Chapter 16 : Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap16-2.gif


This chapter covers the effects of both enteric pathogens such as bacterial and viral pathogens on intestinal epithelial tight junction (TJs). The author and his research group have shown that enteropathogenic (EPEC)-induced myosin light chain (MLC) phosphorylation is one way that this pathogen disrupts the TJ barrier; other researchers have shown the same for enterohemorrhagic (EHEC). Several microbes elaborate proteases. In this era of attention to host-pathogen interactions, the functional impact of some of these bacterial products is becoming apparent. An interesting paradigm has emerged over the past few years—the exploitation of TJ transmembrane proteins as microbial receptors. First, several claudin isoforms were shown to function as receptors for enterotoxin (CPE), the toxin responsible for the diarrhea associated with type A food poisoning. Second, three unrelated viruses have now been shown to use TJ transmembrane proteins as receptors. The most recent studies identifying TJ proteins as receptors for both viruses and a bacterial toxin exemplify exploitation. Diarrhea benefits the host by flushing the organisms from the intestinal lumen. At the same time, diarrhea serves as a means of transmission of the pathogen.

Citation: Hecht G. 2003. Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic of TJ structure. TJs are macromolecular structures consisting of both transmembrane-spanning proteins, such as occludin, and a number of claudin isoforms. Two additional integral membrane proteins with a single transmembrane domain (not shown) are JAM and CAR. These molecules contribute to the barrier function of TJs. In addition to the transmembrane proteins, a number of other proteins form an intracellular plaque that likely aids in the targeting of transmembrane proteins. A number of signaling molecules also localize to the TJ and likely contribute to the regulation of permeability. The exact roles of these signaling molecules have not been defined. (Modified from L. L. Mitic and J. M. Anderson, 60:121–142, 1998.)

Citation: Hecht G. 2003. Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Type III secretion system of EPEC. Most gram-negative enteric pathogens, including EPEC, EHEC, and , , and spp., express a type III secretory system through which effector molecules can be directly delivered into host cells. Of particular relevance to EPEC is the translocated intimin receptor (Tir), which is tyrosine phosphorylated once inside the host cell and inserted into the host cell membrane where it serves as a receptor for the outer membrane EPEC adhesin, intimin. Effector molecules, such as EspF, are also injected into host cells where they perturb physiologic processes. (Modified from D. L. Goosney, S. Gruenheid, and B. B. Finlay, . 16:173–189, 2000.)

Citation: Hecht G. 2003. Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Under normal conditions, TJs provide a barrier to the paracellular space, thus preventing free access of bacteria or their products to the underlying compartments. Pathogens, however, can disrupt the TJ barrier by indirect and direct mechanisms. Examples of indirect perturbation of TJs include contraction of the perijunctional actomyosin ring through the activation of MLCK and subsequent phosphorylation of MLC. Redistribution of TJ proteins likely occurs as a consequence of cytoskeletal contraction through the numerous interactions that exist between TJ proteins and actin or myosin. The transepithelial migration of inflammatory cells, in particular neutrophils, occurs across TJs and opens, at least temporarily, these structures. One example of a more direct effect is the dephosphorylation of occludin by EPEC ( ). Less-or nonphosphorylated forms of occludin dissociate from the TJ and thereby alter paracellular permeability.

Citation: Hecht G. 2003. Enteric Pathogens That Affect Intestinal Epithelial Tight Junctions, p 267-284. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, J. M. 2001. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16: 126 130.
2. Balda, M. S.,, J. A. Witney,, C. Flores,, S. Gonzalez,, M. Cereijido,, and K. Matter. 1996. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell. Biol. 134: 1031 1049.
3. Barton, E.,, J. Forrest,, J. Conolly,, J. Chappel,, Y. Liu,, F. Schnell,, A. Nusrat,, C. A. Parkos,, and T. Dermody. 2001. Junction adhesion molecule is a receptor for reovirus. Cell 104: 441 451.
4. Bazzoni, G.,, O. M. Martinez Estrada,, F. Orsenigo,, M. Cordenonsi,, S. Citi,, and E. Dejana. 2000. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 275: 20520 20526.
5. Bergelson, J. M.,, J. A. Cunningham,, G. Droguett,, E. A. Kurt-Jones,, A. Krithivas,, J. S. Hong,, M. S. Horwitz,, R. L. Crowell,, and R. W. Finberg. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320 1323.
6. Berglund, J. J.,, M. Riegler,, Y. Zolotarevsky,, E. Wenzl,, and J. R. Turner. 2001. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na +-glucose cotransport. Am. J. Physiol. 281: G1487 G1493.
7. Chambers, F.,, S. Koshy,, R. Saidi,, D. Clark,, R. Moore,, and C. Sears. 1997. Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infect. Immun. 65: 3561 3570.
8. Claude, P. 1978. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J. Membr. Biol. 10: 219 232.
9. Cohen, C.,, J. Gaetz,, T. Ohman,, and J. M. Bergelson. 2001. Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J. Biol. Chem. 276: 25392 25398.
10. Cohen, C. J.,, J. T. Shieh,, R. J. Pickles,, T. Okegawa,, J. T. Hsieh,, and J. M. Bergelson. 2001. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 98: 15191 15196.
11. Cordenonsi, M.,, F. D’Atri,, E. Hammar,, D. A. D. Parry,, J. Kendrick-Jones,, D. Shore,, and S. Citi. 1999. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J. Cell. Biol. 147: 1569 1581.
12. Del Maschio, A.,, A. De Luigi,, I. Martin-Padura,, R. Furlan,, M. G. De Simoni,, and E. Dejana. 1999. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190: 1351 1356.
13. Dillon, S.,, E. Rubin,, M. Yakubovich,, C. Pothoulakis,, J. T. LaMont,, L. Feig,, and R. Gilbert. 1995. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile Toxin A and Toxin B. Infect. Immun. 63: 1421 1426.
14. Ebnet, K.,, C. U. Schulz,, M. K. Meyer Zu Brickwedded,, G. G. Pendl,, and D. Vestweber. 2000. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275: 27979 27988.
15. Elliot, S. J.,, C. B. O’Connell,, A. Koutsouris,, M. S. Donnenberg,, G. Hecht,, and J. B. Kaper. 2002. A novel gene required for EPEC to increase tight junction permeability encodes a chapersone for EspF. Infect. Immun. 70: 2271 2277.
16. Enck, A. H.,, U. V. Berger,, and A. S. Yu. 2001. Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am. J. Physiol. 281: F966 F974.
17. Fanning, A.,, B. J. Jameson,, L. Jesaitis,, and J. M. Anderson. 1998. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273: 29745 29753.
18. Farshori, P.,, and B. Kachar. 1999. Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J. Membr. Biol. 170: 147 156.
19. Fasano, A.,, B. Baudry,, D. Pumplin,, S. Wasserman,, B. Tall,, J. Ketley,, and J. Kaper. 1991. Vibrio cholera produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA 88: 5242 5246.
20. Frankel, G.,, O. Lider,, R. Hershkoviz,, A. P. Mould,, S. G. Kachalsky,, D. C. A. Candy,, L. Cahalon,, M. J. Humphries,, and G. Dougan. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J. Biol. Chem. 271: 20359 20364.
21. Fujita, K.,, J. Katahira,, Y. Horiguchi,, N. Sonoda,, M. Furuse,, and S. Tskuita. 2000. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction membrane protein. FEBS Lett. 476: 258.
22. Furuse, M.,, K. Fujita,, T. Hiiragi,, K. Fujimoto,, and S. Tsukita. 1998. Claudin-1 and -2 novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141: 1539 1550.
23. Furuse, M.,, T. Hirase,, M. Itoh,, A. Nagafuchi,, S. Yonemura,, S. Tsukita,, and S. Tsukita. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123: 1777 1788.
24. Furuse, M.,, H. Sasaki,, and S. Tsukita. 1999. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147: 891 903.
25. Guan, K.,, and J. E. Dixon. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249: 553 556.
26. Hardy, S.,, P. Denmead,, N. Parekh,, and P. E. Granum. 1999. Cationic currects induced by Clostridium perfringens type A enterotoxin in human intestinal Caco-2 cells. J. Med. Microbiol. 48: 235.
27. Hecht, G. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G1 G7.
28. Hecht, G.,, A. Koutsouris,, and M. M. Muza. 2001. EPEC infection allows migration of B1 integrin to apical membrane which contributes to functional perturbations. Gastroenterology 120: A325.
29. Hecht, G.,, A. Koutsouris,, C. Pothoulakis,, J. T. LaMont,, and J. Madara. 1992. Clostridium difficile toxin B disrupts the barrier function of T 84 monolayers. Gastroenterology 102: 416 423.
30. Hecht, G.,, L. Pestic,, G. Nikcevic,, A. Koutsouris,, D. Tripuraneni,, D. Lorimer,, G. Nowak,, J. V. Guerriero,, E. L. Elson,, and P. de Lanerolle. 1996. Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am. J. Physiol. 271: C1678 C1684.
31. Hecht, G.,, C. Pothoulakis,, J. T. LaMont,, and J. L. Madara. 1988. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82: 1516 1524.
32. Honda, T.,, H. Saitoh,, M. Masuko,, T. Katagiri-Abe,, K. Tominaga,, I. Kozakai,, K. Kobayashi,, T. Kumanishi,, Y. G. Watanabe,, S. Odani,, and R. Kuwano. 2000. The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res. Mol. Brain Res. 77: 19 28.
33. Isberg, R. R.,, D. L. Voorhis,, and M. Leong. 1990. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60: 861 871.
34. Just, I.,, G. Fritz,, K. Aktories,, M. Giry,, M. Popoff,, P. Boquet,, S. Hegenberth,, and C. von Eichel-Streiber, 1994. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269: 10706 10712.
35. Just, I.,, J. Selzer,, M. Wilm,, C. von Eichel-Streiber,, M. Mann,, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500 503.
36. Katahira, J.,, N. Inoue,, Y. Horiguchi,, M. Matsuda,, and N. Sugimoto. 1997. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J. Cell Biol. 136: 1239 1247.
37. Katahira, J.,, H. Sugiyama,, N. Inoue,, Y. Horiguchi,, M. Matsuda,, and N. Sugimoto. 1997. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J. Biol. Chem. 272: 26652 26658.
38. Manjarrez-Hernandez, H. A.,, B. Amess,, L. Sellers,, T. J. Baldwin,, S. Knutton,, P. H. Williams,, and A. Aitken. 1991. Purification of a 20kDa phosphoprotein from epithelial cells and identification as myosin light chain. FEBS Lett. 292: 121 127.
39. Martin-Padura, I.,, S. Lostaglio,, M. Schneemann,, L. Williams,, M. Romano,, P. Fruscella,, C. Panzeri,, A. Stoppacciaro,, L. Ruco,, A. Villa,, D. Simmons,, and E. Dejana. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142: 117 127.
40. Matter, K.,, and M. S. Balda. 1998. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J. Cell Sci. 111: 511 519.
41. McCarthy, K. M.,, I. B. Skare,, M. C. Stankewich,, M. Furuse,, S. Tsukita,, R. A. Rogers,, R. D. Lynch,, and E. Schneeberger. 1996. Occludin is a functional component of the tight junction. J. Cell Sci. 109: 2287 2298.
42. McCormick, B.,, A. Nusrat,, C. Parkos,, L. D’Andrea,, P. Hofman,, D. Carnes,, T. Liang,, and J. Madara. 1997. Unmasking of intestinal epithelial lateral membrane β1 integrin consequent to transepithelial neutrophil migration in vitro facilitates inv-mediated invasion by Yersinia pseudotuberculosis. Infect. Immun. 65: 1414 1421.
43. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg,, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 1664 1668.
44. McNamara, B. P.,, A. Koutsouris,, C. B. O’Connell,, J. P. Nougayrede,, M. S. Donnenberg,, and G. Hecht. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107: 1 10.
45. Mel, S. F.,, K. J. Fullner,, S. Wimer-Mackin,, W. I. Lencer,, and J. J. Mekalanos. 2000. Association of protease activity in Vibrio cholerae vaccine strains with decreases in transcellular epithelial resistance of polarized T84 intestinal epithelial cells. Infect. Immun. 68: 6487 6492.
46. Morita, K.,, M. Furuse,, K. Fujimoto,, and S. Tsukita. 1999. Claudin multigene family encoding four-transmembrane domain protein components of tight junctions strands. Proc. Natl. Acad. Sci. USA 96: 511 516.
47. Morita, K.,, H. Sasaki,, M. Furuse,, and S. Tsukita. 1999. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147: 185 194.
48. Nusrat, A.,, M. Giry,, J. R. Turner,, S. P. Colgan,, C. A. Parkos,, D. Carnes,, E. Lemichez,, P. Boquet,, and J. Madara. 1995. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl. Acad. Sci. USA 92: 10629 10633.
49. Nusrat, A.,, C. von Eichel-Streiber,, J. Turner,, P. Verkade,, J. Madara,, and C. Parkos. 2001. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69: 1329 1336.
50. Perdomo, J. J.,, P. Gounon,, and P. J. Sansonetti. 1994. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayers by Shigella flexneri. J. Clin. Invest. 93: 633 643.
51. Philpott, D.,, D. McKay,, W. Mak,, M. Perdue,, and P. Sherman. 1998. Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect. Immun. 66: 1680 1687.
52. Pickles, R. J.,, D. McCarty,, H. Matsui,, P. J. Hart,, S. H. Randell,, and R. C. Boucher. 1998. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J. Virol. 72: 6014 6023.
53. Powell, D. W. 1981. Barrier function of epithelia. Am. J. Physiol. 241: G275 G288.
54. Rahner, C.,, L. Mitic,, B. McClane,, and J. Anderson. 1999. Clostridium perfringens enterotoxin impairs bile flow in the isolated perfused rat liver and induces fragmentation of tight junction fibrils. Hepatology 30: 326A.
55. Rahner, C.,, L. L. Mitic,, and J. M. Anderson. 2001. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120: 411 422.
56. Riegler, M.,, R. Sedivy,, C. Pothoulakis,, G. Hamilton,, J. Zacheri,, G. Bischof,, E. Consentini,, W. Feil,, R. Schiessel,, J. T. LaMont,, and E. Wenzl. 1995. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J. Clin. Invest. 95: 2004 2011.
57. Saitou, M.,, K. Fujimoto,, Y. Doi,, M. Itoh,, T. Fujimoto,, M. Furuse,, H. Takano,, T. Noda,, and S. Tsukita. 1998. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141: 397 408.
58. Sakakibara, A.,, M. Furuse,, M. Saitou,, Y. Ando-Akatsuka,, and S. Tsukita. 1997. Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol. 137: 1393 1401.
59. Sansonetti, P. J.,, M. Arondel,, M. Huerre,, A. Harada,, and K. Matsushima. 1999. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67: 1471 1480.
60. Serrander, R.,, K.-E. Magnusson,, E. Kihlstrom,, and T. Sundqvist. 1986. Acute Yersinia infections in man increase intestinal permeability towards low-molecular weight polyethyleneglycols (PEB 400). Scand. J. Infect. Dis. 18: 409 413.
61. Simonovic, I.,, M. Arpin,, A. Koutsouris,, H. J. Falk-Krzesinski,, and G. Hecht. 2001. Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect. Immun. 69: 5679 5688.
62. Simonovic, I.,, J. Rosenberg,, A. Koutsouris,, and G. Hecht. 2000. Enteropathogenic E. coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol. 2: 305 315.
63. Singh, U.,, C. Van Itallie,, L. Mitic,, J. Anderson,, and B. McClane. 2000. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J. Biol. Chem. 275: 18407 18417.
64. Skoudy, A.,, G. T. Nhieu,, M. Mantis,, J. Arpin,, J. Mounier,, P. Gounon,, and P. J. Sansonetti. 1999. A functional role for ezrin during Shigella flexneri entry into epithelial cells. J. Cell Sci. 112: 2059 2068.
65. Sonoda, N.,, M. Furuse,, T. Sasaki,, S. Yonemura,, J. Kathaira,, Y. Horiguchi,, and S. Tsukita. 1999. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. 147: 195 204.
66. Tafazoli, F.,, A. Holmstrom,, A. Forsberg, and K-E. Magnusson. 2000. Apically exposed, tight junction-associated β1-integrins allow binding and YopE-mediated perturbation of epithelial barriers by wild-type Yersinia bacteria. Infect. Immun. 68: 5335 5343.
67. Takahashi, K.,, T. Sasaki,, A. Mammoto,, K. Takaishi,, T. Kameyama,, S. Tsukita,, and Y. Takai. 1997. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272: 23371 23375.
68. Tomko, R. P.,, R. Xu,, and L. Philipson. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94: 3352 3356.
69. Tsukita, S.,, and M. Furuse. 2002. Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol. 14: 531 536.
70. Tsukita, S.,, and M. Furuse. 2000. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149: 13 16.
71. Tsukita, S.,, M. Furuse,, and M. Itoh. 2001. Multifunctional strands in tight junctions. Nat. Rev. 2: 285 293.
72. Turner, J. R.,, E. D. Black,, J. Ward,, C. M. Tse,, F. A. Uchwat,, H. A. Alli,, M. Donowitz,, J. Madara,, and J. M. Angle. 2000. Transepithelial resistance can be regulated by the intestinal brush-border Na +/H + exchanger NHE3. Am. J. Physiol. 279: C1918 C1924.
73. Turner, J. R.,, B. K. Rill,, S. L. Carlson,, D. Carnes,, R. Kerner,, R. J. Mrsny,, and J. L. Madara. 1997. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol. 273: C1378 C1385.
74. Van Itallie, C.,, C. Rahner,, and J. M. Anderson. 2001. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107: 1319 1327.
75. Viswanathan, V. K.,, S. Lukic,, A. Koutsouris,, and G. Hecht. 2002. Enteropathogenic and enterohemorrhagic E. coli disrupt tight junctions by distinct mechanisms. Gastroenterology 122: A4.
76. Watarai, M.,, S. Funato,, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183: 991 999.
77. Wittchen, E.,, J. Haskins,, and B. Stevenson. 1999. Protein interactions at the tight junction. J. Biol. Chem. 274: 35179 35185.
78. Wong, V. 1997. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am. J. Cell Physiol. 273: C1859 C1867.
79. Wu, S.,, K. Lim,, J. Huang,, R. Saidi,, and C. Sears. 1998. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 95: 14979 14984.
80. Wu, Z.,, D. Milton,, P. Nybom,, A. Sjo,, and K. E. Magnusson. 1996. Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultured epithelial cells and perturbs their paracellular barrier function. Microb. Pathogen 21: 111 123.
81. Wu, Z.,, P. Nybom,, and K. Magnusson. 2000. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbial. 2: 11 17.
82. Yuhan, R.,, A. Koutsouris,, S. D. Savkovic,, and G. Hecht. 1997. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113: 1873 1882.
83. Zolotarevsky, Y.,, G. Hecht,, A. Koutsouris,, D. E. Gonzalez,, C. Quan,, J. Tom,, R. J. Mrsny,, and J. R. Turner. 2002. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123: 163 172.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error