Chapter 11 : Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap11-2.gif


This chapter examines the early events that occur upon infection of cultured cells with foot-and-mouth disease virus (FMDV) and defines the known virus-receptor interactions. In addition, the authors try to relate what is known about these early interactions to disease pathogenesis. The first identification of the integrin receptor for FMDV was made by comparing its receptor specificity with that of the human enterovirus, coxsackievirus A9 (CAV9), which contains a 17-amino-acid C-terminal insertion in VPl containing an arginineglycine- aspartic acid (RGD) sequence. Other important functional domains of integrins include the cytoplasmic domains of the α and β subunits. The authors examined the role of the cytoplasmic domains of the bovine integrin αv β3 in FMDV infection of cultured cells. While they have learned much about the early interactions of FMDV with its receptors in vitro, the role these receptors play in the pathogenesis of the disease is still unclear. Studies on the pathogenesis of FMD have shown that initial sites of viral replication are the lung and pharyngeal areas followed by rapid dissemination of the virus to the oral and pedal epithelia. Application of knowledge of the detailed mechanisms of FMDV-receptor interactions in vitro to the disease in the whole animal should provide insights into viral pathogenesis and may provide new information on how to control this important disease. Thus, future research should concentrate on determining which of the RGD-binding integrins found in susceptible hosts are capable of serving as receptors for FMDV.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Competition binding of FMDV types A and OBFS. Purified H-uridine-labeled FMDV types A (○) or O1BFS (■), at a concentration of 1 × 10 particles/cell, were mixed with increasing concentrations of either purified unlabeled (a) type A or (b) OBFS and allowed to bind to BHK-21 cells for 90 min at room temperature. The level of binding was determined for labeled virus in the absence of unlabeled competitor, and the inhibition of binding of the labeled viruses by the unlabeled viruses is shown.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acharya, R.,, E. Fry,, D. Stuart,, G. Fox,, D. Rowlands,, and F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337: 709 716.
2. Baranowski, E.,, C. M. Ruiz-Jarabo,, N. Sevilla,, D. An-dreu,, E. Beck,, and E. Domingo. 2000. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J. Virol. 74: 1641 1647.
3. Baranowski, E.,, N. Sevilla,, N. Verdaguer,, C. Ruiz-Jarabo,, E. Beck,, and E. Domingo. 1998. Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J. Virol. 72: 6362 6372.
4. Barteling, S. J.,, and J. Vreeswijk. 1991. Developments in foot-and-mouth disease vaccines. Vaccine 9: 75 88.
5. Bauer, K., 1997. Foot-and-mouth disease as zoonosis, p. 95 97. In O.-R. Kaaden,, C.-P. Czerny,, and W. Eichhorn (ed.), Viral Zoonoses and Food of Animal Origin. A Re-Evaluation of Possible Hazards for Human Health. Springer-Ver-lag Wien, New York, N.Y..
6. Baxt, B. 1987. Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res. 7: 257 271.
7. Baxt, B.,, and H. L. Bachrach. 1980. Early interactions of foot-and-mouth disease virus with cultured cells. Virology 101: 42 55.
8. Baxt, B.,, and H. L. Bachrach. 1982. The adsorption and degradation of foot-and-mouth disease virus by isolated BHK-21 cell plasma membranes. Virology 116: 391 405.
9. Baxt, B.,, and Y. Becker. 1990. The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot-and-mouth disease virus to tissue culture cells. Virus Genes 4: 73 83.
10. Baxt, B.,, and P. W. Mason. 1995. Foot-and-mouth disease virus undergoes restricted replication in macrophage cell cultures following Fc receptor-mediated adsorption. Virology 207: 503 509.
11. Berinstein, A.,, M. Roivainen,, T. Hovi,, P. W. Mason,, and B. Baxt. 1995. Antibodies to the vitronectin receptor (integrin α vβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69: 2664 2666.
12. Blystone, S. D.,, J. L. Graham,, F. P. Lindberg,, and E. J. Brown. 1994. Integrin α vβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α 5β1. Integrin α vβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α 5β1. J. Cell Biol. 127: 1129 1137.
13. Blystone, S. D.,, F. P. Lindberg,, S. E. LaFlamme,, and E. J. Brown. 1995. Integrin β 3 cytoplasmic tail is necessary and sufficient for regulation of α 5β1 phagocytosis by α vβ3 and integrin-associated protein. J. Cell Biol. 130: 745 754.
14. 14- Blystone, S. D.,, F. P. Lindberg,, M. P. Williams,, K. McHugh,, and E. J. Brown. 1996. Inducible tyrosine phosphorylation of the ? 3 integrin requires the a v integrin cytoplasmic tail. J. Biol. Chem. 271: 31458 31462.
15. Blystone, S. D.,, M. P. Williams,, S. E. Slater,, and E. J. Brown. 1997. Requirement of integrin β 3 tyrosine 747 for β 3 tyrosine phosphorylation and regulation of α vβ3 avidity. J. Biol. Chem. 272: 28757 28761.
16. Breuss, J. M.,, J. Gallo,, H. M. DeLisser,, J. V. Kliman-skaya,, H. G. Folkesson,, J. F. Pittet,, S. L. Nishimura,, K. Aldape,, D. V. Landers,, W. Carpenter,, N. Gillett,, D. Sheppard,, M. A. Matthay,, S. M. Albelda,, R. H. Krammer,, and R. Pytela. 1995. Expression of the ? 6 integrin subunit in development, neoplasia, and tissue repair suggests a role in epithelial remodeling. J. Cell Sci. 108: 2241 2251.
17. Breuss, J. M.,, N. Gillett,, L. Lu,, D. Sheppard,, and R. Pytela. 1993. Restricted distribution of β 6 messenger RNA in primate epithelial tissues. J. Histochem. Cytochem. 41: 1521 1527.
18. Brooks, P. C.,, R. A. F. Clark,, and D. A. Cheresh. 1994. Requirement of vascular integrin α vβ3 for angiogenesis. Science 264: 569 571.
19. Brown, C. C.,, R. F. Meyer,, H. J. Olander,, C. House,, and C. A. Mebus. 1992. A pathogenesis study of foot-and-mouth disease in cattle using in situ hybridization. Can. J. Vet. Res. 56: 189 193.
20. Brown, C. C.,, M. E. Piccone,, P. W. Mason,, T. S.-C. McKenna,, and M. J. Grubman. 1996. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol. 70: 5638 5641.
21. Burrows, R. J.,, A. Mann,, A. J. M. Garland,, A. Grieg,, and D. Goodridge. 1981. The pathogenesis of natural and simulated natural foot-and-mouth disease virus infection in cattle. J. Comp. Pathol. 91: 599 609.
22. Calvete, J. J.,, A. Henschen,, and J. González-Rodríguez. 1991. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem. J. 274: 63 71.
23. Carrillo, E. C.,, C. Giachetti,, and R. Campos. 1984. Effect of lysosomotropic agents on the foot-and-mouth disease virus replication. Virology 135: 542 545.
24. Carrillo, E. C.,, C. Giachetti,, and R. Campos. 1985. Early steps in FMDV replication: further analysis on the effects of chloroquine. Virology 147: 118 125.
25. Cavanagh, D.,, D. J. Rowlands,, and F. Brown. 1978. Early events in the interaction between foot-and-mouth disease virus and primary pig kidney cells. J. Gen. Virol. 41: 255 264.
26. Chang, K. H.,, P. Auvinen,, T. Hyypiä,, and G. Stanway. 1989. The nucleotide sequence of coxsackievirus A9: implications for receptor binding and enterovirus classification. J. Gen. Virol. 70: 3269 3280.
27. Chang, K. H.,, C. Day,, J. Walker,, T. Hyypia,, and G. Stanway. 1992. The nucleotide sequences of wild type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. J. Gen. Virol. 73: 621 626.
28. Crowell, R. L.,, B. J. Landau,, and J. Siak,. 1981. Picor-navirus receptors in pathogenesis, p. 170 180. In K. Lonberg-Holm, and L. Philipson (ed.), Receptors and Recognition. Virus Receptors, part 2, Animal Viruses, series B, vol. 8. Chapman and Hall, New York, N.Y..
29. Curry, S.,, M. Chow,, and J. M. Hogle. 1996. The po-liovirus 135S particle is infectious. J. Virol. 70: 7125 7131.
30. Damjanovich, L.,, S. M. Albelda,, S. A. Mette,, and C. A. Buck. 1992. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am. J. Respir. Cell Mol. Biol. 6: 197 206.
31. David, D.,, Y. Stram,, H. Yadin,, Z. Trainin,, and Y. Becker. 1995. Foot-and-mouth disease virus replication in bovine skin langerhans cells under in vitro conditions detected by RT-PCR. Virus Genes 10: 5 13.
32. Evans, D. J.,, and J. W. Almond. 1998. Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol. 6: 198 202.
33. Everaert, L.,, R. Vrijsen,, and A. Boeyé. 1989. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171: 76 82.
34. Faull, R. J.,, J. Wang,, D. J. Leavesley,, W. Puzon,, G. R. Russ,, D. Vestweber,, and Y. Takada. 1996. A novel activating anti- β 1 integrin monoclonal antibody binds to the cysteine-rich repeats in the β 1 chain. J. Biol. Chem. 271: 25099 25106.
35. Felding-Haberman, B.,, and D. A. Cheresh. 1993. Vitronectin and its receptors. Curr. Opin. Cell Biol. 5: 864 868.
36. Fernández, C.,, K. Clark,, L. Burrows,, N. R. Schofield,, and M. J. Humphries. 1998. Regulation of the extracellular ligand binding activity of integrins. Front. Biosci. 3: 684 700.
37. Fox, G.,, N. R. Parry,, P. V. Barnett,, B. McGinn,, D. J. Rowlands,, and F. Brown. 1989. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol. 70: 625 637.
38. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. King,, and D. 1. Stuart. 1999. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18: 543 554.
39. Goldman, M. J.,, and J. M. Wilson. 1995. Expression of α vβ5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J. Virol. 69: 5951 5958.
40. González-Amaro, R.,, and F. Sánchez-Madrid. 1999. Cell adhesion molecules: selectins and integrins. Crit. Rev. Immunol. 19: 389 429.
41. Green, L.,, A. P. Mould,, and M. J. Humphries. 1998. The integrin beta subunit. Int. J. Biochem. Cell Biol. 30: 179 184.
42. Greve, J. M.,, C. P. Forte,, C. W. Marlor,, A. M. Meyer,, H. Hoover-Litty,, D. Wunderlich,, and A. McClelland. 1991. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J. Virol. 65: 6015 6023.
43. Haapasalmi, K.,, K. Zhang,, M. Tonnesen,, J. Olerud,, D. Sheppard,, T. Salo,, R. Kramer,, R. A. Clark,, V. J. Uitto,, and H. Larjava. 1996. Keratinocytes in human wounds express α vβ6 integrin. J. Invest. Dermatol. 106: 42 48.
44. Haas, T. A.,, and E. F. Plow. 1997. Development of a structural model for the cytoplasmic domain of an integrin. Protein Eng. 10: 1395 1405.
45. Häkkinen, L.,, C. Hildebrand,, A. Berndt,, H. Kosmehl,, and H. Larjava. 2000. Immunolocalization of tenascin-C, ctg integrin subunit, and α vβ6 integrin during wound healing in oral mucosa. J. Histochem. Cytochem. 48: 985 998.
46. Hendry, E.,, H. Hatanaki,, E. Fry,, M. Smyth,, J. Tate,, G. Stanway,, J. Santti,, M. Maaronen,, T. Hyypia,, and D. Stuart. 1999. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7: 1527 1538.
47. Hughes, P. I.,, C. Horsnell,, and G. Stanway. 1995. The coxsackievirus A9 RGD motif is not essential for virus viability. J. Virol. 69: 8035 8040.
48. Hughes, P. E.,, T. E. O'Toole,, J. Ylänne,, S. J. Shattil,, and M. H. Ginsberg. 1995. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J. Biol. Chem. 270: 12411 12417.
49. Hynes, R. O. 1987. Integrins: a family of cell surface receptors. Cell 48: 549 554.
50. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11 25.
51. Hynes, R. O. 1999. Cell adhesion: old and new questions. Trends Cell Biol. 9: M33 M37.
52. Jackson, T.,, W. Blakemore,, J. W. I. Newman,, N. J. Knowles,, A. P. Mould,, M. J. Humphries,, and A. M. Q. King. 2000. Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α 5β1 influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J. Gen. Virol. 81: 1383 1391.
53. Jackson, T.,, F. M. Ellard,, R. Abu-Ghazaleh,, S. M. Brooks,, W. E. Blakemore,, A. H. Corteyn,, D. J. Stuart,, J. W. J. Newman,, and A. M. Q. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70: 5282 5287.
54. Jackson, T.,, D. Sheppard,, M. Denyer,, W. Blakemore,, and A. M. Q. King. 2000. The epithelial integrin α vβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74: 4949 4956.
55. Kaplan, G.,, M. S. Freistadt,, and V. R. Racaniello. 1990. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 64: 4697 4702.
56. Kashiwagi, H.,, Y. Tomiyama,, S. Tadokoro,, S. Honda,, M. Shiraga,, H. Mizutani,, M. Handa,, Y. Kurata,, Y. Matsuzawa,, and S. J. Shattil. 1999. A mutation in the extracellular cysteine-rich repeat region of the β 3 subunit activates integrins α 11bβ3 and α vβ3. Blood 93: 2559 2568.
57. Kim, J. P.,, K. Zhang,, J. D. Chen,, R. H. Kramer,, and D. T. Woodley. 1994. Vitronectin-driven human keratinocyte locomotion is mediated by the α Vβ3 integrin receptor. J. Biol. Chem. 269: 26926 26932.
58. Law, D. A.,, F. R. DeGuzman,, P. Heiser,, K. Ministri-Madrid,, N. Kileen,, and D. R. Phillips. 1999. Integrin cytoplasmic tyrosine motif is required for outside-in α 11bβ3 signaling and platelet function. Nature 401: 808 811.
59. Leippert, M.,, E. Beck,, F. Weiland,, and E. Pfaff. 1997. Point mutations within the βG- βH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. J. Virol. 71: 1046 1051.
60. Li, E.,, D. Stupack,, G. M. Bokoch,, and G. R. Nemerow. 1998. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol. 72: 8806 8812.
61. Li, E.,, D. Stupack,, R. Klemke,, D. A. Cheresh,, and G. R. Nemerow. 1998. Adenovirus endocytosis via α v integrins requires phosphoinositide-3-OH kinase. J. Virol. 72: 2055 2061.
62. Liaw, L.,, M. P. Skinner,, E. W. Raines,, R. Ross,, D. A. Cheresh,, S. M. Schwartz,, and C. M. Giachelli. 1995. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of α vβ3 in smooth muscle cell migration to osteopontin in vitro. J. Clin. Invest. 95: 713 724.
63. Loeffler, F.,, and P. Frosch. 1898. Berichte der Kommission zur Erforschung der Maulund klauenseuche bei dem Institut für Infektionskrankheiten in Berlin. Zentbl. Bakteriol., Parasitenkd Infektkrankh., Abt. 1 23: 371 391.
64. Logan, D.,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, T. Jackson,, A. King,, S. Lea,, R. Lewis,, J. Newman,, N. Parry,, D. Rowlands,, D. Stuart,, and F. Brown. 1993. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362: 566 568.
65. Lonberg-Holm, K.,, L. B. Gosser,, and J. C. Kauer. 1975. Early alteration of poliovirus in infected cells and its specific inhibition. J. Gen. Virol. 27: 329 342.
66. Lonberg-Holm, K.,, and N. M. Whiteley. 1976. Physical and metabolic requirements for early interaction of poliovirus and human rhinoviruses with HeLa cells. J. Virol. 19: 857 870.
67. Martínez, M.,, N. Verdaguer,, M. G. Mateu,, and E. Domingo. 1997. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 94: 6798 6802.
68. Mason, P. W.,, B. Baxt,, F. Brown,, J. Harber,, A. Murdin,, and E. Wimmer. 1993. Antibody-complexed foot-and-mouth disease, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192: 568 577.
69. Mason, P.,, A. Berinstein,, B. Baxt,, R. Parsells,, A. Kang,, and E. Rieder. 1996. Cloning and expression of a single-chain antibody fragment specific for foot-and-mouth disease virus. Virology 224: 548 554.
70. Mason, P. W.,, E. Rieder,, and B. Baxt. 1994- RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91: 1932 1936.
71. McKenna, T. St. C.,, J. Lubroth,, E. Rieder,, B. Baxt,, and P. W. Mason. 1995. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J. Virol. 69: 5787 5790.
72. Mette, S. A.,, J. Pilewski,, C. A. Buck,, and S. M. Al-belda. 1993. Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am. J. Respir. Cell Mol. Biol. 8: 562 572.
72a.. Neff, S.,, and B. Baxt. 2001. The ability of the integrin α vβ3 to function as a receptor for foot-and-mouth disease virus is not dependent on the presence of complete cytoplasmic domains. J. Virol. 75: 527 532.
73. Neff, S.,, P. W. Mason,, and B. Baxt. 2000. High efficiency utilization of the bovine integrin ? v?3 as a receptor for foot-and-mouth disease virus is dependent on the bovine ft subunit. J. Virol. 74: 7298 7306.
74. Neff, S.,, D. Sa-Carvalho,, E. Rieder,, P. W. Mason,, S. D. Blystone,, E. J. Brown,, and B. Baxt. 1998. Foot-and-mouth disease virus virulent for cattle utilizes the integrin α vβ3 as its receptor. J. Virol. 72: 3587 3594.
75. O'Toole, T. E.,, Y. Katagiri,, R. J. Faull,, K. Peter,, R. Tamura,, V. Quaranta,, J. C. Loftus,, S. J. Shattil,, and M. H. Ginsberg. 1994. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124: 1047 1059.
76. Pfaff, E.,, H. J. Thiel,, E. Beck,, K. Strohmaier,, and H. Schaller. 1988. Analysis of neutralizing epitopes on foot-and-mouth disease virus. J. Virol. 62: 2033 2040.
77. Pierschbacher, M. D.,, E. G. Hayman,, and E. Ruoslahti. 1985. The cell attachment determinant in fibronectin. J. Cell. Biocliem. 28: 115 126.
78. Pierschbacher, M. D.,, and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30 33.
79. Pierschbacher, M. D.,, and E. Ruoslahti. 1984. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl. Acad. Sci. USA 81: 5985 5988.
80. Puzon-McLaughlin, W.,, T. A. Yednock,, and Y. Takada. 1996. Regulation of conformation and ligand binding function of integrin α 5β1 by the ft cytoplasmic domain. J. Biol. Chem. 271: 16580 16585.
81. Rieder, E.,, B. Baxt,, and P. W. Mason. 1994. Animal-derived antigenic variants of foot-and-mouth disease virus type A 12 have low affinity for cells in culture. J. Virol. 68: 5296 5299.
82. Rieder, E.,, A. Berinstein,, B. Baxt,, A. Kang,, and R. W. Mason. 1996. Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 93: 10428 10433.
83. Roivainen, M.,, T. Hyypia,, L. Piirainen,, N. Kalkkinen,, G. Stanway,, and T. Hovi. 1991. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J. Virol. 65: 4735 4740.
84-. Roivainen, M.,, L. Piirainen,, and T. Hovi. 1996. Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 141: 1909 1919.
85. Roivainen, M.,, L. Piirainen,, T. Hovi,, J. Virtanen,, T. Riikonen,, J. Heino,, and T. Hyypia. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with α vβ3 integrin, the vitronectin receptor. Virology 203: 357 365.
86. Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Ann. Rev. Cell Dev. Biol. 12: 697 715.
87. Sa-Carvalho, D.,, E. Rieder,, B. Baxt,, R. Rodarte,, A. Tanuri,, and P. W. Mason. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71: 5115 5123.
88. Schaffner-Reckinger, E.,, V. Gouon,, C. Melchior,, S. Plancon,, and N. Kieffer. 1998. Distinct involvement of β 3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phos-photyrosine signaling. J. Biol. Chem. 273: 12623 12632.
89. Schneider-Schaulies, J. 2000. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81: 1413 1429.
90. Sekiguchi, K.,, A. J. Franke,, and B. Baxt. 1982. Competition for cellular receptor sites among selected aphtho-viruses. Arch. Virol. 74: 53 64.
91. Shieh, M.-T.,, D. WuDunn,, R. J. Montgomery,, J. D. Esko,, and P. Spear. 1992. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116: 1273 1281.
92. Sutmoller, P.,, and J. McVicar. 1976. Pathogenesis of foot-and-mouth disease: the lung as an additional portal of entry of the virus. J. Hyg. (Cambridge) 77: 235 243.
93. Tamkun, J. W.,, D. W. DeSimone,, D. Fonda,, R. S. Patel,, C. Buck,, A. F. Horwitz,, and R. O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46: 271 282.
94. Wang, K.,, T. Guan,, D. A. Cheresh,, and G. R. Nemerow. 2000. Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin β 5 . J. Virol. 74: 2731 2739.
95. Wang, A.,, Y. Yokosaki,, R. Ferrando,, J. Balmes,, and D. Sheppard. 1996. Differential regulation of airway epithelial integrins by growth factors. Am. J. Respir. Cell Mol. Biol. 15: 664 672.
96. Weinacker, A.,, R. Ferrando,, M. Elliot,, J. Hogg,, J. Balmes,, and D. Sheppard. 1995. Distribution of integrins α vβ6 and α 9 β1 and their known ligands, fibronectin and tenascin, in human airways. Am. J. Respir. Cell Mol. Biol. 12: 547 556.
97. Wimmer, E., 1994- Introduction, p. 1 13. In E. Wimmer (ed.), Cellular Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press, Plainview, N.Y..
98. WuDunn, D.,, and P. G. Spear. 1989. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63: 52 58.


Generic image for table

Replication of FMDV in CHO cells with defined receptor specificity

Adapted from data in reference .

See text for descriptions of the viruses.

Viral proteins detected in infected cells by radioimmunoprecipitation.

No viral proteins detected in infected cells.

Not determined.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error