Chapter 5 : Role of Toll-Like Receptors in Innate Immunity of the Intestine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Role of Toll-Like Receptors in Innate Immunity of the Intestine, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap05-2.gif


The pre-epithelial mucous layer at the apical epithelial surface-consisting of mucin glycoproteins, trefoil peptides, and, in the small intestine, defensins-significantly contributes to efficient protection of the underlying host. Toll-like receptors (TLR) are found expressed by many cell types throughout the whole gastrointestinal tract in vitro and in vivo, e.g., several intestinal epithelial cells (IEC) lines of the small intestine and colon, gastric pit cells, fetal intestinal cells, intestinal macrophages of the lamina propria, and intestinal myofibroblasts. Mammalian TLR may enable IEC to participate in innate immunity to microbial pathogens in at least four ways: (i) recognition of molecular patterns present on commensals and pathogens; (ii) expression at the interface with the “environment” of the gastrointestinal lumen; (iii) induction of secretion of pro-or anti-inflammatory cytokines and chemokines that link to the adaptive immune system; and (iv) induction of antimicrobial effector pathways. The chapter talks about alteration of TLR expression in human inflammatory bowel disease (IBD), and TLR dysregulation in infectious diseases. Future research will identify further TLR ligands, specify interconnective signaling cascades activated by TLR, and clarify the potential role of intestinal epithelial TLR in the pathogenesis of IBD and other aberrant inflammatory processes in the gastrointestinal tract. Identifying the physiological mechanisms through which intestinal TLR and other pattern-recognition receptors (PRR) modulate host defense in the gastrointestinal tract could lead to new therapeutic approaches to combat microbial associated gastrointestinal disorders, such as infectious diseases and perhaps IBD.

Citation: Cario E, Podolsky D. 2003. Role of Toll-Like Receptors in Innate Immunity of the Intestine, p 79-94. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1.

Different PAMPs activate different TLRs. TLRs recognize specifically a restricted number of PAMP or CAMP. TLR2 interacts with TLR1 and TLR6 in recognition of a variety of ligands, mainly gram-positive bacterial cell wall components. Aided by at least three other molecules, including CD14, LPS-binding-protein (LBP), and MD-2, TLR4 mainly detects LPS. Double-stranded RNA is recognized by TLR3, and TLR5 binds flagellin. TLR9 is a receptor for abundant bacterial CpG DNA. The ligands for TLR7, TLR8, and TLR10 remain to be determined.

Citation: Cario E, Podolsky D. 2003. Role of Toll-Like Receptors in Innate Immunity of the Intestine, p 79-94. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2.

Signaling pathways of TLRx—current concept. TLR signal through several signaling components, including the adapter protein MyD88, Toll-interacting protein (Tollip), IL-1R-associated kinase (IRAK), and TNF receptor-associated factor 6 (TRAF-6), leading to liberation of the transcription factor NF-ĸB and activation of MKK and the JNK-p38 pathways. All these events lead downstream to the transcription of various cytokine/chemokine genes. TLR4 also signals through an MyD88-independent pathway via another adapter, recently identified as TIRAP (or Mal). The interactions among TLR versus MyD88, TIRAP, and Tollip are complex and remain unresolved. The protein kinase PKR is possibly positioned between TIRAP and TRAF-6. Rho GTPase Rac-1 and Akt have also been shown to mediate TLR2-dependent activation. The roles of other PRR, such as TREM or Nods, possibly interacting with TLR signaling proteins and thus regulating innate immune responses to bacterial ligands, remain to be defined.

Citation: Cario E, Podolsky D. 2003. Role of Toll-Like Receptors in Innate Immunity of the Intestine, p 79-94. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abreu, M. T.,, P. Vora,, E. Faure,, L. S. Thomas,, E. T. Arnold,, and M. Arditi. 2001. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167: 1609 1616.
2. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov,, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732 738.
3. Aliprantis, A. O.,, R. B. Yang,, D. S. Weiss,, P. Godowski,, and A. Zychlinsky. 2000. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19: 3325 3336.
4. Amar, S.,, K. Oyaisu,, L. Li,, and T. Van Dyke. 2001. Moesin: a potential LPS receptor on human monocytes. J. Endotoxin Res. 7: 281 286.
5. Anderson, K. V. 2000. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12: 13 19.
6. Arbibe, L.,, J. P. Mira,, N. Teusch,, L. Kline,, M. Guha,, N. Mackman,, P. J. Godowski,, R. J. Ulevitch,, and U. G. Knaus. 2000. Tolllike receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat. Immunol. 1: 533 540.
7. Beatty, W. L.,, S. Meresse,, P. Gounon,, J. Davoust,, J. Mounier,, P. J. Sansonetti,, and J. P. Gorvel. 1999. Trafficking of Shigella lipopolysaccharide in polarized intestinal epithelial cells. J. Cell Biol. 145: 689 698.
8. Beatty, W. L.,, and P. J. Sansonetti. 1997. Role of lipopolysaccharide in signaling to subepithelial polymorphonuclear leukocytes. Infect. Immun. 65: 4395 4404.
9. Beutler, B. 2001. Sepsis begins at the interface of pathogen and host. Biochem. Soc. Trans. 29: 853 859.
10. Beutler, B.,, and R. J. Ulevitch. 2001. Genetic analysis of host responses in sepsis. Curr. Infect. Dis. Rep. 3: 419.
11. Bogunovic, M.,, S. Reka,, K. N. Evans,, L. F. Mayer,, K. Sperber,, and S. E. Plevy. 2000. Functional Toll-like receptors (TLR) are expressed on intestinal epithelial cells (IEC) Gastroenterology 118: A804.
12. Bouchon, A.,, J. Dietrich,, and M. Colonna. 2000. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164: 4991 4995.
13. Bouchon, A.,, F. Facchetti,, M. A. Weigand,, and M. Colonna. 2001. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103 1107.
14. Bulut, Y.,, E. Faure,, L. Thomas,, O. Equils,, and M. Arditi. 2001. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol. 167: 987 994.
15. Burns, K.,, J. Clatworthy,, L. Martin,, F. Martinon,, C. Plumpton,, B. Maschera,, A. Lewis,, K. Ray,, J. Tschopp,, and F. Volpe. 2000. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol. 2: 346 351.
16. Campbell, N.,, X. Y. Yio,, L. P. So,, Y. Li,, and L. Mayer. 1999. The intestinal epithelial cell: processing and presentation of antigen to the mucosal immune system. Immunol. Rev. 172: 315 324.
17. Campbell, N. A.,, H. S. Kim,, R. S. Blumberg,, and L. Mayer. 1999. The nonclassical class I molecule CD1d associates with the novel CD8 ligand gp180 on intestinal epithelial cells. J. Biol. Chem. 274: 26259 26265.
18. Cario, E.,, D. Brown,, M. McKee,, K. Lynch-Devaney,, G. Gerken,, and D. K. Podolsky. 2002. Commensal-associated molecular pattern molecules induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160: 165 173.
19. Cario, E.,, and D. K. Podolsky. 2000. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68: 7010 7017.
20. Cario, E.,, I. M. Rosenberg,, S. L. Brandwein,, P. L. Beck,, H. C. Reinecker,, and D. K. Podolsky. 2000. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164: 966 972.
21. Charpentier, J.,, and J. P. Mira. 2001. Role of host response during severe bacterial infection. Arch. Pediatr. 8(Suppl. 4): 689S 696S.
22. Chen, T. Y.,, M. G. Lei,, T. Suzuki,, and D. C. Morrison. 1992. Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. Curr. Top. Microbiol. Immunol. 181: 169 188.
23. Chow, J. C.,, D. W. Young,, D. T. Golenbock,, W. J. Christ,, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274: 10689 10692.
24. Chuang, T. H.,, and R. J. Ulevitch. 2000. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11: 372 378.
25. Chuang, T. H.,, and R. J. Ulevitch. 2001. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim. Biophys. Acta 1518: 157 161.
26. Chung, C. S.,, G. Y. Song,, L. L. Moldawer,, I. H. Chaudry,, and A. Ayala. 2000. Neither Fas ligand nor endotoxin is responsible for inducible peritoneal phagocyte apoptosis during sepsis/peritonitis. J. Surg. Res. 91: 147 153.
27. da Silva Correia, J.,, K. Soldau,, U. Christen,, P. S. Tobias,, and R. J. Ulevitch. 2001. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276: 21129 21135.
28. Dalpke, A. H.,, S. Opper,, S. Zimmermann,, and K. Heeg. 2001. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J. Immunol. 166: 7082 7089.
29. Edwards, E. W.,, M. Bogunovic,, J. Yager,, and S. E. Plevy. 2001. Toll-like receptor expression and function in intestinal epithelial cells: an epithelial cell type co-expressing TLR1 and TLR2. FASEB J. 2001: abstract.
30. Equils, O.,, E. Faure,, L. Thomas,, Y. Bulut,, S. Trushin,, and M. Arditi. 2001. Bacterial lipopolysaccharide activates HIV long terminal repeat through Toll-like receptor 4. J. Immunol. 166: 2342 2347.
31. Faure, E.,, O. Equils,, P. A. Sieling,, L. Thomas,, F. X. Zhang,, C. J. Kirschning,, N. Polentarutti,, M. Muzio,, and M. Arditi. 2000. Bacterial lipopolysaccharide activates NF-kappaB through Toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J. Biol. Chem. 275: 11058 11063.
32. Fitzgerald, K. A.,, E. M. Palsson-McDermott,, A. G. Bowie,, C. A. Jefferies,, A. S. Mansell,, G. Brady,, E. Brint,, A. Dunne,, P. Gray,, M. T. Harte,, D. McMurray,, D. E. Smith,, J. E. Sims,, T. A. Bird,, and L. A. O’Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78 83.
33. Funda, D. P.,, L. Tuckova,, M. A. Farre,, T. Iwase,, I. Moro,, and H. Tlaskalova-Hogenova. 2001. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect. Immun. 69: 3772 3781.
34. Fusunyan, R. D.,, N. N. Nanthakumar,, M. E. Baldeon,, and W. A. Walker. 2001. Evidence for an innate immune response in the immature human intestine: Toll-like receptors on fetal enterocytes. Pediatr. Res. 49: 589 593.
35. Gewirtz, A. T.,, T. A. Navas,, S. Lyons,, P. J. Godowski,, and J. L. Madara. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J. Immunol. 167: 1882 1885.
36. Hacker, H.,, R. M. Vabulas,, O. Takeuchi,, K. Hoshino,, S. Akira,, and H. Wagner. 2000. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192: 595 600.
37. Hajjar, A. M.,, D. S. O’Mahony,, A. Ozinsky,, D. M. Underhill,, A. Aderem,, S. J. Klebanoff,, and C. B. Wilson. 2001. Cutting edge: functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166: 15 19.
38. Hausmann, M.,, T. Spoettl,, J. Schoelmerich,, W. Falk,, T. Andus,, and G. Rogler. 2000. Induction of Toll-like Receptor 2 in human intestinal myofibroblasts by interferon gamma. Gastroenterology 118: A791.
39. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill,, and A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 1103.
40. Haynes, L. M.,, D. D. Moore,, E. A. Kurt-Jones,, R. W. Finberg,, L. J. Anderson,, and R. A. Tripp. 2001. Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75: 10730 10737.
41. Hecht, G. 1999. Innate mechanisms of epithelial host defense: spotlight on intestine. Am. J. Physiol. 277: C351 C358.
42. Heine, H.,, C. J. Kirschning,, E. Lien,, B. G. Monks,, M. Rothe,, and D. T. Golenbock. 1999. Cutting edge: cells that carry A null allele for Toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162: 6971 6975.
43. Hemmi, H.,, O. Takeuchi,, T. Kawai,, T. Kaisho,, S. Sato,, H. Sanjo,, M. Matsumoto,, K. Hoshino,, H. Wagner,, K. Takeda,, and S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408: 740 745.
44. Hertz, C. J.,, S. M. Kiertscher,, P. J. Godowski,, D. A. Bouis,, M. V. Norgard,, M. D. Roth,, and R. L. Modlin. 2001. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J. Immunol. 166: 2444 2450.
45. Hirschfeld, M.,, Y. Ma,, J. H. Weis,, S. N. Vogel,, and J. J. Weis. 2000. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165: 618 622.
46. Horng, T.,, G. M. Barton,, and R. Medzhitov. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2: 835 841.
47. Hugot, J. P.,, M. Chamalliard,, H. Zouali,, S. Lesage,, J. P. Cézard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O’Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Preig,, C. Gower-Rousseau,, J. Macry,, J. F. Colomvel,, M. Sahbatou,, and G. Thomas. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599 603.
48. Imler, J. L.,, and J. A. Hoffmann. 2000. Signalling mechanisms in the antimicrobial host de fense of Drosophila. Curr. Opin. Microbiol. 3: 16 22.
49. Inohara, N.,, T. Koseki,, J. Lin,, L. del Peso,, P. C. Lucas,, F. F. Chen,, Y. Ogura,, and G. Nunez. 2000. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275: 27823 27831.
50. Inohara, N.,, Y. Ogura,, F. F. Chen,, A. Muto,, and G. Nunez. 2001. Human nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276: 2551 2554.
51. Janeway, C. A. 1992. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13: 11.
52. Jung, H. C.,, L. Eckmann,, S. K. Yang,, A. Panja,, J. Fierer,, E. Morzycka-Wroblewska,, and M. F. Kagnoff. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95: 55 65.
53. Kadowaki, N.,, S. Ho,, S. Antonenko,, R. W. Malefyt,, R. A. Kastelein,, F. Bazan,, and Y. J. Liu. 2001. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194: 863 869.
54. Kagnoff, M. F.,, and L. Eckmann. 1997. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100: 6 10.
55. Kaisho, T.,, and S. Akira. 2001. Dendritic-cell function in Toll-like receptor-and MyD88-knockout mice. Trends Immunol. 22: 78 83.
56. Kaisho, T.,, O. Takeuchi,, T. Kawai,, K. Hoshino,, and S. Akira. 2001. Endotoxin-induced maturation of myd88-deficient dendritic cells. J. Immunol. 166: 5688 5694.
57. Kang, T. J.,, and G. T. Chae. 2001. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31: 53 58.
58. Kawahara, T.,, Y. Kuwano,, S. Teshima-Kondo,, T. Kawai,, T. Nikawa,, K. Kishi,, and K. Rokutan. 2001. Toll-like receptor 4 regulates gastric pit cell responses to Helicobacter pylori infection. J. Med. Invest. 48: 190 197.
59. Kawahara, T.,, Y. Kuwano,, S. Teshima-Kondo,, T. Sugiyama,, T. Kawai,, T. Nikawa,, K. Kishi,, and K. Rokutan. 2001. Helicobacter pylori lipopolysaccharide from type I, but not type II strains, stimulates apoptosis of cultured gastric mucosal cells. J. Med. Invest. 48: 167 174.
60. Kawai, T.,, O. Adachi,, T. Ogawa,, K. Takeda,, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115 122.
61. Kawai, T.,, O. Takeuchi,, T. Fujita,, J. Inoue Ji,, P. F. Muhlradt,, S. Sato,, K. Hoshino,, and S. Akira. 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167: 5887 5894.
62. Kawasaki, K.,, K. Gomi,, and M. Nishijima. 2001. Cutting edge: gln(22) of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of taxol. J. Immunol. 166: 11 14.
63. Kopp, E.,, R. Medzhitov,, J. Carothers,, C. Xiao,, I. Douglas,, C. A. Janeway,, and S. Ghosh. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13: 2059 2071.
64. Krutzik, S. R.,, P. A. Sieling,, and R. L. Modlin. 2001. The role of Toll-like receptors in host defense against microbial infection. Curr. Opin. Immunol. 13: 104 108.
65. Kurt-Jones, E. A.,, L. Popova,, L. Kwinn,, L. M. Haynes,, L. P. Jones,, R. A. Tripp,, E. E. Walsh,, M. W. Freeman,, D. T. Golenbock,, L. J. Anderson,, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1: 398 401.
66. Levashina, E. A.,, E. Langley,, C. Green,, D. Gubb,, M. Ashburner,, J. A. Hoffmann,, and J. M. Reichhart. 1999. Constitutive activation of Toll-mediated antifungal defense in serpindeficient Drosophila. Science 285: 1917 1919.
67. Lorenz, E.,, M. Jones,, C. Wohlford-Lenane,, N. Meyer,, K. L. Frees,, N. C. Arbour,, and D. A. Schwartz. 2001. Genes other than TLR4 are involved in the response to inhaled LPS. Am. J. Physiol. Lung Cell Mol. Physiol. 281: L1106 L1114.
68. MacDonald, T. T.,, and S. Pettersson. 2000. Bacterial regulation of intestinal immune responses. Inflamm. Bowel Dis. 6: 116 122.
69. Matsuguchi, T.,, K. Takagi,, T. Musikacharoen,, and Y. Yoshikai. 2000. Gene expressions of lipopolysaccharide receptors, Toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95: 1378 1385.
70. Matsumura, T.,, A. Ito,, T. Takii,, H. Hayashi,, and K. Onozaki. 2000. Endotoxin and cytokine regulation of Toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J. Interferon Cytokine Res. 20: 915 921.
71. Mayer, L. 2000. Mucosal immunity and gastrointestinal antigen processing. J. Pediatr. Gastroenterol. Nutr. 30: S4 S12.
72. Mayer, L.,, D. Eisenhardt,, P. Salomon,, W. Bauer,, R. Plous,, and L. Piccinini. 1991. Ex pression of class II molecules on intestinal epithelial cells in humans: differences between normal and inflammatory bowel disease. Gastroenterology 100: 3.
73. Means, T. K.,, D. T. Golenbock,, and M. J. Fenton. 2000. Structure and function of Toll-like receptor proteins. Life Sci. 68: 241 258.
74. Medvedev, A. E.,, K. M. Kopydlowski,, and S. N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. J. Immunol. 164: 5564 5574.
75. Medzhitov, R.,, and C. A. Janeway. 2000. Innate immunity. N. Engl. J. Med. 343: 338 344.
76. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394 397.
77. Meijssen, M. A.,, S. L. Brandwein,, H. C. Reinecker,, A. K. Bhan,, and D. K. Podolsky. 1998. Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am. J. Physiol. 274: G472 G479.
78. Miettinen, M.,, T. Sareneva,, I. Julkunen,, and S. Matikainen. 2001. IFNs activate Toll-like receptor gene expression in viral infections. Genes Immun. 2: 349 355.
79. Muzio, M.,, D. Bosisio,, N. Polentarutti,, G. D’Amico,, A. Stoppacciaro,, R. Mancinelli,, C. van’t Veer,, G. Penton-Rol,, L. P. Ruco,, P. Allavena,, and A. Mantovani. 2000. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164: 5998 6004.
80. Muzio, M.,, N. Polentarutti,, D. Bosisio,, M. K. Prahladan,, and A. Mantovani. 2000. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J. Leukoc. Biol. 67: 450 456.
81. Naik, S.,, E. J. Kelly,, L. Meijer,, S. Pettersson,, and I. R. Sanderson. 2001. Absence of Toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J. Pediatr. Gastroenterol. Nutr. 32: 449 453.
82. Nathan, C.,, and A. Ding. 2001. TREM-1: A new regulator of innate immunity in sepsis syndrome. Nat. Med. 7: 530 532.
83. Neish, A. S.,, A. T. Gewirtz,, H. Zeng,, A. N. Young,, M. E. Hobert,, V. Karmali,, A. S. Rao,, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquination. Science 289: 1560 1563.
84. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Aklar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunez,, and J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411: 603 608.
85. Ohashi, K.,, V. Burkart,, S. Flohe,, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol. 164: 558 561.
86. Okamura, Y.,, M. Watari,, E. S. Jerud,, D. W. Young,, S. T. Ishizaka,, J. Rose,, J. C. Chow,, and J. F. Strauss 3rd. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276: 10229 10233.
87. O’Neill, L. 2000. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence. Biochem. Soc. Trans. 28: 557 563.
88. O’Neill, L. 2001. Specificity in the innate response: pathogen recognition by Toll-like receptor combinations. Trends Immunol. 22: 70.
89. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder,, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766 13771.
90. Perera, P. Y.,, T. N. Mayadas,, O. Takeuchi,, S. Akira,, M. Zaks-Zilberman,, S. M. Goyert,, and S. N. Vogel. 2001. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxolinducible gene expression. J. Immunol. 166: 574 581.
91. Podolsky, D. K. 1999. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am. J. Physiol. 277: G495 G499.
92. Podolsky, D. K. 2000. Review article: healing after inflammatory injury—coordination of a regulatory peptide network. Aliment. Pharmacol. Ther. 14: 87 93.
93. Poltorak, A.,, P. Ricciardi-Castagnoli,, S. Citterio,, and B. Beutler. 2000. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97: 2163 2167.
94. Pridmore, A. C.,, D. H. Wyllie,, F. Abdillahi,, L. Steeghs,, P. van der Ley,, S. K. Dower,, and R. C. Read. 2001. A lipopolysaccharide-deficient mutant of Neisseria meningitidis elicits attenuated cytokine release by human macrophages and signals via Toll-like receptor (TLR) 2 but not via TLR4/MD2. J. Infect. Dis. 183: 89 96.
95. Pugin, J.,, C. C. Schurer-Maly,, D. Leturcq,, A. Moriarty,, R. J. Ulevitch,, and P. S. Tobias. 1993. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 90: 2744 2748.
96. Qureshi, S. T.,, P. Gros,, and D. Malo. 1999. The Lps locus: genetic regulation of host responses to bacterial lipopolysaccharide. Inflamm. Res. 48: 613 620.
97. Randow, F.,, and B. Seed. 2001. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat. Cell Biol. 3: 891 896.
98. Rehli, M.,, A. Poltorak,, L. Schwarzfischer,, S. W. Krause,, R. Andreesen,, and B. Beutler. 2000. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J. Biol. Chem. 275: 9773 9781.
99. Rock, F. L.,, G. Hardiman,, J. C. Timans,, R. A. Kastelein,, and J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95: 588 593.
100. Sato, S.,, F. Nomura,, T. Kawai,, O. Takeuchi,, P. F. Muhlradt,, K. Takeda,, and S. Akira. 2000. Synergy and cross-tolerance between Toll-like receptor (TLR) 2-and TLR4-mediated signaling pathways. J. Immunol. 165: 7096 7101.
101. Schumann, R. R. 1992. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res. Immunol. 143: 11 15.
102. Seki, E.,, H. Tsutsui,, H. Nakano,, N. M. Tsuji,, K. Hoshino,, O. Adachi,, K. Adachi,, S. Futatsugi,, K. Kuida,, O. Takeuchi,, H. Okamura,, J. Fujimoto,, S. Akira,, and K. Nakanishi. 2001. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of MyD88 that is critically involved in induction of production of IL-12 and IL-1 β. J. Immunol. 166: 2651 2657.
103. Seya, T.,, M. Matsumoto,, S. Tsuji,, N. A. Begum,, M. Nomura,, I. Azuma,, A. Hayashi,, and K. Toyoshima. 2001 . Two receptor theory in innate immune activation: studies on the receptors for bacillus Callmette-Guérin-cell wall skeleton. Arch. Immunol. Ther. Exp. (Warszawa) 49: S13 S21.
104. Seydel, K. B.,, E. Li,, P. E. Swanson, , and S. L. Stanley, Jr. 1997. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infect. Immun. 65: 1631 1639.
105. Shen, B.,, and J. L. Manley. 1998. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125: 4719 4728.
106. Shuto, T.,, H. Xu,, B. Wang,, J. Han,, H. Kai,, X. X. Gu,, T. F. Murphy,, D. J. Lim,, and J. D. Li. 2001. Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by Toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc. Natl. Acad. Sci. USA 98: 8774 8779.
107. Smith, P. D.,, E. N. Janoff,, M. Mosteller-Barnum,, M. Merger,, J. M. Orenstein,, J. F. Kearney,, and M. F. Graham. 1997. Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. J. Immunol. Methods 202: 1 11.
108. Smith, P. D.,, L. E. Smythies,, M. Mosteller-Barnum,, D. A. Sibley,, M. W. Russell,, M. Merger,, M. T. Sellers,, J. M. Orenstein,, T. Shimada,, M. F. Graham,, and H. Kubagawa. 2001. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities. J. Immunol. 167: 2651 2656.
109. Staege, H.,, A. Schaffner,, and M. Schneemann. 2000. Human Toll-like receptors 2 and 4 are targets for deactivation of mononuclear phagocytes by interleukin-4. Immunol. Lett. 71: 1 3.
110. Takeshita, F.,, C. A. Leifer,, I. Gursel,, K. J. Ishii,, S. Takeshita,, M. Gursel,, and D. M. Klinman. 2001. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167: 3555 3558.
111. Takeuchi, O.,, K. Hoshino,, and S. Akira. 2000. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus Aureus infection. J. Immunol. 165: 5392 5396.
112. Takeuchi, O.,, K. Hoshino,, T. Kawai,, H. Sanjo,, H. Takada,, T. Ogawa,, K. Takeda,, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443 451.
113. Takeuchi, O.,, T. Kawai,, H. Sanjo,, N. G. Copeland,, D. J. Gilbert,, N. A. Jenkins,, K. Takeda,, and S. Akira. 1999. TLR6: a novel member of an expanding Toll-like receptor family. Gene 231: 59 65.
114. Takeuchi, O.,, K. Takeda,, K. Hoshino,, O. Adachi,, T. Ogawa,, and S. Akira. 2000. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol. 12: 113 117.
115. Tapping, R. I.,, S. Akashi,, K. Miyake,, P. J. Godowski,, and P. S. Tobias. 2000. Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165: 5780 5787.
116. Thoma-Uszynski, S.,, S. M. Kiertscher,, M. T. Ochoa,, D. A. Bouis,, M. V. Norgard,, K. Miyake,, P. J. Godowski,, M. D. Roth,, and R. L. Modlin. 2000. Activation of Toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10. J. Immunol. 165: 3804 3810.
117. Uehara, A.,, S. Sugawara,, R. Tamai,, and H. Takada. 2001. Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med. Microbiol. Immunol. (Berlin) 189: 185 192.
118. Underhill, D. M.,, A. Ozinsky,, A. M. Hajjar,, A. Stevens,, C. B. Wilson,, M. Bassetti,, and A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811 815.
119. Visintin, A.,, A. Mazzoni,, J. A. Spitzer,, and D. M. Segal. 2001. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 98: 12156 12161.
120. Visintin, A.,, A. Mazzoni,, J. H. Spitzer,, D. H. Wyllie,, S. K. Dower,, and D. M. Segal. 2001. Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166: 249 255.
121. Vogel, S. N.,, D. Johnson,, P. Y. Perera,, A. Medvedev,, L. Lariviere,, S. T. Qureshi,, and D. Malo. 1999. Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation. J. Immunol. 162: 5666 5670.
122. Wang, Q.,, R. Dziarski,, C. J. Kirschning,, M. Muzio,, and D. Gupta. 2001. Micrococci and peptidoglycan activate TLR2→MyD88→ IRAK→TRAF→NIK→IKK→NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect. Immun. 69: 2270 2276.
123. Werts, C.,, R. I. Tapping,, J. C. Mathison,, T. H. Chuang,, V. Kravchenko,, I. Saint Girons,, D. A. Haake,, P. Godowski,, F. Hayashi,, A. Ozinsky,, D. M. Underhill,, C. J. Kirschning,, H. Wagner,, A. Aderem,, P. S. Tobias,, and R. J. Ulevitch. 2001. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2: 346 352.
124. Wesche, H.,, W. J. Henzel,, W. Shillinglaw,, S. Li,, and Z. Cao. 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837 847.
125. Witthoft, T.,, L. Eckmann,, J. M. Kim,, and M. F. Kagnoff. 1998. Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am. J. Physiol. 275: G564 G571.
126. Xavier, R. J.,, and D. K. Podolsky. 2000. Microbiology. How to get along—friendly microbes in a hostile world [comment]. Science 289: 1483 1484.
127. Xu, Y.,, X. Tao,, B. Shen,, T. Horng,, R. Medzhitov,, J. L. Manley,, and L. Tong. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111 115.
128. Yang, S. K.,, L. Eckmann,, A. Panja,, and M. F. Kagnoff. 1997. Differential and regulated expression of C-X-C, C-C, and Cchemokines by human colon epithelial cells Gastroenterology 113: 1214 1223.
129. Zhang, F. X.,, C. J. Kirschning,, R. Mancinelli,, X. P. Xu,, Y. Jin,, E. Faure,, A. Mantovani,, M. Rothe,, M. Muzio,, and M. Arditi. 1999. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274: 7611 7614.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error