2 : Borna Disease Virus Molecular Virology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Borna Disease Virus Molecular Virology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817909/9781555812355_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817909/9781555812355_Chap02-2.gif


Borna disease virus (BDV) infectivity and RNA have been detected in bodily secretions and excretions, suggesting that BDV can be transmitted through salival, nasal, and conjunctival secretions and, particularly, urine and feces. BDV infection produces a range of phenotypic disease expression. BDV has a non-segmented, negative-stranded (NNS) RNA genome. Several additional viral polypeptides can be translated from spliced forms of BDV mRNAs which increases the proteomic complexity of BDV. Antibodies to both the virus G and M (gp18) proteins have neutralizing activity, suggesting that both are implicated in BDV adsorption and/or entry. Two of the BDV primary transcripts are posttranscriptionally processed by the cellular RNA splicing machinery. An intriguing aspect of the biology of BDV is the mechanism by which BDV spreads within the central nervous system (CNS). BDV appears to propagate transsynaptically, but full virus particles have never been observed at the site of synaptic junctions. These observations led to the attractive hypothesis that bare ribonucleoprotein (RNP) could be the infectious unit being transported transsynaptically within the CNS. However, recent findings have indicated that rabies virus (RV) G is absolutely required for the propagation of RV in neuronal culture cells, as well as within the mouse CNS. A section of the chapter focuses on a few selected processes to illustrate the complexity underlying the execution of the BDV gene expression program. Expression of downstream open reading frame (dORF) can be achieved by a leaky ribosome-scanning mechanism, resumption of scanning after termination of an upstream ORF, or cap-independent internal initiation.

Citation: Kishi M, Tomonaga K, Lai P, de la Torre J. 2002. Borna Disease Virus Molecular Virology, p 23-43. In Carbone K (ed), Borna Disease Virus and Its Role in Neurobehavioral Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817909.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genomic organization and transcriptional map of BDV. BDV ORFs are represented by boxes at the top. Nucleotide positions (antigenomic polarity) corresponding to the AUG and stop codons for each ORF are indicated. Different shades correspond to usage of different reading frames within the antigenomic polarity of the BDV genomic RNA. The locations of transcription initiation (GS) and transcription termination sites (GE) are indicated by S and E, respectively. Positions of splicing donor (SD) and splicing acceptor (SA) sites for BDV introns I, II, and III are indicated. The location of the ESS element is indicated. The sizes of subgenomic viral mRNAs detected in BDV-infected cells are indicated. Sizes on the left and right sides of the slash correspond to transcripts that initiate at the same GS but terminate at a different GE, respectively.

Citation: Kishi M, Tomonaga K, Lai P, de la Torre J. 2002. Borna Disease Virus Molecular Virology, p 23-43. In Carbone K (ed), Borna Disease Virus and Its Role in Neurobehavioral Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817909.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barksdale, S.,, and C. C. Baker. 1995. Differentiation-specific alternative splicing of bovine papillomavirus late mRNAs. J. Virol. 69: 6553 6556.
2. Bause-Niedrig, I.,, G. Pauli,, and H. Ludwig. 1991. Borna disease virus-specific antigens: two different proteins identified by monoclonal antibodies. Vet. Immunol. Immunopathol. 91: 293 301.
3. Berg, M.,, C. Ehrenborg,, J. Blomberg,, R. Pipkorn,, and A. L. Berg. 1998. Two domains of the Borna disease virus p40 protein are required for interaction with the p23 protein. J. Gen. Virol. 79: 2957 2963.
4. Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270: 2411 2414.
5. Boulikas, T. 1993. Nuclear localization signals (NLS). Crit. Rev. Eukaryot. Gene Expr. 3: 193 227.
6. Briese, T.,, J. C. de la Torre,, A. Lewis,, H. Ludwig,, and W. I. Lipkin. 1992. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc. Natl. Acad. Sci. USA 92: 11486 11489.
7. Carbone, K. M.,, C. S. Duchala,, J. W. Griffin,, A. L. Kincaid,, and O. Narayan. 1987. Pathogenesis of Borna disease virus in rats: evidence that intra-axonal spread is the major route for dissemination and determinant for disease incubation. J. Virol. 61: 3431 3430.
8. Chabot, B. 1996. Directing alternative splicing: cast and scenarios. Trends Genet. 12: 472 478.
9. Compans, R. W.,, L. R. Melsen,, and J. C. de la Torre. 1994. Virus-like particles in MDCK cells persistently infected with Borna disease virus. Virus Res. 94: 261 268.
10. Cubitt, B.,, and J. C. de la Torre. 1994. Borna disease virus (BDV), a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. J. Virol. 68: 1371 1381.
11. Cubitt, B.,, C. Ly,, and J. C. de La Torre. 2001. Identification and characterization of a new intron in Borna disease virus. J. Gen. Virol. 82: 641 646.
12. de la Torre, J. C. 1994. Molecular biology of Borna disease virus: prototype of a new group of animal viruses. J. Virol. 94: 7669 7675.
13. Etessami, R.,, K. K. Conzelmann,, B. Fadai-Ghotbi,, B. Natelson,, H. Tsiang,, and P. E. Ceccaldi. 2000. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J. Gen. Virol. 81: 2147 2153.
14. Fearns, R.,, and P. L. Collins. 1999. Model for polymerase access to the overlapped L gene of respiratory syncytial virus. J. Virol. 73: 388 397.
15. Furrer, E.,, T. Bilzer,, L. Stitz,, and O. Planz. 2001. Neutralizing antibodies in persistent Borna disease virus infection: prophylactic effect of gp94-specific monoclonal antibodies in preventing encephalitis. J. Virol. 75: 943 951.
16. Gonzalez-Dunia, D.,, B. Cubitt,, and J. C. de la Torre. 1998. Mechanism of Borna disease virus entry into cells. J. Virol. 72: 783 788.
17. Gonzalez-Dunia, D.,, B. Cubitt,, F. A. Grasser,, and J. C. de la Torre. 1997a. Characterization of Borna disease virus p56 protein, a surface glycoprotein involved in virus entry. J. Virol. 71: 3208 3218.
18. Gonzalez-Dunia, D.,, C. Sauder,, and J. C. de la Torre. 1997b. Borna disease virus and the brain. Brain Res. 44: 647 664.
19. Gorlich, D. 1998. Transport into and out of the cell nucleus. EMBO J 17: 2721 2727.
20. Gosztonyi, G.,, B. Dietzschold,, M. Kao,, C. E. Rupprecht,, H. Ludwig,, and H. Koprowski. 1993. Rabies and borna disease. A comparative pathogenetic study of two neurovirulent agents. Lab. Investig. 93: 285 295.
21. Gosztonyi, G.,, and H. Ludwig,. 1995. Borna disease—neuropathology and pathogenesis, p. 39 74. In H. Koprowski, and W. I. Lipkin (ed.) , Borna Disease Virus. Springer-Verlag, Berlin, Germany.
22. Haas, B.,, H. Becht,, and R. Rott. 1986. Purification and properties of an intranuclear virusspecific antigen from tissue infected with Borna disease virus. J. Gen. Virol. 86: 235 241.
23. Hatalski, C. G.,, A. J. Lewis,, and W. I. Lipkin. 1997. Borna disease. Emerg. Infect. Dis. 3: 129 135.
24. Hutchinson, L.,, C. Roop-Beauchamp,, and D. C. Johnson. 1995. Herpes simplex virus glycoprotein K is known to influence fusion of infected cells, yet is not on the cell surface. J. Virol. 69: 4556 4563.
25. Jehle, C.,, W. I. Lipkin,, P. Staehell,, R. M. Marion,, and M. Schwemmle. 2000. Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs. J. Gen. Virol. 81: 1947 1954.
26. Kanopka, A.,, O. Muhlemann,, S. Petersen-Mahrt,, C. Estmer,, C. Ohrmalm,, and G. Akusjarvi. 1998. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393: 185 187.
27. Kliche, S.,, T. Briese,, A. H. Henschen,, L. Stitz,, and W. I. Lipkin. 1994. Characterization of a Borna disease virus glycoprotein, gp18. J. Virol. 94: 6918 6923.
28. Kobayashi, T.,, W. Kamitani,, G. Zhang,, M. Watanabe,, K. Tomonaga,, and K. Ikuta. 2001. Borna disease virus nucleoprotein requires both nuclear localization and export activities for viral nucleocytoplasmic shuttling. J. Virol. 75: 3404 3412.
29. Kobayashi, T.,, Y. Shoya,, T. Koda,, I. Takashima,, P. K. Lai,, K. Ikuta,, M. Kakinuma,, and K. Masahiko. 1998. Nuclear targeting activity associated with the amino terminal region of the Borna disease virus nucleoprotein. Virology 243: 188 197.
30. Kobayashi, T.,, M. Watanabe,, W. Kamitani,, K. Tomonaga,, and K. Ikuta. 2000. Translation initiation of a bicistronic mRNA of Borna disease virus: a 16-kDa phosphoprotein is initiated at an internal start codon. Virology 277: 296 305.
31. Kohno, T.,, T. Goto,, T. Takasaki,, C. Morita,, T. Nakaya,, K. Ikuta,, I. Kurane,, K. Sano,, and M. Nakai. 1999. Fine structure and morphogenesis of Borna disease virus. J. Virol. 73: 760 766.
32. Kraus, I.,, M. Eickmann,, S. Kiermayer,, H. Scheffczik,, M. Fluess,, J. A. Richt,, and W. Garten. 2001. Open reading frame III of Borna disease virus encodes a nonglycosylated matrix protein. J. Virol. 75: 12098 12104.
33. Lamb, R. A.,, and D. Kolakofsky,. 1996. Paramyxoviridae: the viruses and their replication, p. 1177 1204. In D. M. Knipe, , B. N. Fields, , P. M. Howley, , R. M. Chanock, , J. L. Melnick, , T. P. Monath, , B. Roizman, , and S. E. Straus (ed.), Fields Virology, 3rd ed. Lippincott-Raven, Philadelphia, Pa.
34. Lamb, R. A.,, and C. M. Horvath. 1991. Diversity of coding strategies in influenza viruses. Trends Genet. 7: 261 266.
35. Lipkin, W. I.,, C. G. Hatalski,, and T. Briese. 1997. Neurobiology of Borna disease virus. J. Neurovirol. 3: S17 S20.
36. Lopez, A. J. 1998. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32: 279 305.
37. Malik, T. H.,, M. Kishi,, and P. K. Lai. 2000. Characterization of the P protein-binding domain on the 10-kilodalton protein of Borna disease virus. J. Virol. 74: 3413 3417.
38. Malik, T. H.,, T. Kobayashi,, M. Ghosh,, M. Kishi,, and P. K. Lai. 1999. Nuclear localization of the protein from the open reading frame ×1 of the Borna disease virus was through interactions with the viral nucleoprotein. Virology 258: 65 72.
39. Nakielny, S.,, and G. Dreyfuss. 1999. Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677 690.
40. Perez, M.,, M. Watanabe,, M. A. Whitt,, and J. C. de la Torre. 2001. N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J. Virol. 75: 7078 7085.
41. Peters, C. J.,, A. Sanchez,, P. E. Rollin,, T. G. Ksiazek,, and F. A. Murphy,. 1996. Filoviridae: Marburg and ebola viruses, p. 1161 1176. In D. M. Knipe, , B. N. Fields, , P. M. Howley, , R. M. Chanock, , J. L. Melnick, , T. P. Monath, , B. Roizman, , and S. E. Straus (ed.), Fields Virology, 3rd ed. Lippincott-Raven, Philadelphia, Pa.
42. Pyper, J. M.,, J. E., Clements,, and M. C. Zink. 1998. The nucleolus is the site of Borna disease virus RNA transcription and replication. J. Virol. 72: 7697 7702.
43. Pyper, J. M.,, and A. E. Gartner. 1997. Molecular basis for the differential subcellular localization of the 38- and 39-kilodalton structural proteins of Borna disease virus. J. Virol. 71: 5133 5139.
44. Richt, J. A.,, I. Pfeuffer,, M. Christ,, K. Frese,, K. Bechter,, and S. Herzog. 1997. Borna disease virus infection in animals and humans. Emerg. Infect. Dis. 3: 343 352.
45. Rott, R.,, and H. Becht,. 1995. Natural and experimental Borna disease in animals, p. 17 30. In H. Koprowski, and W. I. Lipkin (ed.), Borna Disease. Springer-Verlag, Berlin, Germany.
46. Sanchez, A.,, S. G. Trappier,, B. W. Mahy,, C. J. Peters,, and S. T. Nichol. 1996. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc. Natl. Acad. Sci. USA 93: 3602 3607.
47. Schneemann, A.,, P. A. Schneider,, S. Kim,, and W. I. Lipkin. 1994. Identification of signal sequences that control transcription of Borna disease virus, a nonsegmented, negative-strand RNA virus. J. Virol. 94: 6514 6522.
48. Schneemann, A.,, P. A. Schneider,, R. A. Lamb,, and W. I. Lipkin. 1995. The remarkable coding strategy of borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology 95: 1 8.
49. Schneider, P. A.,, R. Kim,, and W. I. Lipkin. 1997. Evidence for translation of the Borna disease virus G protein by leaky ribosomal scanning and ribosomal reinitiation. J. Virol. 71: 5614 5619.
50. Schwemmle, M.,, B. De,, L. Shi,, A. Banerjee,, and W. I. Lipkin. 1997. Borna disease virus P-protein is phosphorylated by protein kinase Cϵ and casein kinase II. J. Biol. Chem. 272: 21818 21823.
51. Schwemmle, M.,, M. Salvatore,, L. Shi,, J. Richt,, C. H. Lee,, and W. I. Lipkin. 1998. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J. Biol. Chem. 273: 9007 9012.
52. Shoya, Y.,, T. Kobayashi,, T. Koda,, K. Ikuta,, M. Kakinuma,, and M. Kishi. 1998. Two proline-rich nuclear localization signals in the amino- and carboxyl-terminal regions of the Borna disease virus phosphoprotein. J. Virol. 72: 9755 9762.
53. Sierra-Honigmann, A. M.,, S. A. Rubin,, M. G. Estafanous,, R. H. Yolken,, and K. M. Carbone. 1993. Borna disease virus in peripheral blood mononuclear and bone marrow cells of neonatally and chronically infected rats. J. Neuroimmunol. 93: 31 32.
54. Smith, C. W.,, and J. Valcarcel. 2000. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25: 381 388.
55. Staeheli, P.,, C. Sauder,, J. Hausmann,, F. Ehrensperger,, and M. Schwemmle. 2000. Epidemiology of Borna disease virus. J. Gen. Virol. 81: 2123 2135.
56. Thiedemann, N.,, P. Presek,, R. Rott,, and L. Stitz. 1992. Antigenic relationship and further characterization of two major Borna disease virus-specific proteins. J. Gen. Virol. 92: 1057 1064.
57. Thierer, J.,, H. Riehle,, O. Grebenstein,, T. Binz,, S. Herzog,, N. Thiedemann,, L. Stitz,, R. Rott,, F. Lottspeich,, and H. Niemann. 1992. The 24K protein of Borna disease virus. J. Gen. Virol. 92: 413 416.
58. Tomonaga, K.,, T. Kobayashi,, B.-J. Lee,, M. Watanabe,, W. Kamitani,, and K. Ikuta. 2000. Identification of alternative splicing and negative splicing activity of a nonsegmented negative-strand RNA virus. Borna disease virus. Proc. Natl. Acad. Sci. USA 97: 12788 12793.
59. Wagner, R. R.,, and J. K. Rose,. 1996. Rhabdoviridae: the viruses and their replication, p. 1121-1135. In D. M. Knipe, , B. N. Fields, , P. M. Howley, , R. M. Chanock, , J. L. Melnick, , T. P. Monath, , B. Roizman, , and S. E. Straus (ed.), Fields Virology, 3rd ed. Lippincott-Raven, Philadelphia, Pa.
60. Walker, M. P.,, I. Jordan,, T. Briese,, N. Fischer,, and W. I. Lipkin. 2000. Expression and characterization of the Borna disease virus polymerase. J. Virol. 74: 3325 4428.
61. Wehner, T.,, A. Ruppert,, C. Herden,, K. Frese,, H. Becht,, and J. A. Richt. 1997. Detection of a novel Borna disease virus-encoded 10 kDa protein in infected cells and tissues. J. Gen. Virol. 78: 2459 2466.
62. Whittaker, G. R.,, and A. Helenius. 1998. Nuclear import and export of viruses and virus genomes. Virology 246: 1 23.
63. Wolff, T.,, R. Pfleger,, T. Wehner,, J. Reinhardt,, and J. A. Richt. 2000. A short leucinerich sequence in the Borna disease virus p10 protein mediates association with the viral phosphoand nucleoproteins. J. Gen. Virol. 4: 939 947.
64. Zimmermann, W.,, H. Breter,, M. Rudolph,, and H. Ludwig. 1994. Borna disease virus: immunoelectron microscopic characterization of cell-free virus and further information about the genome. J. Virol. 68: 6755 6758.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error