Chapter 18 : Ontogeny of the Host Response to Enteric Microbial Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Ontogeny of the Host Response to Enteric Microbial Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap18-2.gif


Normal newborn animals, including humans, do not have the discriminatory function of the fully mature form; as a result, they are more likely to have abnormal responses to food and commensal organisms. The development of this important function is intimately associated with changes in the intestinal immune system that occur during ontogeny in response to intrinsic genetic programs, exposure to food antigens, and colonization by a normal commensal flora. This chapter reviews what these changes are, when they take place, what mechanisms drive them, and how they contribute to the function of the mature response to enteric microbes, and also briefly describes the elements of the mature intestinal immune system. In the context of defense against microbial infection, an important function of intestinal epithelial cells is to act as a physical barrier. During gut ontogeny, lymphocyte populations develop in the human fetal intestine from about 11 weeks of gestation onward. The major changes after this period occur in the epithelial and lymphocyte populations. Antibiotic use in the neonatal period and infancy, which has significant effects on the intestinal flora and therefore on the maturation of the intestinal immune system, has also been associated with the subsequent development of allergic disease. Further study of the role of commensal-host interactions in guiding the maturation of intestinal immune function will provide added insight, not only into the responses that protect against enteric infections, but also into more general mechanisms involved in immunoregulation.

Citation: Cherayil B, Walker W. 2003. Ontogeny of the Host Response to Enteric Microbial Infection, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Elements of the mucosal immune system. The various cellular components that contribute to immune defense of the intestine are depicted.

Citation: Cherayil B, Walker W. 2003. Ontogeny of the Host Response to Enteric Microbial Infection, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Changes in the mucosal immune system during ontogeny. The appearance of various cell types, molecules, and functional changes associated with immune defense of the intestine are depicted along a time line representing the fetal and early neonatal periods. The numbers refer to weeks of gestation.

Citation: Cherayil B, Walker W. 2003. Ontogeny of the Host Response to Enteric Microbial Infection, p 301-332. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abreu, M. T.,, P. Vora,, E. Faure,, L. S. Thomas,, E. T. Arnold,, and M. Arditi. 2001. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167: 1609 1616.
2. Adkins, B. 1999. T cell function in newborn mice and humans. Immunol. Today 20: 330 335.
3. al-Majali, A. M.,, J. P. Robinson,, E. K. Asem,, C. Lamar,, M. J. Freeman,, and A. M. Saeed. 1999. Age-dependent variation in the density and affinity of Escherichia coli heat-stable enterotoxin in mice. Adv. Exp. Med. Biol. 473: 137 145.
4. Autschbach, F.,, J. Brauntein,, B. Helmke,, I. Zuna,, G. Schurmann,, Z. I. Niemir,, R. Wallich,, H. F. Otto,, and S. C. Meuer. 1998. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. Am. J. Pathol. 153: 121 130.
5. Axelsson, I.,, I. Jakobsson,, T. Lindberg,, S. Poleberger,, B. Benediktsson,, and N. Raiha. 1989. Macromolecular absorption in pre-term and term infants. Act. Paed. Scand. 78: 532 537.
6. Barrios, C.,, P. Brawand,, M. Berney,, C. Brandt,, P. H. Lambert,, and C. A. Siegrist. 1996. Neonatal and early life immune responses to various forms of vaccine antigens differ from adult responses: predominance of a Th2-biased pattern which persists after adult boosting. Eur. J. Immunol. 26: 1489 1496.
7. Beutler, B. 2001. Autoimmunity and apoptosis: the Crohn’s connection. Immunity 15: 5 14.
8. Bines, J. E.,, and W. A. Walker. 1991. Growth factors and the development of neonatal host defence. Adv. Exp. Med. Biol. 30: 31 39.
9. Brandtzaeg, P.,, D. E. Nilssen,, T. O. Rognum,, and P. S. Thrane. 1991. Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol. Clin. North Am. 20: 397 439.
10. Braunstein, J.,, L. Qiao,, F. Autschbach,, G. Schumann,, and S. Meuer. 1997. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 41: 215 220.
11. Bry, L.,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273: 1380 1383.
12. Cario, E.,, and D. K. Podolsky. 2000. Differential alteration in intestinal epithelial cell expression of TLR3 and TLR4 in inflammatory bowel disease. Infect. Immun. 68: 7010 7017.
13. Cario, E.,, I. M. Rosenberg,, S. L. Brandwein,, P. L. Beck,, H. C. Reinecker,, and D. K. Podolsky. 2000. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164: 966 972.
14. Cebra, J. J. 1999. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69: 1046S 1051S.
15. Cebra, J. J.,, S. B. Periwal,, G. Lee,, F. Lee,, and K. E. Shroff. 1998. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6: 13 18.
16. Chu, S. H.,, I. G. Ely,, and W. A. Walker. 1989. Age and cortisone alter host responsiveness to cholera toxin in the developing gut. Am. J. Physiol. 256: G220 G225.
17. Chu, S. H.,, and W. A. Walker. 1986. Developmental changes in the activities of sialyl-and fucosyltransferases in rat small intestine. Biochim. Biophys. Acta 883: 496 500.
18. Claud, E. C.,, and W. A. Walker. 2001. Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J. 15: 1398 1403.
19. Cohen, M. B.,, A. Guarino,, R. Shukla,, and R. A. Giannella. 1988. Age-related differences in receptors for E. coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 94: 367 373.
20. Cohen, M. B.,, M. S. Moyer,, M. Luttrell,, and R. A. Giannella. 1986. The immature rat small intestine exhibits an increased sensitivity and response to Escherichia coli heat-stable enterotoxin. Pediatr. Res. 20: 555 560.
21. Committee, I. S. 1998. World variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema. Lancet 351: 1225 1232.
22. Crabbe, P. A.,, H. Bazin,, H. Eyssen,, and J. F. Heremans. 1968. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. Int. Arch. Allerg. 34: 362 375.
23. Dai, D.,, N. N. Nanthakumar,, D. S. Newburg,, and W. A. Walker. 2000. Role of oligosaccharides and glycoconjugates in intestinal host defense. J. Ped. Gastroenterol. Nutr. 30: S23 S33.
24. Dai, D.,, N. N. Nanthakumar,, T. C. Savidge,, D. S. Newburg,, and W. A. Walker. 2002. Region-specific ontogeny of α-2,6-sialyltransferase during normal and cortisone-induced maturation in mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G480 G490.
25. Das, H.,, V. Groh,, C. Kuijl,, M. Sugita,, C. T. Morita,, T. Spies,, and J. F. Bukowski. 2001. MICA engagement by human V γ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15: 83 93.
26. Debard, N.,, F. Sierro,, J. Browning,, and J. P. Kraehenbuhl. 2001. Effect of mature lymphocytes and lymphotoxin on the development of follicle-associated epithelium and M cells in mouse Peyer’s patches. Gastroenterology 120: 1173 1182.
27. Denari, G.,, T. L. Hale,, and O. Washington. 1986. Effect of guinea pig or monkey colonic mucus on Shigella aggregation and invasion of HeLa cells by Shigella flexneri 1b and 2a. Infect. Immun. 51: 975 978.
28. Dwinell, M. B.,, N. Lugering,, L. Eckmann,, and M. F. Kagnoff. 2001. Regulated production of interferon-inducible T cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120: 49 59.
29. Eglow, R.,, C. Pothoulakis,, S. Itzkowitz,, E. J. Israel,, C. J. O’Keane,, D. Gong,, N. Gao,, Y. L. Xu,, W. A. Walker,, and J. T. LaMont. 1992. Diminished Clostridium difficile toxin A sensitivity in newborn rabbit ileum is associated with decreased toxin A receptor. J. Clin. Invest. 90: 822 829.
30. Else, K. J.,, and F. D. Finkelman. 1998. Intestinal nematode parasites, cytokines, and effector mechanisms. Int. J. Parasitol. 28: 1145 1158.
31. Fagarasan, S.,, K. Kinoshita,, M. Muramatsu,, K. Ikuta,, and T. Honjo. 2001. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413: 639 643.
32. Fusunyan, R. D.,, N. N. Nanthakumar,, M. E. Baldeon,, and W. A. Walker. 2001. Evidence for an innate immune response in the immature human intestine: Toll-like receptors on fetal enterocytes. Pediatr. Res. 49: 589 593.
33. Ganz, T. 2000. Paneth cells—guardians of the gut cell hatchery. Nature Immunol. 1: 99 100.
34. Gewirtz, A. T.,, T. A. Navas,, S. Lyons,, P. J. Godowski,, and J. L. Madara,. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167: 1882 1885.
35. Gewirtz, A. T.,, P. O. Simon,, C. K. Schmitt,, L. J. Taylor,, C. H. Hagedorn,, A. D. O’Brien,, A. S. Neish,, and J. L. Madara. 2001. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Investig. 107: 99 109.
36. Girardin, S. E.,, R. Tournebize,, M. Mavris,, A.-L. Page,, X. Li,, G. R. Stark,, J. Bertin,, P. S. DiStefano,, M. Yaniv,, P. J. Sansonetti,, and D. J. Philpott. 2001. CARD4/Nod1 mediates NF- κB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2: 736 742.
37. Goldman, A. S. 1993. The immune system of human milk: anti-microbial, anti-inflammatory and immunomodulating properties. Pediatr. Infect. Dis. J. 12: 664 671.
38. Golovkina, T. V.,, M. Shlomchik,, L. Hannum,, and A. Chervonsky. 1999. Organogenic role of B lymphocytes in mucosal immunity. Science 286: 1965 1968.
39. Goriely, S.,, B. Vincart,, P. Stordeur,, J. Vekemans,, F. Willems,, M. Goldman,, and D. De Wit. 2001. Deficient IL-12 (p35) gene expression by dendritic cells derived from neonatal monocytes. J. Immunol. 166: 2141 2146.
40. Greco, S.,, I. Hugueny,, P. George,, P. Perrin,, P. Louisot,, and M. C. Biol. 2000. Influence of spermine on intestinal maturation of the glycoprotein glycosylation process in neonatal rats. Biochem. J. 345: 69 75.
41. Groh, V.,, S. Bahram,, S. Bauer,, A. Herman,, M. Beauchamp,, and T. Spies. 1996. Cell stress-related human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93: 12445 12450.
42. Groh, V.,, R. Rhinehart,, J. Randolph-Habecker,, M. S. Topp,, S. R. Riddell,, and T. Spies. 2001. Costimulation of CD8 alpha;β T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nature Immunol. 2: 198 200.
43. Groh, V.,, A. Steinle,, S. Bauer,, and T. Spies. 1998. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279: 1737 1740.
44. Hampe, J.,, A. Cuthbert,, P. J. Croucher,, M. M. Mirza,, S. Mascheretti,, S. Fisher,, H. Frenzel,, K. King,, A. Hasselmeyer,, A. J. MacPherson,, S. Bridger,, S. van Deventer,, A. Forbes,, S. Nikolaus,, J. E. Lennard-Jones,, U. R. Foelsch,, M. Krawczak,, C. Lewis,, S. Schreiber,, and C. G. Mathew. 2001. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357: 1902 1904.
45. Harmsen, H. J.,, A. C. Wildeboer-Veloo,, G. C. Raangs,, A. A. Wagendorp,, N. Klijn,, J. G. Bindels,, and G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61 67.
46. Harvey, J.,, D. B. Jones,, and D. H. Wright. 1990. Differential expression of MHC-and macrophage-associated antigens in human fetal and postnatal small intestine. Immunology 69: 409 415.
47. Haury, M.,, A. Sundblad,, A. Grandien,, C. Barreau,, A. Coutinho,, and A. Nobrega. 1997. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 27: 1557 1563.
48. Hayday, A.,, E. Theodoridis,, E. Ramsburg,, and J. Shires. 2001. Intraepithelial lymphocytes: exploring the third way in immunology. Nature Immunol. 2: 997 1003.
49. Helgeland, L.,, J. T. Vaage,, B. Rolstad,, T. Midtvedt,, and P. Brandtzaeg. 1996. Microbial colonization influences composition and T cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 89: 494 501.
50. Hobbie, S.,, L. M. Chen,, R. J. Davis,, and J. E. Galan. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159: 5550 5559.
51. Hooper, L. V.,, and J. I. Gordon. 2001. Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11: 1R 10R.
52. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. L. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881 884.
53. Hooper, L. V.,, J. Xu,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96: 9833 9838.
54. Horie, K.,, J. Fujita,, K. Takakura,, H. Kanzaki,, H. Suginami,, M. Iwai,, H. Nakayama,, and T. Mori. 1993. The expression of c-kit protein in human adult and fetal tissues. Hum. Repr. 8: 1955 1962.
55. Hugot, J. P.,, M. Chamaillard,, H. Zouali,, S. Lesage,, J. P. Cezard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O’Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Puig,, C. Gower-Rousseau,, J. Macry,, J. F. Colombel,, M. Sahbatou,, and G. Thomas. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 537 539.
56. Hyman, P. E.,, D. D. Clarke,, S. L. Everett,, B. Sonne,, D. Steward,, T. Harada,, J. H. Walsh,, and I. L. Taylor. 1985. Gastric acid secretory function in pre-term infants. J. Pediatr. 106: 467 471.
57. Iwasaki, A.,, and B. L. Kelsall. 2001. Unique functions of CD11b CD8 α + and double negative Peyer’s patch dendritic cells. J. Immunol. 166: 4884 4890.
58. Jarvis, W. B.,, and R. A. Feldman. 1984. Clostridium difficile and gastroenteritis: how strong is the association in children? Pediatr. Infect. Dis. J. 3: 4.
59. Jaso-Friedmann, L.,, L. A. Dreyfus,, S. C. Whipp,, and D. C. Robertson. 1992. Effect of age on activation of porcine intestinal guanylate cyclase and binding of Escherichia coli heat-stable enterotoxin (ST α) to porcine intestinal cells and brush border membranes. Am. J. Vet. Res. 53: 2251 2258.
60. Kagnoff, M. F. 1998. Current concepts in mucosal immunity. III. Ontogeny and function of γδ T cells in the intestine. Am. J. Physiol. 274: G455 G458.
61. Kato, T.,, and R. L. Owen,. 1999. Structure and function of intestinal mucosal epithelium, p. 115 132. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology, 2nd ed. Academic Press Inc., San Diego, Calif.
62. Kerneis, S.,, A. Bogdanova,, J. P. Kraehenbuhl,, and E. Pringault. 1997. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277: 910 911.
63. Kim, J. H.,, and M. Ohsawa. 1995. Oral tolerance to ovalbumin in mice as a model for detecting modulation of the immunologic tolerance to a specific antigen. Biol. Pharmacol. Bull. 18: 854 858.
64. Kimura, A. 1977. The epithelial-macrophage relationship in Peyer’s patches: an immunopathological study. Bull. Osaka Med. Sch. 23: 67 91.
65. King, C. L.,, I. Malhotra,, A. Wamachi,, J. Kioko,, P. Mungai,, S. A. Wahab,, D. Koech,, P. Zimmerman,, J. Ouma,, and J. W. Kazura. 2002. Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. J. Immunol. 168: 356 364.
66. Knox, W. F. 1986. Restricted feeding and human intestinal plasma cell development. Arch. Dis. Child. 61: 744 749.
67. Koldovsky, O.,, and A. S. Goldman,. 1999. Growth factors and cytokines in milk, p. 1523 1530. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology, 2nd ed. Academic Press Inc., San Diego, Calif.
68. Lebenthal, E.,, and P. C. Lee. 1982. Alternate pathways of digestion and absorption in early infancy. J. Pediatr. Gastroenterol. Nutr. 3: 1 3.
69. Lefrancois, L.,, and T. Goodman. 1989. In vivo modulation of cytolytic activity and Thy-1 expression in TCR- γδ+ intraepithelial lymphocytes. Science 243: 1716 1718.
70. Leishman, A. J.,, O. V. Naidenko,, A. Attinger,, F. Koning,, C. J. Lena,, Y. Xiong,, H.-C. Chang,, E. Reinherz,, M. Kronenberg,, and H. Cheroutre. 2001. T cell responses modulated through interaction between CD αα and the nonclassical MHC class I molecule TL. Science 294: 1936ndash; 1939.
71. Lin, T.-J.,, and A. D. Befus,. 1999. Mast cells and eosinophils in mucosal defenses and pathogenesis, p. 469 482. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology, 2nd ed. Academic Press Inc., San Diego, Calif.
72. Lopez-Boado, Y. S.,, C. L. Wilson,, L. V. Hooper,, J. I. Gordon,, S. J. Hultgren,, and W. C. Parks. 2000. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148: 1305 1315.
73. MacDonald, T. T.,, and J. Spencer. 1994. Ontogeny of the gut-associated lymphoid system in man. Acta Paed. Suppl.. 83: 300 500.
74. Macpherson, A. J.,, D. Gatto,, E. Sainsbury,, G. R. Harriman,, H. Hengartner,, and R. M. Zinkernagel. 2000. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288: 2222 2226.
75. Macpherson, A. J. S.,, A. Lamarre,, K. McCoy,, G. R. Harriman,, B. Odermatt,, G. Dougan,, H. Hengartner,, and R. M. Zinkernagel. 2001. IgA production without μ or chain expression in developing B cells. Nature Immunol. 2: 625 631.
76. Maia, O. B.,, R. Duarte,, A. M. Silva,, D. C. Cara,, and J. R. Nicoli. 2001. Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. typhimurium. Vet. Microbiol. 79: 183 189.
77. Malaviya, R.,, T. Ikeda,, E. Ross,, and S. N. Abraham. 1996. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF α. Nature 381: 77 80.
78. McCormick, B. A.,, C. A. Parkos,, S. P. Colgan,, D. K. Carnes,, and J. L. Madara. 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 160: 455 466.
79. McGee, D. W., 1999. Inflammation and mucosal cytokine production, p. 559 573. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology, 2nd ed. Academic Press Inc., San Diego, Calif.
80. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1: 135 145.
81. Mellman, I.,, and R. M. Steinman. 2001. Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255 258.
82. Milla, P. J. 1996. Intestinal motility during ontogeny and intestinal pseudo-obstruction in children. Pediatr. Clin. North Am. 43: 511 532.
83. Mobassaleh, M.,, A. Donohue-Rolfe,, M. Jacewicz,, R. J. Grand,, and G. T. Keusch. 1988. Pathogenesis of Shigella diarrhea: evidence for a developmentally-regulated glycolipid receptor for Shigella toxin involved in the fluid secretory response of rabbit small intestine. J. Infect. Dis. 157: 1023 1031.
84. Mobassaleh, M.,, S. K. Gross,, R. H. McCluer,, A. Donohue-Rolfe,, and G. T. Keusch. 1989. Quantitation of the rabbit intestinal glycolipid receptor for Shiga toxin. Further evidence for the developmental regulation of globotriaosylceramide in microvillus membranes. Gastroenterology 97: 384 391.
85. Moxey, P. C.,, and J. S. Trier. 1978. Specialized cell types in the human fetal small intestine. Anat. Rec. 191: 269 286.
86. Nagashima, R.,, K. Maeda,, Y. Imai,, and T. Takahashi. 1996. Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. J. Histochem. Cytochem. 44: 721 731.
87. Nagler-Anderson, C.,, and H. N. Shi. 2001. Peripheral nonresponsiveness to orally administered soluble protein antigens. Crit. Rev. Immunol. 21: 121 132.
88. Naik, S.,, E. J. Kelly,, L. Meijer,, S. Pettersson,, and I. R. Sanderson. 2001. Absence of Toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J. Pediatr. Gastroenterol. Nutr. 32: 449 453.
89. Nanthakumar, N. N.,, R. D. Fusunyan,, I. Sanderson,, and W. A. Walker. 2000. Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitis. Proc. Natl. Acad. Sci. USA 97: 6043 6048.
90. Neish, A. S.,, A. T. Gewirtz,, H. Zeng,, A. N. Young,, M. E. Hobert,, V. Karmali,, A. S. Rao,, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of I κBα degradation. Science 289: 1560 1563.
91. Newberry, R. D.,, W. F. Stenson,, and R. G. Lorenz. 1999. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nature Med. 5: 900 906.
92. Niedergang, F.,, and J.-P. Kraehenbuhl. 2000. Much ado about M cells. Tr. Cell Biol. 10: 137 141.
93. Ogra, S. S.,, P. L. Ogra,, J. Lippes,, and T. B. J. Tomasi. 1972. Immunohistologic localization of immunoglobulins, secretory component, and lactoferrin in the developing human fetus. Proc. Soc. Exp. Biol. Med. 139: 570 574.
94. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Achkar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunez,, and J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 31: 603 606.
95. Orrahge, K.,, and C. E. Nord. 1999. Factors controlling the bacterial colonization of the intestine in breast-fed infants. Act. Paed. Suppl. 88: 47 57.
96. Ouellette, A. J.,, and C. L. Bevins. 2001. Paneth cell defensins and innate immunity of the small bowel. Inflamm. Bowel Dis. 7: 43 50.
97. Oyama, N.,, N. Sudo,, H. Sogawa,, and C. Kubo. 2001. Antibiotic use during infancy promotes a shift in the Th1/Th2 balance toward Th2-dominated immunity in mice. J. Allerg. Clin. Immunol. 107: 153 159.
98. Pavli, P.,, L. Maxwell,, E. Van de Pol,, and F. Doe. 1996. Distribution of human colonic dendritic cells and macrophages. Clin. Exp. Immunol. 104: 124 132.
99. Pessi, T.,, Y. Sutas,, M. Hurme,, and E. Isolauri. 2000. IL-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin. Exp. Allerg. 30: 1804 1808.
100. Polak-Charcon, S.,, J. Shoham,, and Y. Ben-Shaul. 1980. Tight junctions in epithelial cells of human fetal hindgut, normal colon and adenocarcinoma. JNCI 65: 53 62.
101. Prescott, S. L.,, C. Macaubas,, B. J. Holt,, T. B. Smallacombe,, R. Loh,, P. D. Sly,, and P. G. Holt. 1998. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol. 160: 4730 4737.
102. Prescott, S. L.,, C. Macaubas,, T. Smallacombe,, B. J. Holt,, P. D. Sly,, R. Loh,, and P. G. Holt. 1998. Reciprocal age-related patterns of allergen-specific T-cell immunity in normal vs atopic infants. Clin. Exp. Allerg. 28: 38 44.
103. Rescigno, M.,, and P. Borrow. 2001. The host-pathogen interaction: new themes from dendritic cell biology. Cell 106: 267 270.
104. Rescigno, M.,, M. Urbano,, B. Valzasina,, M. Francolini,, G. Rotta,, R. Bonasio,, F. Graucci,, J.-P. Kraehenbuhl,, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2: 361 367.
105. Roberton, D. M.,, R. Paganelli,, R. Dinwiddie,, and R. J. Levinsky. 1982. Milk antigen absorption in the preterm and term neonate. Arch. Dis. Child. 57: 369 372.
106. Rognum, T. O.,, S. Thrane,, L. Stoltenberg,, A. Vege,, and P. Brandtzaeg. 1992. Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatr. Res. 32: 145 149.
107. Russell, G. J.,, A. K. Bhan,, and H. S. Winter. 1990. The distribution of T and B lymphocyte populations and MHC class II expression in human fetal and postnatal intestine. Pediatr. Res. 27: 239 244.
108. Shroff, K. E.,, K. Meslin,, and J. J. Cebra. 1995. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63: 3904 3913.
109. Shub, M. D.,, K. Y. Pang,, D. A. Swann,, and W. A. Walker. 1983. Age-related changes in chemical composition and physical properties of mucus glycoproteins from rat small intestine. Biochem. J. 215: 405 411.
110. Sierro, F.,, B. Dubois,, A. Coste,, D. Kaiserlian,, J. P. Kraehenbuhl,, and J. C. Sirard. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. USA 98: 13722 13727.
111. Silva, A. M.,, E. A. Bambirra,, A. L. Oliveira,, P. P. Souza,, D. A. Gomes,, E. C. Vieira,, and J. R. Nicoli. 1999. Protective effect of bifidus milk on the experimental infection with Salmonella enteritidis subsp. typhimurium in conventional and gnotobiotic mice. J. Appl. Microbiol. 86: 331 336.
112. Smith, P. D.,, L. E. Smythies,, M. Mosteller-Barnum,, D. A. Sibley,, M. W. Russell,, M. Merger,, M. T. Sellers,, J. M. Orenstein,, T. Shimada,, M. F. Graham,, and H. Kubagawa. 2001. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities. J. Immunol. 167: 2651 2656.
113. Spencer, J.,, P. G. Isaacson,, T. C. Diss,, and T. T. MacDonald. 1989. Expression of disulphide-linked and non-disulphide-linked forms of T cell receptor gamma/delta heterodimer in human intestinal intraepithelial lymphocytes. Eur. J. Immunol. 19: 1335 1338.
114. Spencer, J.,, T. T. MacDonald,, T. Finn,, and P. G. Isaacson. 1986. The development of the gut-associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin. Exp. Immunol. 64: 536 543.
115. Spencer, J.,, T. T. MacDonald,, and P. G. Isaacson. 1987. Development of human gut-associated lymphoid tissue. Adv. Exp. Med. Biol. 216B: 1421 1430.
116. Spencer, J.,, T. T. MacDonald,, and P. G. Isaacson. 1987. Heterogeneity of nonlymphoid cells expressing HLA-DR region antigens in human fetal gut. Clin. Exp. Immunol. 67: 415 424.
117. Stephens, H. A. F. 2001. MICA and MICB genes: can the enigma of their polymorphism be resolved? Tr. Immunol. 22: 378 385.
118. Sudo, N.,, S. Sawamura,, K. Tanaka,, Y. Aiba,, C. Kubo,, and Y. Koga. 1997. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 159: 1739 1745.
119. Torres-Pinedo, R.,, and A. Mahmood. 1984. Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine. I. Evidence of developmental shift from terminal sialylation to fucosylation. Biochem. Biophys. Res. Commun. 125: 546 553.
120. Trier, J. S.,, and P. C. Moxey. 1979. Morphogenesis of the small intestine during fetal development. CIBA Found. Symp. 70: 3 29.
121. Udall, J. N.,, P. Colony,, L. Fritze,, K. Pang,, J. S. Trier,, and W. A. Walker. 1981. Development of gastrointestinal mucosal barrier. II. The effect of natural versus artificial feeding on intestinal permeability to macromolecules. Pediatr. Res. 15: 245 249.
122. Udall, J. N.,, K. Pang,, L. Fritze,, R. Kleinman,, and W. A. Walker. 1981. Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatr. Res. 15: 241 244.
123. Umesaki, Y.,, H. Setoyama,, S. Matsumoto,, and Y. Okada. 1993. Expansion of αβ T cell receptor bearing intestinal intraepithelial lymphocytes after microbial colonization in germfree mice and its independence from thymus. Immunol. 79: 32 37.
124. Van Heel, D. A.,, D. P. McGovern,, and D. P. Jewell. 2001. Crohn’s disease: genetic susceptibility, bacteria and innate immunity. Lancet 357: 1925 1928.
125. Wallis, T. S.,, and E. E. Galyov. 2000. Molecular basis of Salmonella-induced enteritis. Mol. Microbiol. 36: 997 1005.
126. Wickens, K.,, N. Pearce,, J. Crane,, and R. Beasley. 1999. Antibiotic use in early childhood and the development of asthma. Clin. Exp. Allergy 29: 766 771.
127. Williams, R. C.,, and R. J. Gibbons. 1975. Inhibition of streptococcal attachment of receptors on human buccal epithelial cells by antigenically similar salivary glycoproteins. Infect. Immun. 11: 711 715.
128. Wills-Karp, M.,, J. Santeliz,, and C. L. Karp. 2001. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol. 1: 69 75.
129. Wold, A. E.,, and I. Adlerberth. 2000. Breast feeding and the intestinal microflora of the infant—implications for protection against infectious diseases. Adv. Exp. Med. Biol. 478: 77 93.
130. Yu, L. L.,, and M. H. Perdue. 2001. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol. Rev. 179: 61 73.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error