Chapter 17 : Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap17-2.gif


The cytoskeleton provides structure and organization to the epithelial cell. In addition to providing support and rigidity on demand, the cytoskeleton mediates adhesion of cells to surfaces and to each other, anchoring of proteins into the plasma membrane, and, to a large extent, control of cellular processes. The cytoskeleton of epithelial cells, as in most mammalian cells, is composed of three major structures: microtubules, intermediate filaments, and microfilaments. Epithelial cells adhere to one another at their lateral surfaces through desmosomes, adherens junctions, and tight junctions (TJs) and to a surrounding basal lamina through hemidesmosomes and focal contacts. Given the many important roles of the epithelial cytoskeleton, it should come as no surprise that bacterial toxins have evolved to subvert these functions. toxin (BFT) was the first bacterial toxin identified to remodel the intestinal epithelial cytoskeleton and F-actin architecture via cleavage of a cell surface molecule. Enteric toxins now provide a remarkable set of tools with which to dissect the complex interactions of the epithelial cytoskeleton. The field lies at the nexus of bacteriology, protein chemistry, and cell biology and provides a prominent example of synergistic research among scientific disciplines.

Citation: Nataro J, Sears C, Fasano A, Bloch R. 2003. Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The enterocyte cytoskeleton. The enterocyte is supported by three major structural polymers. (i) Actin microfilaments are prominent in the microvilli, the terminal web, and the membrane cytoskeleton. Actin filaments connect to several proteins and protein complexes on the inner face of the cytoplasmic membrane, including adherens junctions, focal adhesions, and transporters in the basolateral membrane. (ii) Intermediate filaments connect to desmosomes on the basolateral membrane, giving rigidity and resistance to shear forces. (iii) Microtubules provide support and serve as tracks for molecular motors. Proteins illustrated at the adherens junction are the -and -catenins and the transmembrane protein E-cadherin (“E”). TJs comprise integral membrane proteins (“1” in Fig.), including occludins and claudins, and signaling proteins (“2” in Fig.).

Citation: Nataro J, Sears C, Fasano A, Bloch R. 2003. Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

The epithelial junctional complex. TJs (zonula occludens or ZO) comprise transmembrane proteins (occludin, claudins, and JAM), which form a tight barrier in the paracellular space. Occludin and the claudins interact with the cytoskeleton via ZO-1, ZO-2, and ZO-3, and a series of downstream adapter and signaling proteins, ultimately interfacing with actin and actin-binding proteins. Basal to the ZO is the zonula adherens (ZA). This complex is attached to the apical actin belt via catenins and also to the junctional actin strands of the ZO. Catenins are involved in cellular signaling reactions–(see text).

Citation: Nataro J, Sears C, Fasano A, Bloch R. 2003. Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

The activation cycle of Rho family GTPases. Rho family GTPases are active when bound to GTP and inactive when bound to GDP. They possess intrinsic GTPase activity, which is accelerated by GAP proteins or inhibited by GEF proteins. GDI proteins stabilize the GDP-bound state. Activated GTPases are commonly bound to the plasma membrane, but become detached on inactivation. The effect shown here for Rho is activation of an effector, illustrated with an asterisk. Many effectors exist, including kinases, phosphatases, phospholipases, and adaptor proteins. See text for details.

Citation: Nataro J, Sears C, Fasano A, Bloch R. 2003. Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adam, T.,, M. Arpin,, M. C. Prevost,, P. Gounon,, and P. J. Sansonetti. 1995. Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J. Cell. Biol. 129: 367 381.
2. Adam, T.,, M. Giry,, P. Boquet,, and P. Sansonetti. 1996. Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J. 15: 3315 3321.
3. Aepfelbacher, M.,, and J. Heesemann. 2001. Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops). Int. J. Med. Microbiol. 291: 269 276.
4. Aizawa, S. I. 2001. Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202: 157 164.
5. Aktories, K.,, G. Schmidt,, and I. Just. 2000. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381: 421 426.
6. Alcantara, C.,, W. F. Stenson,, T. S. Steiner,, and R. L. Guerrant. 2001. Role of inducible cyclooxygenase and prostaglandins in Clostridium difficile toxin A-induced secretion and inflammation in an animal model. J. Infect. Dis. 184: 648 652.
7. Anastasiadis, P. Z.,, S. Y. Moon,, M. A. Thoreson,, D. J. Mariner,, H. C. Crawford,, Y. Zheng,, and A. B. Reynolds. 2000. Inhibition of RhoA by p120 catenin. Nat. Cell. Biol. 2: 637 644.
8. Anastasiadis, P. Z.,, and A. B. Reynolds. 2000. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell. Sci. 113(Part 8): 1319 1334.
9. Anastasiadis, P. Z.,, and A. B. Reynolds. 2001. Regulation of Rho GTPases by p120-catenin. Curr. Opin. Cell Biol. 13: 604 610.
10. Anderson, D. M.,, and O. Schneewind. 1999. Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol. Microbiol. 31: 1139 1148.
11. Andreu, A.,, A. E. Stapleton,, C. Fennell,, H. A. Lockman,, M. Xercavins,, F. Fernandez,, and W. E. Stamm. 1997. Urovirulence determinants in Escherichia coli strains causing prostatitis. J. Infect. Dis. 176: 464 469.
12. Balda, M. S.,, and K. Matter. 1998. Tight junctions. J. Cell. Sci. 111: 541 547.
13. Barker, N.,, and H. Clevers. 2000. Catenins, Wnt signaling and cancer. Bioessays 22: 961 965.
14. Barker, N.,, P. J. Morin,, and H. Clevers. 2000. The Yin-Yang of TCF/beta-catenin signaling. Adv. Cancer Res. 77: 1 24.
15. Bartles, J. R.,, L. Zheng,, A. Li,, A. Wierda,, and B. Chen. 1998. Small espin: a third actinbundling protein and potential forked protein ortholog in brush border microvilli. J. Cell Biol. 143: 107 119.
16. Baudry, B.,, A. Fasano,, J. Ketley,, and J. B. Kaper. 1992. Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect. Immun. 60: 428 434.
17. Bennett, V.,, and L. Chen. 2001. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 13: 61 67.
18. Ben-Ze’ev, A.,, M. Shtutman,, and J. Zhurinsky. 2000. The integration of cell adhesion with gene expression: the role of beta-catenin. Exp. Cell Res. 261: 75 82.
19. Bleves, S.,, and G. R. Cornelis. 2000. How to survive in the host: the Yersinia lesson. Microbes Infect. 2: 1451 1460.
20. Bliska, J. B. 2000. Yop effectors of Yersinia spp. and actin rearrangements. Trends Microbiol. 8: 205 208.
21. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri "needle complex, " a part of its type III secreton. Mol. Microbiol. 39: 652 663.
22. Boquet, P. 2001. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39: 1673 1680.
23. Bourdet-Sicard, R.,, M. Rudiger,, B. M. Jockusch,, P. Gounon,, P. J. Sansonetti,, and G. T. Nhieu. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18: 5853 5862.
24. Buchrieser, C.,, P. Glaser,, C. Rusniok,, H. Nedjari,, H. D’Hauteville,, F. Kunst,, P. Sansonetti,, and C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38: 760 771.
25. Burridge, K. 1999. Crosstalk between Rac and Rho. Science 283: 2028 2029.
26. Busch, C.,, and K. Aktories. 2000. Microbial toxins and the glycosylation of rho family GTPases. Curr. Opin. Struct. Biol. 10: 528 535.
27. Cambronne, E. D.,, L. W. Cheng,, and O. Schneewind. 2000. LcrQ/YscM1, regulators of the Yersinia yop virulon, are injected into host cells by a chaperone-dependent mechanism. Mol. Microbiol. 37: 263 273.
28. Cantarelli, V. V.,, A. Takahashi,, I. Yanagihara,, Y. Akeda,, K. Imura,, T. Kodama,, G. Kono,, Y. Sato,, and T. Honda. 2001. Talin, a host cell protein, interacts directly with the translocated intimin receptor, Tir, of enteropathogenic Escherichia coli, and is essential for pedestal formation. Cell Microbiol. 3: 745 751.
29. Chambers, F. G.,, S. S. Koshy,, R. F. Saidi,, D. P. Clark,, R. D. Moore,, and C. L. Sears. 1997. Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infect. Immun. 65: 3561 3570.
30. Chappuis-Flament, S.,, E. Wong,, L. D. Hicks,, C. M. Kay,, and B. M. Gumbiner. 2001. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154: 231 243.
30a. Chen, L. M.,, S. Hobbie,, and J. E. Galan. 1996. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274: 2115 2118.
31. Cherfils, J.,, and P. Chardin. 1999. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24: 306 311.
32. Clements, W. M.,, J. Wang,, A. Sarnaik,, O. J. Kim,, J. MacDonald,, C. Fenoglio-Preiser,, J. Groden,, and A. M. Lowy. 2002. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 62: 3503 3506.
33. Condeelis, J. 2001. How is actin polymerization nucleated in vivo? Trends Cell Biol. 11: 288 293.
34. Craig, S. W.,, and R. P. Johnson. 1996. Assembly of focal adhesions: progress, paradigms, and portents. Curr. Opin. Cell Biol. 8: 74 85.
35. Crane, J.,, B. McNamara,, and M. Donnenberg. 2001. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 3: 197 211.
36. Daniell, S. J.,, N. Takahashi,, R. Wilson,, D. Friedberg,, I. Rosenshine,, F. P. Booy,, R. K. Shaw,, S. Knutton,, G. Frankel,, and S. Aizawa. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol. 3: 865 871.
37. de Grado, M.,, A. Abe,, A. Gauthier,, O. Steele-Mortimer,, R. DeVinney,, and B. B. Finlay. 1999. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell. Microbiol. 1: 7 17.
38. De Matteis, M. A.,, and J. S. Morrow. 1998. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10: 542 549.
39. De Matteis, M. A.,, and J. S. Morrow. 2000. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113: 2331 2343.
40. DeVinney, R.,, J. L. Puente,, A. Gauthier,, D. Goosney,, and B. B. Finlay. 2001. Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41: 1445 1458.
41. Di Pierro, M.,, R. Lu,, S. Uzzau,, W. Wang,, K. Margaretten,, C. Pazzani,, F. Maimone,, and A. Fasano. 2001. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem. 276: 19160 19165.
42. Eslava, C.,, F. Navarro-Garcia,, J. R. Czeczulin,, I. R. Henderson,, A. Cravioto,, and J. P. Nataro. 1998. Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66: 3155 3163.
43. Fagotto, F.,, and B. M. Gumbiner. 1996. Cell contact-dependent signaling. Dev. Biol. 180: 445 454.
44. Fasano, A. 1999. Cellular microbiology: can we learn cell physiology from microorganisms? Am. J. Physiol. 276: C765 C776.
45. Fasano, A.,, C. Fiorentini,, G. Donelli,, S. Uzzau,, J. B. Kaper,, K. Margaretten,, X. Ding,, S. Guandalini,, L. Comstock,, and S. E. Goldblum. 1995. Zonula occludens toxin modulates tight junctions through protein kinase Cdependent actin reorganization, in vitro. J. Clin. Invest. 96: 710 720.
46. Fasano, A.,, S. Uzzau,, C. Fiore,, and K. Margaretten. 1997. The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112: 839 846.
47. Fath, K. R.,, and D. R. Burgess. 1995. Microvillus assembly. Not actin alone. Curr. Biol. 5: 591 593.
48. Fath, K. R.,, S. N. Mamajiwalla,, and D. R. Burgess. 1993. The cytoskeleton in development of epithelial cell polarity. J. Cell Sci. Suppl. 17: 65 73.
49. Feng, Y.,, S. R. Wente,, and P. W. Majerus. 2001. Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc. Natl. Acad. Sci. USA 98: 875 879.
50. Filali, M.,, N. Cheng,, D. Abbott,, V. Leontiev,, and J. F. Engelhardt. 2002. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J. Biol. Chem. 277: 33398 33410.
51. Fincham, V. J.,, A. Chudleigh,, and M. C. Frame. 1999. Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J. Cell Sci. 112(Pt. 6): 947 956.
52. Frankel, G.,, O. Lider,, R. Hershkoviz,, A. Mould,, S. Kachalsky,, D. Candy,, L. Cahalon,, M. Humphries,, and G. Dougan. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J. Biol. Chem. 23: 20359 20364.
53. Freeman, N. L.,, D. V. Zurawski,, P. Chowrashi,, J. C. Ayoob,, L. Huang,, B. Mittal,, J. M. Sanger,, and J. W. Sanger. 2000. Interaction of the enteropathogenic Escherichia coli protein, translocated intimin receptor (Tir), with focal adhesion proteins. Cell Motil. Cytoskel. 47: 307 318.
54. Fu, Y.,, and J. E. Galan. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401: 293 297.
55. Fu, Y.,, and J. E. Galan. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27: 359 368.
56. Fuchs, E.,, and K. Weber. 1994. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63: 345 382.
57. Fullner, K. J.,, W. I. Lencer,, and J. J. Mekalanos. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect. Immun. 69: 6310 6317.
58. Fullner, K. J.,, and J. J. Mekalanos. 2000. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 19: 5315 5323.
59. Furuse, M.,, K. Fujita,, T. Hiiragi,, K. Fujimoto,, and S. Tsukita. 1998. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141: 1539 1550.
60. Furuse, M.,, T. Hirase,, M. Itoh,, A. Nagafuchi,, S. Yonemura,, and S. Tsukita. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123: 1777 1788.
61. Furuse, M.,, H. Sasaki,, and S. Tsukita. 1999. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147: 891 903.
62. Galan, J. E.,, and D. Zhou. 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97: 8754 8761.
63. Galyov, E. E.,, M. W. Wood,, R. Rosqvist,, P. B. Mullan,, P. R. Watson,, S. Hedges,, and T. S. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25: 903 912.
64. Gamblin, S. J.,, and S. J. Smerdon. 1998. GTPase-activating proteins and their complexes. Curr. Opin. Struct. Biol. 8: 195 201.
65. Geiger, B.,, A. Bershadsky,, R. Pankov,, and K. M. Yamada. 2001. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2: 793 805.
66. Gerhard, R.,, G. Schmidt,, F. Hofmann,, and K. Aktories. 1998. Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect. Immun. 66: 5125 5131.
67. Gilbert, T.,, A. Le Bivic,, A. Quaroni,, and E. Rodriguez-Boulan. 1991. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J. Cell Biol. 113: 275 288.
68. Glenney, J. R., Jr., P. Glenney, and K. Weber. 1983. The spectrin-related molecule, TW-260/240, cross-links the actin bundles of the microvillus rootlets in the brush borders of intestinal epithelial cells. J. Cell Biol. 96: 1491 1496.
69. Goosney, D. L.,, R. DeVinney,, and B. B. Finlay. 2001. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69: 3315 3322.
70. Gottardi, C. J.,, M. Arpin,, A. S. Fanning,, and D. Louvard. 1996. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc. Natl. Acad. Sci. USA 93: 10779 10784.
71. Gottardi, C. J.,, and B. M. Gumbiner. 2001. Adhesion signaling: how beta-catenin interacts with its partners. Curr. Biol. 11: R792 R794.
72. Gruenheid, S.,, R. DeVinney,, F. Bladt,, D. Goosney,, S. Gelkop,, G. D. Gish,, T. Pawson,, and B. B. Finlay. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell Biol. 3: 856 859.
73. Gumbiner, B.,, T. Lowenkopf,, and D. Apatira. 1991. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Natl. Acad. Sci. USA 88: 3460 3464.
74. Gumbiner, B. M. 1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345 357.
75. Gumbiner, B. M. 1993. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron 11: 551 564.
76. Gumbiner, B. M. 2000. Regulation of cadherin adhesive activity. J. Cell Biol. 148: 399 404.
77. Gumbiner, B. M. 1995. Signal transduction of beta-catenin. Curr. Opin. Cell Biol. 7: 634 640.
78. Gumbiner, B. M.,, and P. D. McCrea. 1993. Catenins as mediators of the cytoplasmic functions of cadherins. J. Cell Sci. Suppl. 17: 155 158.
79. Gumbiner, B. M.,, and K. M. Yamada. 1995. Cell-to-cell contact and extracellular matrix. Curr. Opin. Cell Biol. 7: 615 618.
80. Hardt, W. D.,, L. M. Chen,, K. E. Schuebel,, X. R. Bustelo,, and J. E. Galan. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815 826.
81. Haskins, J.,, L. Gu,, E. S. Wittchen,, J. Hibbard,, and B. R. Stevenson. 1998. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141: 199 208.
82. Hayward, R. D.,, and V. Koronakis. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18: 4926 4934.
83. Hayward, R. D.,, E. J. McGhie,, and V. Koronakis. 2000. Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol. Microbiol. 37: 727 739.
84. He, D.,, S. J. Hagen,, C. Pothoulakis,, M. Chen,, N. D. Medina,, M. Warny,, and J. T. LaMont. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139 150.
85. Henderson, I. R.,, S. Hicks,, F. Navarro-Garcia,, W. P. Elias,, A. D. Philips,, and J. P. Nataro. 1999. Involvement of the enteroaggregative Escherichia coli plasmid-encoded toxin in causing human intestinal damage. Infect. Immun. 67: 5338 5344.
86. Henderson, I. R.,, and J. P. Nataro. 2001. Virulence functions of autotransporter proteins. Infect. Immun. 69: 1231 1243.
87.[Reference deleted.]
88. Henderson, I. R.,, F. Navarro-Garcia,, and J. P. Nataro. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6: 370 378.
89. Hersh, D.,, D. M. Monack,, M. R. Smith,, N. Ghori,, S. Falkow,, and A. Zychlinsky. 1999. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96: 2396 2401.
90. Higgs, H. N.,, and T. D. Pollard. 2001. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70: 649 676.
91. Hildebrand, J. D.,, M. D. Schaller,, and J. T. Parsons. 1995. Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol. Biol. Cell 6: 637 647.
92. Hirst, R.,, A. Horwitz,, C. Buck,, and L. Rohrschneider. 1986. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Natl. Acad. Sci. USA 83: 6470 6474.
93. Horwitz, A.,, K. Duggan,, C. Buck,, M. C. Beckerle,, and K. Burridge. 1986. Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320: 531 533.
94. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
95. Hueck, C. J.,, M. J. Hantman,, V. Bajaj,, C. Johnston,, C. A. Lee,, and S. I. Miller. 1995. Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol. Microbiol. 18: 479 490.
96. Ishii, K.,, and K. J. Green. 2001. Cadherin function: breaking the barrier. Curr. Biol. 11: R569 R572.
97. Jepson, M.,, B. Kenny,, and A. Leard. 2001. Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell. Microbiol. 3: 417 426.
98. Johnson, R. P.,, and S. W. Craig. 1995. Factin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373: 261 264.
99. Johnson, R. P.,, and S. W. Craig. 1994. An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 269: 12611 12619.
100. Just, I.,, F. Hofmann,, and K. Aktories. 2000. Molecular mode of action of the large clostridial cytotoxins. Curr. Top. Microbiol. Immunol. 250: 55 83.
101. Just, I.,, F. Hofmann,, H. Genth,, and R. Gerhard. 2001. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. Int. J. Med. Microbiol. 291: 243 250.
102. Kalman, D.,, O. D. Weiner,, D. L. Goosney,, J. W. Sedat,, B. B. Finlay,, A. Abo,, and J. M. Bishop. 1999. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell Biol. 1: 389 391.
103. Kamm, K. E.,, and J. T. Stull. 2001. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276: 4527 4530.
104. Kang, F.,, D. L. Purich,, and F. S. Southwick. 1999. Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J. Biol. Chem. 274: 36963 36972.
105. Kaper, J. B.,, T. K. McDaniel,, K. G. Jarvis,, and O. Gomez-Duarte. 1997. Genetics of virulence of enteropathogenic E. coli. Adv. Exp. Med. Biol. 412: 279 287.
106. Keller, T. C., 3rd, K. A. Conzelman, R. Chasan, and M. S. Mooseker. 1985. Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J. Cell. Biol. 100: 1647 1655.
107. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511 520.
108. Kenny, B.,, S. Ellis,, A. D. Leard,, J. Warawa,, H. Mellor,, and M. A. Jepson. 2002. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44: 1095 1107.
109. Kenny, B.,, and M. Jepson. 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol. 2: 579 590.
110. Keon, B. H.,, S. Schafer,, C. Kuhn,, C. Grund,, and W. W. Franke. 1996. Symplekin, a novel type of tight junction plaque protein. J. Cell Biol. 134: 1003 1018.
111. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17: 2166 2176.
112. Koshy, S. S.,, M. H. Montrose,, and C. L. Sears. 1996. Human intestinal epithelial cells swell and demonstrate actin rearrangement in response to the metalloprotease toxin of Bacteroides fragilis. Infect. Immun. 64: 5022 5028.
113. Lerm, M.,, G. Schmidt,, and K. Aktories. 2000. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol. Lett. 188: 1 6.
114. Lesser, C. F.,, C. A. Scherer,, and S. I. Miller. 2000. Rac, ruffle and rho: orchestration of Salmonella invasion. Trends Microbiol. 8: 151 152.
115. Lin, W.,, K. J. Fullner,, R. Clayton,, J. A. Sexton,, M. B. Rogers,, K. E. Calia,, S. B. Calderwood,, C. Fraser,, and J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc. Natl. Acad. Sci. USA 96: 1071 1076.
116. Lloyd, S. A.,, A. Forsberg,, H. Wolf-Watz,, and M. S. Francis. 2001. Targeting exported substrates to the Yersinia TTSS: different functions for different signals? Trends Microbiol. 9: 367 371.
117. Lombardo, C. R.,, S. A. Weed,, S. P. Kennedy,, B. G. Forget,, and J. S. Morrow. 1994. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2-and COOHterminal membrane association domains (MAD1 and MAD2). J. Biol. Chem. 269: 29212 29219.
118. Louvet-Vallee, S. 2000. ERM proteins: from cellular architecture to cell signaling. Biol. Cell 92: 305 316.
119. Luo, Y.,, E. A. Frey,, R. A. Pfuetzner,, A. L. Creagh,, D. G. Knoechel,, C. A. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405: 1073 1077.
120. Madara, J. L.,, and K. Dharmsathaphorn. 1985. Occluding junction structure-function relationships in a cultured epithelial monolayer. J. Cell Biol. 101: 2124 2133.
121. Marcial, M. A.,, S. L. Carlson,, and J. L. Madara. 1984. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structurefunction relationships. J. Membr. Biol. 80: 59 70.
122. Martin-Padura, I.,, S. Lostaglio,, M. Schneemann,, L. Williams,, M. Romano,, P. Fruscella,, C. Panzeri,, A. Stoppacciaro,, L. Ruco,, A. Villa,, D. Simmons,, and E. Dejana. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142: 117 127.
123. McClane, B. A. 2000. Clostridium perfringens enterotoxin and intestinal tight junctions. Trends Microbiol. 8: 145 146.
124. McClane, B. A. 2001. The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions. Toxicon 39: 1781 1791.
125. McDaniel, T. K.,, and J. B. Kaper. 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23: 399 407.
126. McGhie, E. J.,, R. D. Hayward,, and V. Koronakis. 2001. Cooperation between actinbinding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20: 2131 2139.
127. McGrath, J. L.,, E. A. Osborn,, Y. S. Tardy,, C. F. Dewey, Jr., and J. H. Hartwig. 2000. Regulation of the actin cycle in vivo by actin filament severing. Proc. Natl. Acad. Sci. USA 97: 6532 6537.
128. McNamara, B.,, A. Koutsouris,, C. O’Connell,, J.-P. Nougayrede,, M. Donnenberg,, and G. Hecht. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107: 621 629.
129. Menard, R.,, M. C. Prevost,, P. Gounon,, P. Sansonetti,, and C. Dehio. 1996. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad. Sci. USA 93: 1254 1258.
130. Meyer, R. K.,, and U. Aebi. 1990. Bundling of actin filaments by alpha-actinin depends on its molecular length. J. Cell Biol. 110: 2013 2024.
131. Miao, E. A.,, C. A. Scherer,, R. M. Tsolis,, R. A. Kingsley,, L. G. Adams,, A. J. Baumler,, and S. I. Miller. 1999. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34: 850 864.
132. Miner, J. H. 1999. Renal basement membrane components. Kidney Int. 56: 2016 2024.
133. Mitra, K.,, D. Zhou,, and J. E. Galan. 2000. Biophysical characterization of SipA, an actinbinding protein from Salmonella enterica. FEBS Lett. 482: 81 84.
134. Moncrief, J. S.,, R. Obiso, Jr., L. A. Barroso, J. J. Kling, R. L. Wright, R. L. Van Tassell, D. M. Lyerly, and T. D. Wilkins. 1995. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect. Immun. 63: 175 181.
135. Mooseker, M. S.,, K. A. Conzelman,, T. R. Coleman,, J. E. Heuser,, and M. P. Sheetz. 1989. Characterization of intestinal microvillar membrane disks: detergent-resistant membrane sheets enriched in associated brush border myosin I (110K-calmodulin). J. Cell Biol. 109: 1153 1161.
136. Morita, K.,, M. Furuse,, K. Fujimoto,, and S. Tsukita. 1999. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 96: 511 516.
137. Morrow, J. S.,, C. D. Cianci,, T. Ardito,, A. S. Mann,, and M. Kashgarian. 1989. Ankyrin links fodrin to the alpha subunit of Na,KATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J. Cell Biol. 108: 455 465.
138. Mounier, J.,, V. Laurent,, A. Hall,, P. Fort,, M. F. Carlier,, P. J. Sansonetti,, and C. Egile. 1999. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112: 2069 2080.
139. Mullins, R. D.,, J. A. Heuser,, and T. D. Pollard. 1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95: 6181 6186.
140. Mullins, R. D.,, J. F. Kelleher,, J. Xu,, and T. D. Pollard. 1998. Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments. Mol. Biol. Cell. 9: 841 852.
141. Mullins, R. D.,, and T. D. Pollard. 1999. Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 9: 244 249.
142. Nakatani, Y.,, K. Masudo,, Y. Miyagi,, Y. Inayama,, N. Kawano,, Y. Tanaka,, K. Kato,, T. Ito,, H. Kitamura,, Y. Nagashima,, S. Yamanaka,, N. Nakamura,, J. Sano,, N. Ogawa,, N. Ishiwa,, K. Notohara,, M. Resl,, and E. J. Mark. 2002. Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod. Pathol. 15: 617 624.
143. Navarro-Garcia, F.,, A. Canizalez-Roman,, J. Luna,, C. Sears,, and J. P. Nataro. 2001. Plasmid-encoded toxin of enteroaggregative Escherichia coli is internalized by epithelial cells. Infect. Immun. 69: 1053 1060.
144. Navarro-Garcia, F.,, C. Eslava,, J. M. Villaseca,, R. Lopez-Revilla,, J. R. Czeczulin,, S. Srinivas,, J. P. Nataro,, and A. Cravioto. 1998. In vitro effects of a high-molecularweight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66: 3149 3154.
145. Navarro-Garcia, F.,, C. Sears,, C. Eslava,, A. Cravioto,, and J. P. Nataro. 1999. Cytoskeletal effects induced by pet, the serine protease enterotoxin of enteroaggregative Escherichia coli. Infect. Immun. 67: 2184 2192.
146. Nelson, W. J.,, and P. J. Veshnock. 1987. Ankyrin binding to (Na ++ K +)ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533 536.
147. Nguyen, L.,, I. T. Paulsen,, J. Tchieu,, C. J. Hueck,, and M. H. Saier, Jr. 2000. Phylogenetic analyses of the constituents of Type III protein secretion systems. J. Mol. Microbiol. Biotechnol. 2: 125 144.
148. Nhieu, G. T.,, and P. J. Sansonetti. 1999. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2: 51 55.
149. Nievers, M. G.,, I. Kuikman,, D. Geerts,, I. M. Leigh,, and A. Sonnenberg. 2000. Formation of hemidesmosome-like structures in the absence of ligand binding by the (alpha)6(beta)4 integrin requires binding of HD1/plectin to the cytoplasmic domain of the (beta)4 integrin subunit. J. Cell Sci. 113(Part 6): 963 973.
150. Noren, N. K.,, C. M. Niessen,, B. M. Gumbiner,, and K. Burridge. 2001. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276: 33305 33308.
151. Norris, F. A.,, M. P. Wilson,, T. S. Wallis,, E. E. Galyov,, and P. W. Majerus. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 95: 14057 14059.
152. Nusrat, A.,, M. Giry,, J. R. Turner,, S. P. Colgan,, C. A. Parkos,, D. Carnes,, E. Lemichez,, P. Boquet,, and J. L. Madara. 1995. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl. Acad. Sci. USA 92: 10629 10633.
153. Obiso, R. J., Jr.,, A. O. Azghani,, and T. D. Wilkins. 1997. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect. Immun. 65: 1431 1439.
154. Obiso, R. J., Jr.,, D. M. Lyerly,, R. L. Van Tassell,, and T. D. Wilkins. 1995. Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo. Infect. Immun. 63: 3820 3826.
155. Osiecki, J. C.,, J. Barker,, W. L. Picking,, A. B. Serfis,, E. Berring,, S. Shah,, A. Harrington,, and W. D. Picking. 2001. IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Mol. Microbiol. 42: 469 481.
156. Otey, C. A.,, F. M. Pavalko,, and K. Burridge. 1990. An interaction between alphaactinin and the beta 1 integrin subunit in vitro. J. Cell Biol. 111: 721 729.
157. Phillips, A.,, J. Giron,, S. Hicks,, G. Dougan,, and G. Frankel. 2000. Intimin from enteropathogenic Escherichia coli mediates remodelling of the eukaryotic cell surface. Microbiology 146: 1333 1344.
158. Pollard, T. D.,, L. Blanchoin,, and R. D. Mullins. 2001. Actin dynamics. J. Cell Sci. 114: 3 4.
159. Pothoulakis, C. 2000. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. N.Y. Acad. Sci. 915: 347 356.
160. Pothoulakis, C.,, and J. T. Lamont. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178 G183.
161. Ressad, F.,, D. Didry,, C. Egile,, D. Pantaloni,, and M. F. Carlier. 1999. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J. Biol. Chem. 274: 20970 20976.
162. Richard, J. F.,, L. Petit,, M. Gibert,, J. C. Marvaud,, C. Bouchaud,, and M. R. Popoff. 1999. Bacterial toxins modifying the actin cytoskeleton. Int. Microbiol. 2: 185 194.
163. Ridley, A. J. 2001. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11: 471 477.
164. Ridley, A. J. 2001. Rho GTPases and cell migration. J. Cell Sci. 114: 2713 2722.
165. Riegler, M.,, M. Lotz,, C. Sears,, C. Pothoulakis,, I. Castagliuolo,, C. C. Wang,, R. Sedivy,, T. Sogukoglu,, E. Cosentini,, G. Bischof,, W. Feil,, B. Teleky,, G. Hamilton,, J. T. LaMont,, and E. Wenzl. 1999. Bacteroides fragilis toxin 2 damages human colonic mucosa in vitro. Gut 44: 504 510.
166. Rippere-Lampe, K. E.,, A. D. O’Brien,, R. Conran,, and H. A. Lockman. 2001. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf[1]) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 69: 3954 3964.
167. Rosenshine, I.,, S. Ruschkowski,, M. Stein,, D. J. Reinscheid,, S. D. Mills,, and B. B. Finlay. 1996. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15: 2613 2624.
168. Rudolph, M. G.,, C. Weise,, S. Mirold,, B. Hillenbrand,, B. Bader,, A. Wittinghofer,, and W. D. Hardt. 1999. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for Rho GTPases. J. Biol. Chem. 274: 30501 30509.
169. Saidi, R. F.,, K. Jaeger,, M. H. Montrose,, S. Wu,, and C. L. Sears. 1997. Bacteroides fragilis toxin rearranges the actin cytoskeleton of HT29/C1 cells without direct proteolysis of actin or decrease in F-actin content. Cell Motil. Cytoskel. 37: 159 165.
170. Saidi, R. F.,, and C. L. Sears. 1996. Bacteroides fragilis toxin rapidly intoxicates human intestinal epithelial cells (HT29/C1) in vitro. Infect. Immun. 64: 5029 5034.
171. Saitou, M.,, Y. Ando-Akatsuka,, M. Itoh,, M. Furuse,, J. Inazawa,, K. Fujimoto,, and S. Tsukita. 1997. Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur. J. Cell Biol. 73: 222 231.
172. Sarker, M. R.,, U. Singh,, and B. A. Mc-Clane. 2000. An update on Clostridium perfringens enterotoxin. J. Nat. Toxins 9: 251 266.
173. Sasaki, T.,, and Y. Takai. 1998. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem. Biophys. Res. Commun. 245: 641 645.
174. Sastry, S. K.,, M. Lakonishok,, S. Wu,, T. Q. Truong,, A. Huttenlocher,, C. E. Turner,, and A. F. Horwitz. 1999. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J. Cell Biol. 144: 1295 1309.
175. Schaller, M. D.,, C. A. Borgman,, B. S. Cobb,, R. R. Vines,, A. B. Reynolds,, and J. T. Parsons. 1992. pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA 89: 5192 5196.
176. Schaller, M. D.,, C. A. Otey,, J. D. Hildebrand,, and J. T. Parsons. 1995. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell Biol. 130: 1181 1187.
177. Schmidt, G.,, and K. Aktories. 1998. Bacterial cytotoxins target Rho GTPases. Naturwissenschaften 85: 253 261.
178. Schmidt, G.,, and K. Aktories. 2000. Rho GTPase-activating toxins: cytotoxic necrotizing factors and dermonecrotic toxin. Methods Enzymol. 325: 125 136.
179. Schnittler, H. J.,, S. W. Schneider,, H. Raifer,, F. Luo,, P. Dieterich,, I. Just,, and K. Aktories. 2001. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. 442: 675 687.
180. Sears, C. L. 2000. Molecular physiology and pathophysiology of tight junctions V. Assault of the tight junction by enteric pathogens. Am. J. Physiol. Gastrointest. Liver Physiol. 279: G1129 G1134.
181. Sears, C. L. 2001. The toxins of Bacteroides fragilis. Toxicon 39: 1737 1746.
182. Sears, C. L.,, L. L. Myers,, A. Lazenby,, and R. L. Van Tassell. 1995. Enterotoxigenic Bacteroides fragilis. Clin. Infect. Dis. 20(Suppl. 2): S142 S148.
183. Sinclair, J. F.,, and A. D. O’Brien. 2002. Cell-surface localized nucleolin is a eucaryotic receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277: 2876 2885.
184. Skoudy, A.,, J. Mounier,, A. Aruffo,, H. Ohayon,, P. Gounon,, P. Sansonetti,, and G. Tran Van Nhieu. 2000. CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol. 2: 19 33.
185. Sonoda, N.,, M. Furuse,, H. Sasaki,, S. Yonemura,, J. Katahira,, Y. Horiguchi,, and S. Tsukita. 1999. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. 147: 195 204.
186. Southwick, F. S. 2000. Gelsolin and ADF/cofilin enhance the actin dynamics of motile cells. Proc. Natl. Acad. Sci. USA 97: 6936 6938.
187. Spinardi, L.,, S. Einheber,, T. Cullen,, T. A. Milner,, and F. G. Giancotti. 1995. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins. J. Cell Biol. 129: 473 487.
188. Steele-Mortimer, O.,, L. A. Knodler,, S. L. Marcus,, M. P. Scheid,, B. Goh,, C. G. Pfeifer,, V. Duronio,, and B. B. Finlay. 2000. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275: 37718 37724.
189. Steinbock, F. A.,, and G. Wiche. 1999. Plectin: a cytolinker by design. Biol. Chem. 380: 151 158.
190. Stevenson, B. R.,, J. D. Siliciano,, M. S. Mooseker,, and D. A. Goodenough. 1986. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103: 755 766.
191. Stossel, T. P.,, J. Condeelis,, L. Cooley,, J. H. Hartwig,, A. Noegel,, M. Schleicher,, and S. S. Shapiro. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell. Biol. 2: 138 145.
192. Stutzmann, J.,, A. Bellissent-Waydelich,, L. Fontao,, J. F. Launay,, and P. Simon-Assmann. 2000. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc. Res. Tech. 51: 179 190.
193. Sukhan, A.,, T. Kubori,, J. Wilson,, and J. E. Galan. 2001. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J. Bacteriol. 183: 1159 1167.
194. Sun, H. Q.,, M. Yamamoto,, M. Mejillano,, and H. L. Yin. 1999. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274: 33179 33182.
195. Taylor, K. A.,, P. W. Luther,, and M. S. Donnenberg. 1999. Expression of the EspB protein of enteropathogenic Escherichia coli within HeLa cells affects stress fibers and cellular morphology. Infect. Immun. 67: 120 125.
196. Temm-Grove, C. J.,, B. M. Jockusch,, R. P. Weinberger,, G. Schevzov,, and D. M. Helfman. 1998. Distinct localizations of tropomyosin isoforms in LLC-PK1 epithelial cells suggests specialized function at cell-cell adhesions. Cell Motil. Cytoskeleton 40: 393 407.
197. Toyotome, T.,, T. Suzuki,, A. Kuwae,, T. Nonaka,, H. Fukuda,, S. Imajoh-Ohmi,, T. Toyofuku,, M. Hori,, and C. Sasakawa. 2001. Shigella protein IpaH(9.8) is secreted from bacteria within mammalian cells and transported to the nucleus. J. Biol. Chem. 276: 32071 32079.
198. Tran Van Nhieu, G.,, A. Ben-Ze’ev,, and P. J. Sansonetti. 1997. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16: 2717 2729.
199. Tran Van Nhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18: 3249 3262.
200. Tsukamoto, T.,, and S. K. Nigam. 1997. Tight junction proteins form large complexes and associate with the cytoskeleton in an ATP depletion model for reversible junction assembly. J. Biol. Chem. 272: 16133 16139.
201. Tsukita, S.,, K. Oishi,, N. Sato,, J. Sagara,, and A. Kawai. 1994. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126: 391 401.
202. Turner, C. E.,, J. R. Glenney, Jr.,, and K. Burridge. 1990. Paxillin: a new vinculinbinding protein present in focal adhesions. J. Cell Biol. 111: 1059 1068.
203. Ursitti, J.,, and R. Bloch,. 2001. Spectrin, p. 2965 2971. In T. Creighton (ed.), Encyclopedia of Molecular Medicine, vol. 5. John Wiley & Sons, New York. N.Y.
204. Uzzau, S.,, P. Cappuccinelli,, and A. Fasano. 1999. Expression of Vibrio cholerae zonula occludens toxin and analysis of its subcellular localization. Microb. Pathog. 27: 377 385.
205. Uzzau, S.,, R. Lu,, W. Wang,, C. Fiore,, and A. Fasano. 2001. Purification and preliminary characterization of the zonula occludens toxin receptor from human (CaCo2) and murine (IEC6) intestinal cell lines. FEMS Microbiol. Lett. 194: 1 5.
206. Villaseca, J. M.,, F. Navarro-Garcia,, G. Mendoza-Hernandez,, J. P. Nataro,, A. Cravioto,, and C. Eslava. 2000. Pet toxin from enteroaggregative Escherichia coli produces cellular damage associated with fodrin disruption. Infect. Immun. 68: 5920 5927.
207. Wahl, S.,, H. Barth,, T. Ciossek,, K. Aktories,, and B. K. Mueller. 2000. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149: 263 270.
208. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 1914.
209. Wang, W.,, S. Uzzau,, S. E. Goldblum,, and A. Fasano. 2000. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113(Part 24): 4435 4440.
210. Watarai, M.,, S. Funato,, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183: 991 999.
211. Werb, Z.,, P. M. Tremble,, O. Behrendtsen,, E. Crowley,, and C. H. Damsky. 1989. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109: 877 889.
212. Wieler, L. H.,, T. K. McDaniel,, T. S. Whittam,, and J. B. Kaper. 1997. Insertion site of the locus of enterocyte effacement in enteropathogenic and enterohemorrhagic Escherichia coli differs in relation to the clonal phylogeny of the strains. FEMS Microbiol. Lett. 156: 49 53.
213. Wilde, C.,, and K. Aktories. 2001. The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 39: 1647 1660.
214. Williams, A. W.,, and S. C. Straley. 1998. YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J. Bacteriol. 180: 350 358.
215. Windoffer, R.,, M. Borchert-Stuhltrager,, and R. E. Leube. 2002. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J. Cell Sci. 115: 1717 1732.
216. Wood, M. W.,, M. A. Jones,, P. R. Watson,, A. M. Siber,, B. A. McCormick,, S. Hedges,, R. Rosqvist,, T. S. Wallis,, and E. E. Galyov. 2000. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol. 2: 293 303.
217. Wu, S.,, L. A. Dreyfus,, A. O. Tzianabos,, C. Hayashi,, and C. L. Sears. 2002. Diversity of the metalloprotease toxin produced by enterotoxigenic Bacteroides fragilis. Infect. Immun. 70: 2463 2471.
218. Wu, S.,, K. C. Lim,, J. Huang,, R. F. Saidi,, and C. L. Sears. 1998. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 95: 14979 14984.
219. Yap, A. S.,, W. M. Brieher,, and B. M. Gumbiner. 1997. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13: 119 146.
220. Yonemura, S.,, and S. Tsukita. 1999. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J. Cell Biol. 145: 1497 1509.
221. Zhou, D. 2001. Collective efforts to modulate the host actin cytoskeleton by Salmonella type III-secreted effector proteins. Trends Microbiol. 9: 567 569.
222. Zhou, D.,, L. M. Chen,, L. Hernandez,, S. B. Shears,, and J. E. Galan. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39: 248 259.
223. Zhou, D.,, M. S. Mooseker,, and J. E. Galan. 1999. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. USA 96: 10176 10181.
224. Zhou, D.,, M. S. Mooseker,, and J. E. Galan. 1999. Role of the S. Typhimurium actin-binding protein SipA in bacterial internalization. Science 283: 2092 2095.


Generic image for table

Major structural proteins of the cytoskeleton

Citation: Nataro J, Sears C, Fasano A, Bloch R. 2003. Enteric Microbial Toxins and the Intestinal Epithelial Cytoskeleton, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error