. LoSpalluto. 1969. Pathogenesis of experimental cholera: preparation of choleragen and choleragenoid. J. Exp. Med. 130: 185 202.
18. Finkelstein, R. A.,, H. T. Norris,, and N. K. Dutta. 1964. Pathogenesis of bacterial cholera in infant rabbits. J. Infect. Dis. 114: 203 216.
19. Freedman, R. B. 1989. Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57: 1069 1072.
20. Freedman, R. B.,, T. R. Hirst,, and M. F. Tuite. 1994. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19: 331 336.
21. Friedrichson, T.,, and T. V. Kurzchalia. 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394: 802 805.
22. Fukuta, S.,, J. L. Magnani,, E. M. Twiddy,, R. K. Holmes,, and V. Ginsburg. 1988. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun. 56: 1748 1753.
23. Gething, M. J.,, and J. Sambrook. 1992. Protein folding in the cell. Nature 355: 33 45.
24. Gill, D. M.,, and R. Meren. 1978. ADPribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 75: 3050 3054.
25. Goins, B.,, and E. Freire. 1988. Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cellsurface receptor ganglioside GM1. Biochemistry 27: 2046 2052.
26. Green, B. A.,, R. J. Neill,, W. T. Ruyechan,, and R. K. Holmes. 1983. Evidence that a new enterotoxin of Escherichia coli which activates adenylate cyclase in eucaryotic target cells is not plasmid mediated. Infect. Immun. 41: 383 390.
27. Guth, B. E. C.,, E. M. Twiddy,, L. R. Trabulsi,, and R. K. Holmes. 1986. Variation in chemical properties and antigenic determinants among type II heat-labile enterotoxins of Escherichia coli. Infect. Immun. 54: 529 536.
28. Gyles, C. L.,, and D. A. Barnum. 1969. A heat-labile enterotoxin form Escherichia coli enteropathogenic for pigs. J. Infect. Dis. 120: 419 426.
29. Hakomori, S.,, and Y. Igarashi. 1993. Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv. Lipid Res. 25: 147 162.
30. Harder, T.,, P. Scheiffele,, and K. Simons. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141: 929 942.
31. Hazes, B.,, and R. J. Read. 1997. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36: 11051 11054.
32. Henley, J. R.,, E. W. A. Krueger,, B. J. Oswald,, and M. A. McNiven. 1998. Dynaminmediated internalization of caveolae. J. Cell Biol. 141: 85 99.
33. Hirst, T. R., 1995. Biogenesis of cholera and related oligomeric enterotoxins, p. 123 184. In J. Moss,, M. Vaughan,, B. Iglewski,, and A. T. Tu (ed.), Bacterial Toxins and Virulence Factors in Disease, vol. 8. Marcel Dekker, Inc., New York, N.Y.
34. Holmes, R. K., 1997. Heat-labile enterotoxins ( Escherichia coli), p. 30 33. In R. Rappuoli, and C. Montecucco (ed.), Guidebook to Protein Toxins and Their Use in Cell Biology. Oxford University Press, Oxford, United Kingdom.
35. Holmes, R. K.,, and E. M. Twiddy. 1983. Characterization of monoclonal antibodies that react with unique and cross-reacting determinants of cholera enterotoxin and its subunits. Infect. Immun. 42: 914 923.
36. Holmgren, J.,, P. Fredman,, M. Lindblad,, A. M. Svennerholm,, and L. Svennerholm. 1982. Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect. Immun. 38: 424 433.
37. Holmgren, J.,, M. Lindblad,, P. Fredman,, L. Svennerholm,, and H. Myrvold. 1985. Comparison of receptors for cholera toxin and Escherichia coli enterotoxins in human intestine. Gastroenterology 89: 27 35.
38. Jobling, M. G.,, and R. K. Holmes. 1991. Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol. Microbiol. 5: 1755 1767.
39. Johannes, L.,, D. Tenza,, C. Antony,, and B. Goud. 1997. Retrograde transport of KDELbearing B-fragment of Shiga toxin. J. Biol. Chem. 272: 19554 19561.
40. Joseph, K. C.,, A. Stieber,, and N. K. Gonatas. 1979. Endocytosis of cholera toxin in GERL-like structures of murine neuroblastoma cells pretreated with GM1 ganglioside. J. Cell Biol. 81: 543 554.
41. Klappa, P.,, T. Stromer,, R. Zimmermann,, L. W. Ruddock,, and R. B. Freedman. 1998. A pancreas-specific glycosylated protein disulphide-isomerase binds to misfolded proteins and peptides with an interaction inhibited by oestrogens. Eur. J. Biochem. 254: 63 69.
42. Koch, R. 1884. An address on cholera and its bacillus. Br. Med. J. 2: 403 407.
43. Kovbasnjuk, O.,, M. Edidin,, and M. Donowitz. 2001. Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci. 114: 4025 4031.
44. Kurzchalia, T. V.,, and R. G. Parton. 1996. And still they are moving.... dynamic properties of caveolae. FEBS Lett. 389: 52 54.
45. Kuziemko, G. M.,, M. Stroh,, and R. C. Stevens. 1996. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35: 6375 6384.
46. Lamaze, C.,, and S. L. Schmid. 1995. The emergence of clathrin-independent pinocytotic pathways. Curr. Opin. Cell Biol. 7: 573 580.
47. Lee, C.-M.,, P. P. Chang,, S.-C. Tsai,, R. Adamik,, S. R. Price,, B. C. Kunz,, J. Moss,, E. M. Twiddy,, and R. K. Holmes. 1991. Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins. J. Clin. Invest. 87: 1780 1786.
48. Lee, S. H.,, D. L. Hava,, M. K. Waldor,, and A. Camilli. 1999. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625 634.
49. Lencer, W. I.,, C. Constable,, S. Moe,, M. Jobling,, H. M. Webb,, S. Ruston,, J. L. Madara,, T. Hirst,, and R. Holmes. 1995. Targeting of cholera toxin and E. coli heat labile toxin in polarized epithelia: role of C-terminal KDEL. J. Cell Biol. 131: 951 962.
50. Lencer, W. I.,, C. Constable,, S. Moe,, P. A. Rufo,, A. Wolf,, M. G. Jobling,, S. P. Ruston,, J. L. Madara,, R. K. Holmes,, and T. R. Hirst. 1997. Proteolytic activation of cholera toxin and Escherichia coli labile toxin by entry into host epithelial cells: signal transduction by a protease-resistant toxin variant. J. Biol. Chem. 272: 15562 15568.
51. Lencer, W. I.,, J. B. de Almeida,, S. Moe,, J. L. Stow,, D. A. Ausiello,, and J. L. Madara. 1993. Entry of cholera toxin into polarized human intestinal epithelial cells: identification of an early brefeldin A sensitive event required for A1-peptide generation. J. Clin. Invest. 92: 2941 2951.
52. Lencer, W. I.,, S. Moe,, P. A. Rufo,, and J. L. Madara. 1995. Transcytosis of cholera toxin subunits across model human intestinal epithelia. Proc. Natl. Acad. Sci. USA 92: 10094 10098.
53. Lewis, M. J.,, and H. R. B. Pelham. 1992. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68: 353 364.
54. Ling, H.,, A. Boodhoo,, B. Hazes,, M. D. Cummings,, G. D. Armstrong,, J. L. Brunton,, and R. J. Read. 1998. Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37: 1777 1788.
55. Lingwood, C. A. 1993. Verotoxins and their glycolipid receptors. Adv. Lipid Res. 25: 189 211.
56. Lord, J. M.,, and L. M. Roberts. 1998. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140: 733 736.
57. MacKenzie, C. R.,, T. Hirama,, K. K. Lee,, E. Altman,, and N. M. Young. 1997. Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272: 5533 5538.
58. Majoul, I.,, D. Ferrari,, and H. D. Soling. 1997. Reduction of protein disulfide bonds in an oxidizing environment. The disulfide bridge of cholera toxin A-subunit is reduced in the endoplasmic reticulum. FEBS Lett. 401: 104 108.
59. Majoul, I. V.,, P. I. H. Bastiaens,, and H.-D. So ling. 1996. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J. Cell Biol. 133: 777 789.
60. Matlack, K. E.,, W. Mothes,, and T. A. Rapoport. 1998. Protein translocation: tunnel vision. Cell 92: 381 390.
61. Mekalanos, J. J.,, R. J. Collier,, and W. R. Romig. 1979. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J. Biol. Chem. 254: 5855 5861.
62. Merritt, E. A.,, and W. G. J. Hol. 1995. AB5 toxins. Curr. Opin. Struct. Biol. 5: 165 171.
63. Merritt, E. A.,, S. Sarfaty,, M. G. Jobling,, T. Chang,, R. K. Holmes,, T. R. Hirst,, and W. G. Hol. 1997. Structural studies of receptor binding by cholera toxin mutants. Protein Sci. 6: 1516 1528.
64. Miesenbock, G.,, and J. E. Rothman. 1995. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J. Cell Biol. 129: 309 319.
65. Montesano, R.,, J. Roth,, A. Robert,, and L. Orci. 1982. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296: 651 653.
66. Moss, J.,, and M. Vaughan. 1988. ADPribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv. Enzymol. Relat. Areas Mol. Biol. 61: 303 379.
67. Moss, J.,, and M. Vaughan. 1977. Mechanism of action of choleragen: evidence for ADPribosyltransferase activity with arginine as an acceptor. J. Biol. Chem. 252: 2455 2457.
68. Nashar, T. O.,, H. M. Webb,, S. Eaglestone,, N. A. Williams,, and T. R. Hirst. 1996. Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc. Nat. Acad. Sci. USA 93: 226 230.
69. O’Brien, A. D.,, V. L. Tesh,, A. Donohue-Rolfe,, M. P. Jackson,, S. Olsnes,, K. Sandvig,, A. A. Lindberg,, and G. T. Keusch. 1992. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 180: 65 94.
70. Oh, P.,, D. P. McIntosh,, and J. E. Schnitzer. 1998. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTPdriven fission from the plasma membrane of endothelium. J. Cell Biol. 141: 101 114.
71. Orlandi, P. A. 1997. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem. 272: 4591 4599.
72. Orlandi, P. A.,, P. K. Curran,, and P. H. Fishman. 1993. Brefeldin A blocks the response of cultured cells to cholera toxin: implications for intracellular trafficking in toxin action. J. Biol. Chem. 268: 12010 12016.
73. Orlandi, P. A.,, and P. H. Fishman. 1998. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141: 905 915.
74. Parton, R. G. 1996. Caveolae and caveolins. Cur. Opin. Cell Biol. 8: 542 548.
75. Parton, R. G. 1994. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histo. Chem. Cytochem. 42: 155 166.
76. Parton, R. G.,, and K. Simons. 1995. Digging into caveolae. Science 269: 1398 1399.
77. Pelham, H. R. B. 1990. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem. Sci. 15: 483 486.
78. Pelham, H. R. B.,, L. M. Roberts,, and M. Lord. 1992. Toxin entry: how reversible is the secretory pathway. Trends Cell Biol. 2: 183 185.
79. Pizza, M.,, M. Domenighini,, W. Hol,, V. Giannelli,, M. R. Fontana,, M. M. Giuliani,, C. Magagnoli,, S. Peppoloni,, R. Manetti,, and R. Rappuoli. 1994. Probing the structureactivity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol. Microbiol. 14: 51 60.
80. Ramegowda, B.,, and V. L. Tesh. 1996. Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect. Immun. 64: 1173 1180.
81. Rodighiero, C.,, A. T. Aman,, M. J. Kenny,, J. Moss,, W. I. Lencer,, and T. R. Hirst. 1999. Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin. Construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity. J. Biol. Chem. 274: 3962 3969.
82. Rodighiero, C.,, Y. Fujinaga,, T. R. Hirst,, and W. I. Lencer. 2001. A cholera toxin Bsubunit variant that binds ganglioside G(M1) but fails to induce toxicity. J. Biol. Chem. 276: 36939 36945.
83. Ruddock, L. W.,, S. P. Ruston,, S. M. Kelly,, N. C. Price,, R. B. Freedman,, and T. R. Hirst. 1995. Kinetics of acid-mediated disassembly of the B subunit pentamer of Escherichia coli heat-labile enterotoxin. Molecular basis of pH stability. J. Biol. Chem. 270: 29953 29958.
84. Sandvig, K., Ø. Garred, K. Prydz, J. V. Kozlov, S. H. Hansen, and B. van Deurs. 1992. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature (London) 358: 510 511.
85. Sandvig, K.,, K. Prydz,, S. H. Hansen,, and B. van Deurs. 1991. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell Biol. 115: 971 981.
86. Sandvig, K.,, M. Ryd, Ø. Garred, E. Schweda, P. K. Holm, and B. van Deurs. 1994. Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by buteric acid and cAMP. J. Cell Biol. 126: 53 64.
87. Sandvig, K.,, and B. van Deurs. 1996. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76: 949 966.
88. Schmitz, A.,, H. Herrgen,, A. Winkeler,, and V. Herzog. 2000. Cholera toxin is exported from microsomes by the sec61p complex. J. Cell Biol. 148: 1203 1212.
89. Schnitzer, J. E.,, D. P. McIntosh,, A. M. Dvorak,, J. Liu,, and P. Oh. 1995. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269: 1435 1439.
90. Sears, C. L.,, and J. B. Kaper. 1996. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60: 167 215.
91. Simpson, J. C.,, L. M. Roberts,, K. Romisch,, J. Davey,, D. H. Wolf,, and J. M. Lord. 1999. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 459: 80 84.
92. Sixma, T. K.,, K. H. Kalk,, B. A. van Zanten,, Z. Dauter,, J. Kingma,, B. Witholt,, and W. G. Hol. 1993. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 230: 890 918.
93. Sixma, T. K.,, S. E. Pronk,, H. H. Kalk,, E. S. Wartna,, B. A. M. van Zanten,, B. Witholt,, and W. G. J. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371 377.
94. Sixma, T. K.,, S. E. Pronk,, K. H. Kalk,, B. A. M. van Zanten,, A. M. Berghuis,, and W. G. J. Hol. 1992. Lactose binding to heatlabile enterotoxin revealed by X-ray crystallography. Nature 355: 561 564.
95. Spangler, B. D. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microb. Rev. 56: 622 647.
96. Tesh, V. L.,, B. Ramegowda,, and J. E. Samuel. 1994. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect. Immun. 62: 5085 5094.
97. Togawa, A.,, N. Morinaga,, M. Ogasawara,, J. Moss,, and M. Vaughan. 1999. Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADPribosylation factors. J. Biol. Chem. 274: 12308 12315.
98. Townsley, F. M.,, D. W. Wilson,, and H. R. Pelham. 1993. Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. EMBO J. 12: 2821 2829.
99. Tsai, B.,, C. Rodighiero,, W. I. Lencer,, and T. Rapoport. 2001. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104: 937 948.
100. Tsuji, T.,, T. Honda,, T. Miwatani,, S. Wakabayashi,, and H. Matsubara. 1985. Analysis of receptor-binding site in Escherichia coli enterotoxin. J. Biol. Chem. 260: 8552 8558.
101. Tsuji, T.,, M. Kato,, H. Kawase,, S. Imamura,, H. Kamiya,, Y. Ichinose,, and A. Miyama. 1997. Escherichia coli LT enterotoxin subunit A demonstrates partial toxicity independent of the nicking around Arg192. Microbiology 143: 1797 1804.
102. van Setten, P. A.,, L. A. Monnens,, R. G. Verstraten,, L. P. van den Heuvel,, and V. W. van Hinsbergh. 1996. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood 88: 174 183.
103. Varma, R.,, and S. Mayor. 1998. GPIanchored proteins are organized in submicron domains at the cell surface. Nature 394: 798 801.
104. Wilkinson, B. M.,, J. R. Tyson,, P. J. Reid,, and C. J. Stirling. 2000. Distinct domains within yeast Sec61p involved in posttranslational translocation and protein dislocation. J. Biol. Chem. 275: 521 529.
105. Wilson, D. W.,, M. J. Lewis,, and H. R. Pelham. 1993. pH-dependent binding of KDEL to its receptor in vitro. J. Biol. Chem. 268: 7465 7468.
106. Wimer-Mackin, S.,, R. K. Holmes,, A. A. Wolf,, W. I. Lencer,, and M. G. Jobling. 2001. Characterization of receptor-mediated signal transduction by Escherichia coli Type IIa heat-labile enterotoxin in the polarized human intestinal cell line T84. Infect. Immun. 69: 7205 7212.
107. Wolf, A. A.,, Y. A. Fujinaga,, and W. I. Lencer. 2002. Uncoupling of the cholera toxin GM1 ganglioside-receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J. Biol. Chem. 277: 16249 16256.
108. Wolf, A. A.,, M. G. Jobling,, S. Wimer-Mackin,, J. L. Madara,, R. K. Holmes,, and W. I. Lencer. 1998. Ganglioside structure dictates signal transduction by cholera toxin in polarized epithelia and association with caveolae-like membrane domains. J. Cell Biol. 141: 917 927.
109. Xuan-Cai, S. W.,, J. Q. Trojanowski,, and J. O. Gonatas. 1982. Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: their uptake and clearance, transganglionic and retrograde transport and sensitivity. Brain Res. 243: 215 224.
110. Zeller, C. B.,, and R. B. Marchase. 1992. Gangliosides as modulators of cell function. Am. J. Physiol. 262: C1341 C1355.
111. Zhang, R.-G.,, M. L. Westbrook,, E. M. Westbrook,, D. L. Scott,, Z. Otwinowski,, P. R. Maulik,, R. A. Reed,, and G. G. Shipley. 1995. The 2.4 Å crystal structure of cholera toxin B subunit pentamer: choleragenoid. J. Mol. Biol. 251: 550 562.


Generic image for table

Modulators of chloride secretion pathways

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15
Generic image for table

Citation: Viswanathan V, Hecht G. 2003. Epithelial Response to Enteric Pathogens: Activation of Chloride Secretory Pathways, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error