1887

Chapter 14 : Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap14-2.gif

Abstract:

By the late 1970s, a skeleton of the translation mechanism utilized by the bulk of cellular mRNAs had been elucidated. More elegant proof of utilization of an internal ribosome entry site (IRES) on the viral RNA was provided by analysis of translation of bicistronic constructs engineered to encode two tandem protein sequences, separated by a viral 5' untranslated region (UTR). The RNA sequences that constitute an IRES extend through several hundred nucleotides and fold into complex, multidomain structures. To identify the nucleotide sequences and structures in the picornavirus 5' UTRs that contribute to IRES function, mutations were introduced into cDNAs to generate transcripts whose translation could be evaluated in vitro or in transfected cells. For the picornavirus RNAs, a relatively relaxed structure is predicted, with a long, central axis of shifting base pairs, with relatively stable stems, loops, helices, and branch points extending from the central backbone. The conserved motifs in the secondary structure elements that are essential for IRES activity are likely to facilitate RNA-RNA or RNA-protein interactions required to maintain a higher order structure needed for proper recognition of the IRES element by the translational machinery. The picornavirus IRES elements represent relatively large complex domains composed of multiple subdomains that require correct spatial orientation and interactions to carry out IRES function. Efficient translation of capped mRNAs in eukaryotic cells involves a synergistic dependence on the 5'-terminal cap structure and the 3'-terminal poly(A) tail.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of bicistronic mRNAs and their translation products.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the predicted stem-loop structures in the (A) poliovirus, (B) EMCV, and (C) hepatitis A virus 5′ UTR of the viral RNAs.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap14
1. Agol, V. I. 1991. The 5'-untranslated region of picomaviral genomes. Adv. Virus Res. 40: 103 180.
2. Agol, V. I.,, S. G. Drozdov,, T. A. Ivannikova,, M. S. Kolesnikova,, M. B. Korolev,, and E. A. Tolskaya. 1989. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J. Virol. 63: 4034 4038.
3. Alexander, L.,, H.-H. Lu,, and E. Wimmer. 1994. Polio-virus containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc. Natl. Acad. Sci. USA 91: 1406 1410.
4. Barton, D. J.,, B. J. O'Donnell,, and J. B. Flanegan. 2001. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 20: 1439 1448.
5. Belsham, G. J. 1992. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J. 11: 1105 1110.
6. Belsham, G. J.,, and J. K. Brangwyn. 1990. A region of the 5' noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J. Virol. 64: 5389 5395.
7. Bergamini, G.,, T. Preiss,, and M. W. Hentze. 2000. Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA 6: 1781 1790.
8. Bienkowska-Szewczyk, K.,, and E. Ehrenfeld. 1988. An internal 5'-noncoding region required for translation of poliovirus RNA in vitro. J. Virol. 62: 3068 3072.
9. Blyn, L. B.,, R. Chen,, B. L, Semler, and E. Ehrenfeld. 1995. Host cell proteins binding to domain IV of the 5' noncoding region of poliovirus RNA. J. Virol. 69: 4381 4389.
10. Blyn, L. B.,, J. S. Towner,, B. L. Semler,, and E. Ehrenfeld. 1997. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71: 6243 6246.
11. Borman, A. M.,, F. G. Deliat,, and K. M. Kean. 1994. Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J. 13: 3149 3157.
12. Brown, B. A.,, and E. Ehrenfeld. 1979. Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97: 396 405.
13. Brown, E. A.,, S. P. Day,, R. W. Jansen,, and S. M. Lemon. 1991. The 5' nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro. J. Virol. 65: 5828 5838.
14. Brown, E. A.,, A. J. Zajac,, and S. M. Lemon. 1994. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5' nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J. Virol. 68: 1066 1074.
15. Carter, M. S.,, K. M. Kuhn,, and P. Sarnow,. 2000. Cellular internal ribosome entry site elements and the use of cDNA microarrays in their investigation, p. 615 636. In N. Sonenberg,, J. W. B. Hershey,, and M. B. Mathews (ed.), Translational Control of Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
16. Chapman, N. M.,, A. Ragland,, J. S. Leser,, K. Hofling,, S. Willian,, B. L. Semler,, and S. Tracy. 2000. A group B coxsackievirus/poliovirus 5' nontranslated region chimera can act as an attenuated vaccine strain in mice. J. Virol. 74: 4047 4056.
17. Chen, C. Y.,, and P. Sarnow. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268: 415 417.
18. Cornelis, S.,, Y. Bruynooghe,, G. Denecker,, S. van Huf-fel,, S. Tinton,, and R. Beyaert. 2000. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol. Cell 5: 597 605.
19. De Gregorio, E.,, T. Preiss,, and M. W. Hentze. 1999. Translation driven by an eIF4G core domain in vivo. EMBO J. 18: 4865 4874.
20. Dildine, S. L.,, and B. L. Semler. 1989. The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5' noncoding region of genomic RNA. J. Virol. 63: 847 862.
21. Dorner, A. J.,, B. L. Semler,, R. J. Jackson,, R. Hanecak,, E. Duprey,, and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50: 507 514.
22. Drew, J.,, and G. J. Belsham. 1994. trans Complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. J. Virol. 68: 697 703.
23. Duke, G. M.,, M. A. Hoffman,, and A. C. Palmenberg. 1992. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J. Virol. 66: 1602 1609.
24. Ehrenfeld, E. 1996. Initiation of Translation by Picornavirus RNAs, Translational Control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
25. Ehrenfeld, E.,, and B. L. Semler. 1995. Anatomy of the poliovirus internal ribosome entry site. Curr. Top. Microbiol. Immunol. 203: 65 83.
26. Evstafieva, A. G.,, T. Y. Ugarova,, B. K. Chernov,, and I. N. Shatsky. 1991. A complex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 19: 665 671.
27. Gamarnik, A. V.,, and R. Andino. 2000. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. J. Virol. 74: 2219 2226.
28. Gamarnik, A. V.,, and R. Andino. 1998. Switch from translation to RNA replication in positive-stranded RNA virus. Genes Dev. 12: 2293 2304.
29. Gamarnik, A. V.,, and R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. RNA 3: 882 892.
30. Gingras, A. C.,, B. Raught,, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68: 913 963.
31. Glass, M. J.,, and D. F. Summers. 1993. Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro. Virology 193: 1047 1050.
32. Graff, J.,, and E. Ehrenfeld. 1998. Coding sequences enhance internal initiation of translation by hepatitis A virus RNA in vitro. J. Virol. 72: 3571 3577.
33. Gromeier, M.,, L. Alexander,, and E. Wimmer. 1996. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93: 2370 2375.
34. Gromeier, M.,, B. Bossert,, M. Arita,, A. Nomoto,, and E. Wimmer. 1999. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J. Virol. 73: 958 964.
35. Gutierrez, A. L.,, M. Denova-Ocampo,, V. R. Racaniello,, and R. M. del Angel. 1997. Attenuating mutations in the poliovirus 5' untranslated region alter its interaction with polypyrimidine tract-binding protein. J. Virol. 71: 3826 3833.
36. Haller, A. A.,, and B. L. Semler. 1995. Stem-loop structure synergy in binding cellular proteins to the 5' non-coding region of poliovirus RNA. Virology 206: 923 934.
37. Hoffman, M. A.,, and A. C. Palmenberg. 1995. Mutational analysis of the J-K stem-loop region of the en-cephalomyocarditis virus IRES. J. Virol. 69: 4399 4406.
38. Imataka, H.,, A. Gradi,, and N. Sonenberg. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17: 7480 7489.
39. Ishii, T.,, K. Shiroki,, A. Iwai,, and A. Nomoto. 1999. Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. J. Gen. Virol. 80: 917 920.
40. Jackson, R. J.,, and A. Kaminski. 1995. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1: 985 1000.
41. Jacobson, A. B.,, and M. Zuker. 1993. Structural analysis by energy dot plot of a large mRNA. J. Mol. Biol. 233: 261 269.
42. Jaeger, J. A.,, D. H. Turner,, and M. Zuker. 1989. Improved predictions of secondary structures for RNA. Proc. Natl. Acad. Sci. USA 86: 7706 7710.
43. Jang, S. K.,, M. V. Davies,, R. J. Kaufman,, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63: 1651 1660.
44. Jang, S. K.,, H. G. Krausslich,, M. J. Nicklin,, G. M. Duke,, A. C. Palmenberg,, and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62: 2636 2643.
45. Jang, S. K.,, and E. Wimmer. 1990. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 4: 1560 1572.
46. Jia, X. Y.,, G. Scheper,, D. Brown,, W. Updike,, S. Harmon,, O. Richards,, D. Summers,, and E. Ehrenfeld. 1991. Translation of hepatitis A virus RNA in vitro: aberrant internal initiations influenced by 5' noncoding region. Virology 182: 712 722.
47. Jia, X. Y.,, M. Tesar,, D. F. Summers,, and E. Ehrenfeld. 1996. Replication of hepatitis A viruses with chimeric 5' nontranslated regions. J. Virol. 70: 2861 2868.
48. Johansen, L. K.,, and C. D. Morrow. 2000. The RNA encompassing the internal ribosome entry site in the poliovirus 5' nontranslated region enhances the encapsidation of genomic RNA. Virology 273: 391 399.
49. Johnson, V. H.,, and B. L. Semler. 1988. Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5' noncoding regions of viral RNAs. Virology 162: 47 57.
50. Kaminski, A.,, G. J. Belsham,, and R. J. Jackson. 1994. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13: 1673 1681.
51. Kaminski, A.,, S. L. Hunt,, C. L. Gibbs,, and R. J. Jackson. 1994. Internal initiation of mRNA translation in eukaryotes. Genet. Eng. 16: 115 155.
52. King, A. M. Q.,, F. Brown,, P. Christian,, T. Hovi,, T. Hyypia,, N. J. Knowles,, S. M. Lemon,, P. D. Minor,, A. C. Palmenberg,, T. Skern,, and G. Stanway,. 2000. Picorna-viridae, p. 657 673. In M. H. V. Van Regenmortel,, C. M. Fauquet,, D. H. L. Bishop,, C. H. Calisher,, E. B. Carsten,, M. K. Estes,, S. M. Lemon,, J. Maniloff,, M. A. Mayo,, D. J. McGeoch,, C. R. Pringle,, and R. B. Wickner (ed.), Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses. Academic Press, New York, N.Y..
53. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson,, and E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291: 547 553.
54. Kolupaeva, V. G.,, T. V. Pestova,, C. U. Hellen,, and I. N. Shatsky. 1998. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273: 18599 18604.
55. Kong, W. P.,, and R. P. Roos. 1991. Alternative translation initiation site in the DA strain of Theiler's murine encephalomyelitis virus. J. Virol. 65: 3395 3399.
56. Kuhn, R.,, N. Luz,, and E. Beck. 1990. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J. Virol. 64: 4625 4631.
57. La Monica, N.,, and V. R. Racaniello. 1989. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J. Virol. 63: 2357 2360.
58. Le, S.-Y.,, J.-H. Chen,, N. Sonenberg,, and J. V. Maizel. 1992. Conserved tertiary structure elements in the 5' untranslated region of human enteroviruses and rhinoviruses. Virology 191: 858 866.
59. Le, S.-Y.,, and J. V. Maizel. 1998. Evolution of a common structural core in the internal ribosome entry sites of picornavirus. Virus Genes 16: 25 38.
60. Le, S.-Y.,, A. Siddiqui,, and J. V. Maizel. 1996. A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes 12: 135 147.
61. Liu, Z.,, C. M. Carthy,, P. Cheung,, L. Bohunek,, J. E. Wilson,, B. M. McManus,, and D. Yang. 1999. Structural and functional analysis of the 5' untranslated region of coxsackievirus B3 RNA: in vivo translational and infectivity studies of full-length mutants. Virology 265: 206 217.
62.L opez de Quinto, S.,, and E. Martinez-Salas. 2000. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6: 1380 1392.
63. Lopez de Quinto, S.,, and E. Martinez-Salas. 1997>. Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J. Virol. 71: 4171 4175.
64. Marcotrigiano, J.,, I. B. Lomakin,, N. Sonenberg,, T. V. Pestova,, C. U. Hellen,, and S. K. Burley. 2001. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7: 193 203.
65. Martinez-Salas, E.,, R. Ramos,, E. Lafuente,, and S. Lopez de Quinto. 2001. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J. Gen. Virol. 82: 973 984.
66. Martinez-Salas, E.,, M. P. Regalado,, and E. Domingo. 1996. Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. J. Virol. 70: 992 998.
67. Meerovitch, K.,, Y. V. Svitkin,, H. S. Lee,, E. Lejbkowicz,, D. J. Kenan,, E. K. Chan,, V. I. Agol,, J. D. Keene, and N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67: 3798 3807.
68. Michel, Y. M.,, D. Poncet,, M. Piron,, K. M. Kean,, and A. Borman. 2000. Cap-poly (A) synergy in mammalian cell-free extracts. J. Biol. Chem. 275: 32268 32276.
69. Minor, P. D. 1992. The molecular biology of polio-vaccines. J. Gen. Virol. 73: 3065 3077.
70. Nateri, A. S.,, P. J. Hughes,, and G. Stanway. 2000. In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5' untranslated region required for internal initiation. J. Virol. 74: 6269 6277.
71. Nicholson, R.,, J. Pelletier,, S.-Y. Le,, and N. Sonenberg. 1991. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J. Virol. 65: 5886 5894.
72. Niepmann, M. 1999. Internal initiation of translation of picornaviruses, hepatitis C virus and pestiviruses. Recent Res. Dev. Virol. 1: 229 250.
73. Ohlmann, T.,, and R. J. Jackson. 1999. The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA 5: 764 778.
74. Ohlmann, T.,, M. Rau,, V. M. Pain,, and S. J. Morley. 1996. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15: 1371 1382.
75. Palmenberg, A. C.,, and J.-Y. Sgro. 1997. Topological organization of picornaviral genomes: statistical prediction of RNA structural signals. Semin. Virol. 8: 231 241.
76. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld,, and B. L. Semler. 1997. Poly (rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3: 1124 1134.
77. Pause, A.,, N. Methot,, Y. Svitkin,, W. C. Merrick,, and N. Sonenberg. 1994. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13: 1205 1215.
78. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320 325.
79. Percy, N.,, G. J. Belsham,, J. K. Brangwyn,, M. Sullivan,, D. M. Stone,, and J. W. Almond. 1992. Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5' noncoding region of the genome involved in internal initiation of protein synthesis. J. Virol. 66: 1695 1701.
80. Pestova, T. V.,, C. U. T. Hellen,, and I. N. Shatsky. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16: 6859 6869.
81. Pestova, T. V.,, I. N. Shatsky,, and C. U. T. Hellen. 1996. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Ceil. Biol. 16: 6870 6878.
82. Phillips, B. A.,, and A. Emmert. 1986. Modulation of the expression of poliovirus proteins in reticulocyte lysates. Virology 148: 255 267.
83. Pilipenko, E. V.,, V. M. Blinov,, B. K. Chernov,, T. M. Dmitrieva,, and V. I. Agol. 1989. Conservation of the secondary structure elements of the 5'-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 17: 5701 5711.
84. Pilipenko, E. V.,, V. M. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova,, and V. I. Agol. 1989. Conserved structural domains in the 5'-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168: 201 209.
85. Pilipenko, E. V.,, A. P. Gmyl,, S. V. Maslova,, Y. V. Svitkin,, A. N. Sinyakov,, and V. I. Agol. 1992. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68: 119 131.
86. Pilipenko, E. V.,, T. V. Pestova,, V. G. Kolupaeva,, E. V. Khitrina,, A. N. Poperechnaya,, V. I. Agol,, and C. U. Hellen. 2000. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 14: 2028 2045.
87. Poyry, T.,, L. Kinnunen,, and T. Hovi. 1992. Genetic variation in vivo and proposed functional domains of the 5' noncoding region of poliovirus RNA. J. Virol. 66: 5313 5319.
88. Racaniello, V. R.,, and D. Baltimore. 1981. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916 919.
89. Ramos, R.,, and E. Martinez-Salas. 1999. Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5: 1374 1383.
90. Rinehart, J. E.,, R. M. Gomez,, and R. P. Roos. 1997. Molecular determinants for virulence in coxsackievirus B1 infection. J. Virol. 71: 3986 3991.
91. Rivera, V. M.,, J. D. Welsh,, and J. V. Maizel, Jr. 1988. Comparative sequence analysis of the 5' noncoding region of the enteroviruses and rhinoviruses. Virology 165: 42 50.
92. Roberts, L. O.,, and G. J. Belsham. 1997. Complementation of defective internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. Virology 227: 53 62.
93. Robertson, M. E.,, R. A. Seamons,, and G. J. Belsham. 1999. A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5: 1167 1179.
94. Scheper, G. C.,, H. O. Voorma,, and A. A. Thomas. 1992. Eukaryotic initiation factors-4E and -4F stimulate 5' cap-dependent as well as internal initiation of protein synthesis. J. Biol. Chem. 267: 7269 7274.
95. Shih, D. S.,, I. W. Park,, C. L. Evans,, J. M. Jaynes,, and A. C. Palmenberg. 1987. Effects of cDNA hybridization on translation of encephalomyocarditis virus RNA. J. Virol. 61: 2033 2037.
96. Shiroki, K.,, T. Ishii,, T. Aoki,, Y. Ota,, W. X. Yang,, T. Komatsu,, Y. Ami,, M. Arita,, S. Abe,, S. Hashizume,, and A. Nomoto. 1997. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J. Virol. 71: 1 8.
97. Simoes, E. A.,, and P. Sarnow. 1991. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65: 913 921.
98. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, J. Cooper,, P. D. Minor,, and J. W. Almond. 1989. New model for the secondary structure of the 5' non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 207: 379 392.
99. Slobodskaya, O. R.,, A. P. Gmyl,, S. V. Maslova,, E. A. Tolskaya,, E. G. Viktorova,, and V. 1. Agol. 1996. Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon. Virology 221: 141 150.
100. Stewart, S. R.,, and B. L. Semler. 1999. Pyrimidine-rich region mutations compensate for a stem-loop V lesion in the 5' noncoding region of poliovirus genomic RNA. Virology 264: 385 397.
101. Stewart, S. R.,, and B. L. Semler. 1997. RNA determinants of picornavirus cap-independent translation initiation. Semin. Virol. 8: 242 255.
102. Stewart, S. R.,, and B. L. Semler. 1998. RNA structure adjacent to the attenuation determinant in the 5'-non-coding region influences poliovirus viability. Nucleic Acids Res. 26: 5318 5326.
103. Stone, D. M.,, J. W. Almond,, J. K. Brangwyn,, and G. J. Belsham. 1993. trans Complementation of cap-independent translation directed by poliovirus 5' non-coding region deletion mutants; evidence for RNA-RNA interactions. J. Virol. 67: 6215 6223.
104. Svitkin, Y. V.,, T. V. Pestova,, S. V. Maslova,, and V. I. Agol. 1988. Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166: 394 404.
105. Tarun, S. Z.,, and A. B. Sachs. 1995. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 9: 2997 3007.
106. Tesar, M.,, S. A. Harmon,, D. F. Summers,, and E. Ehrenfeld. 1992. Hepatitis A virus polyprotein synthesis initiates from two alternative AUG codons. Virology 186: 609 618.
107. Trono, D.,, R. Andino,, and D. Baltimore. 1988. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J. Viral. 62: 2291 2299.
108. Tu, Z.,, N. M. Chapman,, G. Hufnagel,, S. Tracy,, J. R. Romero,, W. H. Barry,, L. Zhao,, K. Currey,, and B. Shapiro. 1995. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5' nontranslated region. J. Virol. 69: 4607 4618.
109. Van der Velden, A.,, A. Kaminski,, R. J. Jackson,, and G. J. Belsham. 1995. Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans. Virology 214: 82 90.
110. Wells, S. E.,, P. E. HiUner,, R. D. Vale,, and A. B. Sachs. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135 140.
111. Whetter, L. E.,, S. P. Day,, O. Elroy-Stein,, E. A. Brown,, and S. M. Lemon. 1994. Low efficiency of the 5' non-translated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells. J. Virol. 68: 5253 5263.
112. Wimmer, E.,, C. U. T. Hellen,, and X. M. Cao. 1993. Genetics of poliovirus. Anna. Rev. Genet. 27: 353 436.
113. Witherell, G. W.,, C. S. Schultz-Witherell,, and E. Wimmer. 1995. cis-Acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology 214: 660 663.
114. Yamashita, T.,, K. Sakae,, H. Tsuzuki,, Y. Suzuki,, N. Ishikawa,, N. Takeda,, T. Miyamura,, and S. Yamazaki. 1998. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picor-naviridae associated with acute gastroenteritis in humans. J. Virol. 72: 8408 8412.
115. Zuker, M.,, and A. B. Jacobson. 1995. "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res. 23: 2791 2798.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error