1887

Chapter 4 : Cytokines and Epithelial Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cytokines and Epithelial Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap04-2.gif

Abstract:

This chapter talks about recent literature with regard to epithelial cytokine responses, with particular emphasis on functional consequences. It discusses the direct consequences of cytokines on aspects of epithelial function. An interesting exception with regard to cytokine influences on ion transport is that of interleukin-4 (IL-4) and IL-13. While these cytokines share common receptor subunits and in most cases display overlapping functions (e.g., attenuation of barrier function), only IL-4 appears to influence electrogenic chloride secretion. This finding was one of the first divergent functions ascribed to these apparently redundant cytokines, although recent studies suggest no differences between IL-4 and IL-13 with regard to proximal receptor activation. Recent work suggests that blockade of interaction with the cytoskelton using the polyamine cadaverine severely abrogates epithelial signaling to polymorpho-nuclear leukocyte (PMN). In the intestine, cytokine influences on epithelial function may best be exemplified through the study of enteric infections, specifically related to acute responses following initial microorganism-epithelial interaction.

Citation: Colgan S, Furuta G, Taylor C. 2003. Cytokines and Epithelial Function, p 61-78. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch4

Key Concept Ranking

Major Histocompatibility Complex
0.5355208
Immune Systems
0.44194016
Tumor Necrosis Factor alpha
0.44091493
Type III Secretion System
0.4172795
0.5355208
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Epithelial-derived TNF-α synergizes with IFN-γ in an autocrine manner. In response to a number of stimuli, including bacterial invasion and hypoxia, epithelial cells become a source of TNF-α. The polarized release (basolateral) of TNF-α synergizes with immune-derived cytokines, especially IFN-γ, resulting in influences on a number of epithelial functions, including decreased barrier function, diminished electrogenic chloride secretion, induction of MHC molecules, and liberation of proinflammatory chemokines.

Citation: Colgan S, Furuta G, Taylor C. 2003. Cytokines and Epithelial Function, p 61-78. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phases of cytokine actions on acute epithelial infection. Epithelial cells are central to the coordinated response to microorganism infection (phase 1). Rapid induction and release of PMN chemokines (phase 2) elicit the accumulation of PMN within and across the epithelial surface. PMN at the lumenal surface initiates a Cl− secretory response and fluid transport which functionally flushes the surface of the epithelium. In phase 3 of the response, epithelial-derived cytokines (e.g., TNF-α) synergize with cytokines liberated in the intraepithelial and lamina propria compartments (e.g., IFN-γ) to attenuate fluid transport. In phase 4, intraepithelial and lamina propria lymphocyte-derived cytokines (e.g., IFN-γ, IL-4, and IL-13) induce epithelial lipoxin receptors, the ligation of which results in attenuation of PMN accumulation. In phase 5, lipoxin-induced epithelial BPI provides a protective antimicrobial action for the resolution of acute inflammation.

Citation: Colgan S, Furuta G, Taylor C. 2003. Cytokines and Epithelial Function, p 61-78. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap4
1. Asfaha, S.,, W. K. MacNaughton,, C. B. Appleyard,, K. Chadee,, and J. L. Wallace. 2001. Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G635 G644.
2. Balk, S. P.,, S. Burke,, J. E. Polischuk,, M. E. Frantz,, L. Yang,, S. Porcelli,, S. P. Colgan,, and R. S. Blumberg. 1994. β 2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 265: 259 262.
3. Balsam, L. B.,, T. W. Liang,, and C. A. Parkos. 1998. Functional mapping of CD11b/CD18 epitopes important in neutrophil-epithelial interactions: a central role of the I domain. J. Immunol. 160: 5058 5065.
4. Barrett, K. E. 1993. Positive and negative regulation of chloride secretion in T84 cells. Am. J. Physiol. 265: C859 C868.
5. Beagley, K. W.,, and A. J. Husband. 1998. Intraepithelial lymphocytes: origins, distribution, and function. Crit. Rev. Immunol. 18: 237 254.
6. Beck, P. L.,, and D. K. Podolsky. 1999. Growth factors in inflammatory bowel disease. Inflamm. Bowel Dis. 5: 44 60.
7. Bensancon, F.,, G. Przewlocki,, I. Baro,, A.-S. Hongre,, D. Escande,, and A. Edelman. 1994. Interferon-γ downregulates CFTR gene expression in epithelial cells. Am. J. Physiol. 267: C1398 1404.
8. Berin, M. C.,, P.-C. Yang,, L. Ciok,, S. Waserman,, and M. H. Perdue. 1999. Role of IL-4 in macromolecular transport across human intestinal epithelium. Am. J. Physiol. (Cell Physiol.) 276: C1046 C1052.
9. Blume, E. D.,, C. T. Taylor,, P. F. Lennon,, G. L. Stahl,, and S. P. Colgan. 1998. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion: 6-keto-PGF 1a is an epithelial secretagogue. J. Clin. Invest. 102: 1161 1172.
10. Bocker, U.,, A. Damiao,, L. Holt,, D. S. Han,, C. Jobin,, A. Panja,, L. Mayer,, and R. B. Sartor. 1998. Differential expression of interleukin 1 receptor antagonist isoforms in human intestinal epithelial cells. Gastroenterology 115: 1426 1438.
11. Brown, E. J.,, and W. A. Frazier. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11: 130 135.
12. Brubaker, J. O.,, and L. J. Montaner. 2001. Role of interleukin-13 in innate and adaptive immunity. Cell Mol. Biol. 47: 637 651.
13. Cambell, I. G.,, P. S. Freemont,, W. Foulkes,, and J. Trowsdale. 1992. An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res. 52: 5416 5420.
14. Canny, G.,, O. Levy,, G. T. Furuta,, S. Narravula-Alipati,, R. B. Sisson,, C. N. Serhan,, and S. P. Colgan. 2002. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Nat. Acad. Sci. USA 99: 3902 3907.
15. Casini-Raggi, V.,, L. Kam,, Y. J. Chong,, C. Fiocchi,, T. T. Pizarro,, and F. Cominelli. 1995. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol. 154: 2434 2440.
16. Ceponis, P. J.,, F. Botelho,, C. D. Richards,, and D. M. McKay. 2000. Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J. Biol. Chem. 275: 29132 29137.
17. Cerf-Bensussan, N.,, A. Quaroni,, J. T. Kurnick,, and A. K. Bahn. 1984. Intraepithelial lymphocytes modulate Ia expression by intestinal epithelial cells. J. Immunol. 132: 2244 2252.
18. Ciacci, C.,, Y. R. Mahida,, A. Dignass,, M. Koizumi,, and D. K. Podolsky. 1993. Functional IL-2 receptors on intestinal epithelial cells. J. Clin. Invest. 92: 527 532.
19. Claria, J.,, M. H. Lee,, and C. N. Serhan. 1996. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation. Mol. Med. 2: 583 596.
20. Colgan, S. P.,, A. L. Dzus,, and C. A. Parkos. 1996. Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J. Exp. Med. 184: 1003 1015.
21. Colgan, S. P.,, R. M. Hershberg,, G. T. Furuta,, and R. S. Blumberg. 1999. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc. Natl. Acad. Sci. USA 96: 13938 13943.
22. Colgan, S. P.,, V. M. Morales,, J. L. Madara,, S. P. Balk,, and R. S. Blumberg. 1996. IFN-γ modulates CD1d expression on intestinal epithelia. Am. J. Physiol. 271: C276 C283.
23. Colgan, S. P.,, C. A. Parkos,, C. Delp,, M. A. Arnaout,, and J. L. Madara. 1993. Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to interferon-gamma in a highly polarized fashion. J. Cell Biol. 120: 785 795.
24. Colgan, S. P.,, C. A. Parkos,, J. B. Matthews,, L. D’Andrea,, C. S. Awtrey,, A. Lichtman,, C. Delp,, and J. L. Madara. 1994. Interferon-γ induces a surface phenotype switch in intestinal epithelia: downregulation of ion transport and upregulation of immune accessory ligands. Am. J. Physiol. 267: C402 C410.
25. Colgan, S. P.,, M. B. Resnick,, C. A. Parkos,, C. Delp-Archer,, A. E. Bacarra,, P. F. Weller,, and J. L. Madara. 1994. Interleukin-4 directly modulates function of a model human intestinal epithelium. J. Immunol. 153: 2122 2129.
26. Colgan, S. P.,, C. N. Serhan,, C. A. Parkos,, C. Delp-Archer,, and J. L. Madara. 1993. Lipoxin A 4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J. Clin. Invest. 92: 75 82.
27. Collins, T.,, A. J. Korman,, C. T. Wake,, J. M. Boss,, D. J. Kappes,, W. Fiers,, K. A. Ault,, M. A. Gimbrone,, J. L. Strominger,, and J. S. Pober. 1988. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc. Nat. Acad. Sci. USA 81: 4917 4921.
28. Darveau, R. P.,, C. M. Belton,, R. A. Reife,, and R. J. Lamont. 1998. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun. 66: 1660 1665.
29. Demoulin, J. B.,, and J. C. Renauld. 1998. Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell Mol. Ther. 4: 243 256.
30. Dubois, R. N.,, S. B. Abramson,, L. Crofford,, R. A. Gupta,, L. S. Simon,, L. B. Van De Putte,, and P. E. Lipsky. 1998. Cyclooxygenase in biology and disease [see comments]. FASEB J. 12: 1063 1073.
31. Eckmann, L.,, W. F. Stenson,, T. C. Savidge,, D. C. Lowe,, K. E. Barrett,, J. Fierer,, J. R. Smith,, and M. F. Kagnoff. 1997. Role of intestinal epithelial cells in host secretory response to infection by invasive bacteria: bacterial entry induces epithelial prostaglandin H synthase-2 expression and prostaglandin E 2 and F production. J. Clin. Invest. 100: 296 309.
32. Elewaut, D.,, and M. Kronenberg. 2000. Molecular biology of NK T cell specificity and development. Semin. Immunol. 12: 561 568.
33. Fernandez, I. M.,, M. Silva,, R. Schuch,, W. A. Walker,, A. M. Siber,, A. T. Maurelli,, and B. A. McCormick. 2001. Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J. Infect. Dis. 184: 743 753.
34. Ferretti, M.,, V. Casini-Raggi,, T. T. Pizarro,, S. P. Eisenberg,, C. C. Nast,, and F. Cominelli. 1994. Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J. Clin. Invest. 94: 449 453.
35. Framson, P. E.,, D. H. Cho,, L. Y. Lee,, and R. M. Hershberg. 1999. Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Gastroenterology 116: 1054 1062.
36. Furuse, M.,, T. Hirase,, M. Itoh,, A. Nagafuchi,, S. Yonemura,, S. Tsukita,, and S. Tsukita. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123: 1777 1788.
37. Gauchat, J. F.,, E. Schlagenhauf,, N. P. Feng,, R. Moser,, M. Yamage,, P. Jeannin,, S. Alouani,, G. Elson,, L. D. Notarangelo,, T. Wells,, H. P. Eugster,, and J. Y. Bonnefoy. 1997. A novel 4-kb interleukin-13 receptor alpha mRNA expressed in human B, T, and endothelial cells encoding an alternate type-II interleukin-4/interleukin-13 receptor. Eur. J. Immunol. 27: 971 978.
38. Gewirtz, A. T.,, B. A. McCormick,, A. S. Neisch,, N. A. Petasis,, K. Gronert,, C. N. Serhan,, and J. L. Madara. 1998. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A 4 analogs. J. Clin. Invest. 101: 1860 1869.
39. Gronert, K.,, A. Gewirtz,, J. L. Madara,, and C. N. Serhan. 1998. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. J. Exp. Med. 187: 1285 1294.
40. Gumbiner, B. M. 1993. Breaking through the tight junction barrier. J. Cell Biol. 123: 1631 1633.
41. Haapamaki, M. M.,, J. O. Haggblom,, J. M. Gronroos,, E. Pekkala,, K. Alanen,, and T. J. Nevalainen. 1999. Bactericidal/permeability-increasing protein in colonic mucosa in ulcerative colitis. Hepatogastroenterology 46: 2273 2277.
42. Hardin, J.,, K. Kroeker,, B. Chung,, and D. G. Gall. 2000. Effect of proinflammatory interleukins on jejunal nutrient transport. Gut 47: 184 191.
43. Hershberg, R. M.,, D. H. Cho,, A. Youakim,, M. B. Bradley,, J. S. Lee,, P. E. Framson,, and G. T. Nepom. 1998. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J. Clin. Invest. 102: 792 803.
44. Hershberg, R. M.,, P. E. Framson,, D. H. Cho,, L. Y. Lee,, S. Kovats,, J. Beitz,, J. S. Blum,, and G. T. Nepom. 1997. Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. J. Clin. Invest. 100: 204 215.
45. Hershberg, R. M.,, and L. F. Mayer. 2000. Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol. Today 21: 123 128.
46. Hogan, S. P.,, A. Mishra,, E. B. Brandt,, P. S. Foster,, and M. E. Rothenberg. 2000. A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proc. Natl. Acad. Sci. USA 97: 6681 6686.
47. Hogan, S. P.,, A. Mishra,, E. B. Brandt,, M. P. Royalty,, S. M. Pope,, N. Zimmermann,, P. S. Foster,, and M. E. Rothenberg. 2001. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat. Immunol. 2: 353 360.
48. Hollander, D. 1999. Intestinal permeability, leaky gut, and intestinal disorders. Curr. Gastroenterol. Rep. 1: 410 416.
49. Holmgren, J.,, J. Fryklund,, and H. Larsson. 1989. Gamma-interferon-mediated down regulation of electrolyte secretion by intestinal epithelial cells: a local immune mechanism? Scand. J. Immunol. 30: 499 503.
50. Huang, G. T.,, L. Eckmann,, T. C. Savidge,, and M. F. Kagnoff. 1996. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil adhesion. J. Clin. Invest. 98: 572 583.
51. Ito, S.,, P. Ansari,, M. Sakatsume,, H. Dickensheets,, N. Vazquez,, R. P. Donnelly,, A. C. Larner,, and D. S. Finbloom. 1999. Interleukin-10 inhibits expression of both interferon alpha-and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93: 1456 1463.
52. Jaye, D. L.,, and C. A. Parkos. 2000. Neutrophil migration across intestinal epithelium. Ann. N.Y. Acad. Sci. 915: 151 161.
53. Jobin, C.,, and R. B. Sartor. 2000. The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection. Am. J. Physiol. Cell Physiol. 278: C451 C462.
54. Jung, H. C.,, L. Eckmann,, S.-K. Yang,, A. Panja,, J. Fierer,, E. Morzycka-Wroblewska,, and M. F. Kagnoff. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95: 55 65.
55. Kagnoff, M., 1978. Immunology and disease of the gastrointestinal tract, p. 114 144. In S. A. Fordtran (ed.), Gastrointestinal Disease. W.B. Saunders Co., Philadelphia, Pa.
56. Kagnoff, M. F.,, and L. Eckmann. 1997. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100: 6 10.
57. Keely, S. J.,, J. M. Uribe,, and K. E. Barrett. 1998. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J. Biol. Chem. 273: 27111 27117.
58. Lampinen, M.,, M. Carlson,, P. Sangfelt,, Y. Taha,, M. Thorn,, L. Loof,, Y. Raab,, and P. Venge. 2001. IL-5 and TNF-alpha participate in recruitment of eosinophils to intestinal mucosa in ulcerative colitis. Dig. Dis. Sci. 46: 2004 2009.
59. Levin, M.,, P. A. Quint,, B. Goldstein,, P. Barton,, J. S. Bradley,, S. D. Shemie,, T. Yeh,, S. S. Kim,, D. P. Cafaro,, P. J. Scannon,, B. P. Giroir, and the rBPI21 Meningococcal Sepsis Study Group. 2000. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet 356: 961 967.
60. Levy, B. D.,, C. B. Clish,, B. Schmidt,, K. Gronert,, and C. N. Serhan. 2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2: 612 619.
61. Levy, O. 2000. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood 96: 2664 2672.
62. Levy, O.,, and P. Elsbach. 2001. Bactericidal/permeability-increasing protein in host defense and its efficacy in the treatment of sepsis. Curr. Infect. Dis. Rep. 3: 407 412.
63. Lu, J.,, D. J. Philpott,, P. R. Saunders,, M. H. Perdue,, P. C. Yang,, and D. M. McKay. 1998. Epithelial ion transport and barrier abnormalities evoked by superantigen-activated immune cells are inhibited by interleukin-10 but not interleukin-4. J. Pharmacol. Exp. Ther. 287: 128 136.
64. Madara, J. L. 1990. Pathobiology of the intestinal epithelial barrier. Am. J. Path. 137: 1273 1278.
65. Madara, J. L. 2000. Modulation of tight junctional permeability. Adv. Drug Deliv. Rev. 41: 251 253.
66. Madara, J. L.,, T. W. Patapoff,, B. Gillece-Castro,, S. P. Colgan,, C. A. Parkos,, C. Delp,, and R. J. Mrsny. 1993. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J. Clin. Invest. 91: 2320 2325.
67. Madara, J. L.,, and J. Stafford. 1989. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83: 724 727.
68. Madianos, P. N.,, P. N. Papapanou,, and J. Sandros. 1997. Porphyrimonas gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration. Infect. Immun. 65: 3983 3990.
69. Madsen, K. L.,, S. A. Lewis,, M. N. Taverini,, J. Hibbard,, and R. N. Fedorak. 1997. Interleukin 10 prevents cytokine induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 113: 151 159.
70. Mankertz, J.,, S. Tavalali,, H. Schmitz,, A. Mankertz,, E. O. Riecken,, M. Fromm,, and J. D. Schulzke. 2000. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J. Cell Sci. 113: 2085 2090.
71. Matthews, A. N.,, D. S. Friend,, N. Zimmermann,, M. N. Sarafi,, A. D. Luster,, E. Pearlman,, S. E. Wert,, and M. E. Rothenberg. 1998. Eotaxin is required for the baseline level of tissue eosinophils. Proc. Natl. Acad. Sci. USA 95: 6273 6278.
72. Mayer, L.,, D. Eisenhardt,, P. Salomon,, W. Bauer,, R. Plous,, and L. Piccinini. 1991. Expression of class II molecules on intestinal epithelial cells in humans: differences between normal and inflammatory bowel disease. Gastroenterology 100: 3 12.
73. Mayer, L.,, and R. Shlien. 1987. Evidence for function of Ia molecules on gut epithelial cells in man. J. Exp. Med. 166: 1471 1483.
74. McGee, D. W., 1999. Inflammation and mucosal cytokine production, p. 559 573. In J. Mestecky, , P. L. Ogra, , M. E. Lamm, , W. Strober, , J. Bienenstock, , and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., San Diego, Calif.
75. Meddings, J. B. 1997. Review article: Intestinal permeability in Crohn’s disease. Aliment. Pharmacol. Ther.53-56. 3: 47 53; discussion,.
76. Miloux, B.,, P. Laurent,, O. Bonnin,, J. Lupker,, D. Caput,, N. Vita,, and P. Ferrara. 1997. Cloning of the human IL-13R alpha1 chain and reconstitution with the IL4R alpha of a functional IL-4/IL-13 receptor complex. FEBS Lett. 401: 163 166.
77. Mishra, A.,, S. P. Hogan,, E. B. Brandt,, N. Wagner,, M. W. Crossman,, P. S. Foster,, and M. E. Rothenberg. 2002. Enterocyte expression of the eotaxin and IL-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J. Biol. Chem. 277: 4406 4412.
78. Molmenti, E. P.,, T. Ziambaras,, and D. H. Perlmutter. 1993. Evidence for an acute phase response in human intestinal epithelial cells. J. Biol. Chem. 268: 14116 14124.
79. Monajemi, H.,, J. Meenan,, R. Lamping,, D. O. Obradov,, S. A. Radema,, P. W. Trown,, G. N. Tytgat,, and S. J. Van Deventer. 1996. Inflammatory bowel disease is associated with increased mucosal levels of bactericidal/permeability-increasing protein. Gastroenterology 110: 733 739.
80. Neish, A. S.,, A. T. Gewirtz,, H. Zeng,, A. N. Young,, M. E. Hobert,, V. Karmali,, A. S. Rao,, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289: 1560 1563.
81. Panja, A.,, S. Goldberg,, L. Eckmann,, P. Krishen,, and L. Mayer. 1998. The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. J. Immunol. 161: 3675 3684.
82. Parkos, C. A. 1997. Molecular events in neutrophil transepithelial migration. BioEssays 19: 865 873.
83. Parkos, C. A.,, S. P. Colgan,, D. Delp,, M. A. Arnaout,, and J. L. Madara. 1992. Neutrophil migration across a cultured epithelial monolayer elicits a biphasic resistance response representing sequential effects on transcellular and paracellular pathways. J. Cell Biol. 117: 757 764.
84. Parkos, C. A.,, S. P. Colgan,, M. S. Diamond,, A. Nusrat,, T. Liang,, T. A. Springer,, and J. L. Madara. 1996. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/18-mediated interactions with neutrophils. Molec. Med. 2: 489 505.
85. Parkos, C. A.,, S. P. Colgan,, A. Liang,, A. Nusrat,, A. E. Bacarra,, D. K. Carnes,, and J. L. Madara. 1996. CD 47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J. Cell Biol. 132: 437 450.
86. Parkos, C. A.,, C. Delp,, M. A. Arnaout,, and J. L. Madara. 1991. Neutrophil migration across a cultured intestinal epithelium: dependence on a CD11b/CD18-mediated event and enhanced efficiency in the physiologic direction. J. Clin. Invest. 88: 1605 1612.
87. Phalipon, A.,, and P. J. Sansonetti. 1999. Microbial-host interactions at mucosal sites. Host response to pathogenic bacteria at mucosal sites. Curr. Top. Microbiol. Immunol. 236: 163 189.
88. Podolsky, D. K. 1997. Healing the epithelium: solving the problems from two sides. J. Gastroenterol. 32: 122 126.
89. Powell, D. W., 1987. Intestinal water and electrolyte transport, p. 1267 1291. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract. Raven Press, New York, N.Y.
90. Powell, D. W. 1991. Immunophysiology of intestinal electrolyte transport. p. 591 641. In Handbook of Physiology. American Physiological Society, New York, N.Y.
91. Quiding, M.,, I. Nordstrom,, A. Kilander,, G. Andersson,, L. A. Hanson,, J. Holmgren,, and C. Czerkinsky. 1991. Intestinal immune responses in humans: oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J. Clin. Invest. 88: 143 148.
92. Reinecker, H. C.,, and D. K. Podolsky. 1995. Human intestinal epithelial cells express functional cytokine receptors sharing the common γc chain of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 92: 8353 8357.
93. Resnick, M. B.,, S. P. Colgan,, C. A. Parkos,, C. Delp-Archer,, D. McGuirk,, P. F. Weller,, and J. L. Madara. 1995. GM-CSF primed eosinophils migrate across a model intestinal epithelium in response to a platelet-activating factor gradient. Gastroenterology 108: 409 416.
94. Rocha, F.,, M. W. Musch,, L. Lishanskiy,, C. Bookstein,, K. Sugi,, Y. Xie,, and E. B. Chang. 2001 . IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am. J. Physiol. Cell Physiol. 280: C1224 C1232.
95. Rothenberg, M. E.,, A. Mishra,, E. B. Brandt,, and S. P. Hogan. 2001. Gastrointestinal eosinophils. Immunol. Rev. 179: 139 155.
96. Sansonetti, P. J. 2000. Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G319 G323.
97. Sartor, R. B., 1995. Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis, and experimental intestinal inflammation, p. 96 124. In J. B. Kirsner, and R. J. Shorter (ed.), Inflammatory Bowel Disease. Williams and Wilkins, Baltimore, Md.
98. Schmitz, H.,, M. Fromm,, C. J. Bentzel,, P. Scholz,, K. Detjen,, J. Mankertz,, H. Bode,, H. J. Epple,, E. O. Riecken,, and J. D. Schulzke. 1999. Tumor necrosis factor-alpha (TNF-alpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 112: 137 146.
99. Serhan, C. N. 1994. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212: 1 25.
100. Serhan, C. N.,, J. Z. Haeggstrom,, and C. C. Leslie. 1996. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10: 1147 1158.
101. Serhan, C. N.,, J. F. Maddox,, N. Petasis,, I. Akritopoulou-Zanze,, A. Papayianni,, H. R. Brady,, S. P. Colgan,, and J. L. Madara. 1995. Design of lipoxin A4 stable analogs that block human neutrophil transmigration and adhesion. Biochemistry (USA) 34: 14609 14615.
102. Serhan, C. N.,, T. Takano,, and J. F. Maddox. 1999. Aspirin-triggered 15-epi-lipoxin A4 and stable analogs on lipoxin A4 are potent inhibitors of acute inflammation. Receptors and pathways. Adv. Exp. Med. Biol. 447: 133 149.
103. Sitaraman, S. V.,, D. Merlin,, L. Wang,, M. Wong,, A. T. Gewirtz,, M. Si-Tahar,, and J. L. Madara. 2001. Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J. Clin. Invest. 107: 861 869.
104. Sollid, L. M.,, G. Gaudernack,, G. Markussen,, D. Kvale,, P. Brandtzaeg,, and E. Thorsby. 1987. Induction of various HLA class II molecules in a human colonic adenocarcinoma cell line. Scand. J. Immunol. 25: 175 180.
105. Springer, T. A. 1990. Adhesion receptors of the immune system. Nature 346: 425 430.
106. Stadnyk, A. W.,, C. D. Dollard,, and A. C. Issekutz. 2000. Neutrophil migration stimulates rat intestinal epithelial cell cytokine expression during helminth infection. J. Leukoc. Biol. 68: 821 827.
107. Stadnyk, A. W.,, G. R. Sisson,, and C. C. Waterhouse. 1995. IL-1 alpha is constitutively expressed in the rat intestinal epithelial cell line IEC-6. Exp. Cell Res. 220: 298 303.
108. Stadnyk, A. W.,, and C. M. Waterhouse. 1997. Epithelial cytokines in intestinal inflammation and mucosal immunity. Curr. Opin. Gastroenterol. 13: 510 517.
109. Stevceva, L.,, P. Pavli,, A. Husband,, K. I. Matthaei,, I. G. Young,, and W. F. Doe. 2000. Eosinophilia is attenuated in experimental colitis induced in IL-5 deficient mice. Genes Immun. 1: 213 218.
110. Stoffel, M. P.,, E. Csernok,, C. Herzberg,, T. Johnson,, S. F. Carroll,, and W. L. Gross. 1996. Anti-neutrophil cytoplasmic antibodies (ANCA) directed against bactericidal/permeability increasing protein (BPI): a new seromarker for inflammatory bowel disease and associated disorders. Clin. Exp. Immunol. 104: 54 59.
111. Sugi, K.,, M. W. Musch,, M. Field,, and E. B. Chang. 2001. Inhibition of Na +,K +-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 120: 1393 1403.
112. Takeuchi, A. 1967. Electron microscope studies of experimental Salmonella infection. Am. J. Pathol. 50: 109 119.
113. Taylor, C. T.,, and S. P. Colgan. 1999. Therapeutic targets for hypoxia-elicited pathways. Pharm. Res. 16: 1498 1505.
114. Taylor, C. T.,, A. L. Dzus,, and S. P. Colgan. 1998. Autocrine regulation of intestinal epithelial permeability induced by hypoxia: role for basolateral release of tumor necrosis factor-α (TNF-α). Gastroenterology 114: 657 668.
115. Taylor, C. T.,, N. Fueki,, A. Agah,, R. M. Hershberg,, and S. P. Colgan. 1999. Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial TNF-α. J. Biol. Chem. 274: 19447 19450.
116. Taylor, C. T.,, G. T. Furuta,, K. Synnestvedt,, and S. P. Colgan. 2000. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc. Natl. Acad. Sci. USA 97: 12091 12096.
117. Trinchier, G.,, and B. Perussia. 1985. Immune interferon: a pleiotropic lymphokine with multiple effects. Immunol. Today 6: 131 137.
118. Van der Vieren, M.,, H. Le Trong,, C. L. Wood,, P. F. Moore, , T. St. John, , D. E. Staunton, , and W. M. Gallatin. 1995. A novel leukointegrin, alpha d beta 2, binds preferentially to ICAM-3. Immunity 3: 683 690.
119. Waxman, K. 1996. Shock: ischemia, reperfusion and inflammation. New Horizons 4: 153 160.
120. Winsor, G. L.,, C. C. Waterhouse,, R. L. MacLellan,, and A. W. Stadnyk. 2000. Interleukin-4 and IFN-gamma differentially stimulate macrophage chemoattractant protein-1 (MCP-1) and eotaxin production by intestinal epithelial cells. J. Interferon Cytokine Res. 20: 299 308.
121. Yamada, K.,, M. Shimaoka,, K. Nagayama,, T. Hiroi,, H. Kiyono,, and T. Honda. 1997. Bacterial invasion induces interleukin-7 receptor expression in colonic epithelial cell line, T84. Eur. J. Immunol. 27: 3456 3460.
122. Yardley, J. H.,, and M. Donowitz,. 1977. Colo-rectal biopsies in inflammatory bowel disease, p. 57 94. In J. H. Yardley, and B. C. Morson (ed.), The Gastrointestinal Tract. The Williams and Wilkins Co., Baltimore, Md.
123. Youakim, A.,, and M. Ahdieh. 1999. Interferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. Gastrointest. Liver Physiol. 276: G1279 G1288.
124. Yu, L. C.,, P. C. Yang,, M. C. Berin,, V. Di Leo,, D. H. Conrad,, D. M. McKay,, A. R. Satoskar,, and M. H. Perdue. 2001. Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121: 370 381.
125. Ziambaras, T.,, D. C. Rubin,, and D. H. Perlmutter. 1996. Regulation of sucrose-isomaltase gene expression in human intestinal epithelial cells by inflammatory cytokines. J. Biol. Chem. 271: 1237 1242.
126. Zünd, G.,, J. L. Madara,, A. L. Dzus,, C. S. Awtrey,, and S. P. Colgan. 1996. Interleukin 4 and interleukin 13 differentially regulate epithelial chloride secretion. J. Biol. Chem. 271: 7460 7464.
127. Zurawski, S. M.,, F. J. Vega,, B. Huyghe,, and G. Zurawski. 1993. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 12: 2663 2670.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error