1887

Chapter 21 : Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap21-2.gif

Abstract:

Replication of the poliovirus genome has been studied for many decades by using a variety of molecular, genetic, biochemical, and structural approaches. These studies have uncovered most, if not all, of the virus encoded proteins and RNA sequences/structures required for genome replication. Proteins encoded by the P3 region of the genome, however, are thought to participate more directly in the genome replication process. The fourth and final protein domain of the P3 region of the viral polyprotein is the RNA-dependent RNA polymerase (RdRP) 3D, the core component of the replication machinery. One of the most important contributions to one’s understanding of 3D function was the solution of the crystal structure of 3D by researchers in 1997. This structure provided the first glimpse into the architecture of an RdRP. The preceding discussion highlights the similarity of 3D with other classes of nucleic acid polymerase. While features unique to 3D may exist, for example, the so-called fingertips, this subdomain likely exists in all RdRPs based on the two RdRP structures available to date. In contrast, two potential interaction/oligomerization domains were also observed in the crystal structure of 3D. These interaction surfaces have no structural homologues in any other polymerases for which structural information is available, including the RdRP from hepatitis C virus (HCV). It is clear that the availability of structural information for 3D has shed light on one’s understanding of 3D function.

Citation: Cameron C, Gohara D, Arnold J. 2002. Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, p 255-267. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Substrates employed to study poliovirus polymerase in vitro. (A) Hairpin substrate ( ). (B) Homopolymeric primer/template substrate (dT/rA) ( ). (C) Heteropolymeric primer/template substrate ( ). (D) sym/sub ( ). (E) 3D-catalyzed incorporation of AMP into sym/sub ( ).

Citation: Cameron C, Gohara D, Arnold J. 2002. Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, p 255-267. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap21
1. Agol, V. I.,, A. V. Paul,, and E. Wimmer. 1999. Paradoxes of the replication of picornaviral genomes. Virus Res. 62: 129 147.
2. Aldabe, R.,, A. Barco,, and L. Carrasco. 1996. Membrane permeabilization by poliovirus proteins 2B and 2BC. J. Biol. Chem. 271: 23134 23137.
3. Aldabe, R.,, and L. Carrasco. 1995. Induction of membrane proliferation by poliovirus proteins 2C and 2BC. Biochem. Biophys. Res. Commun. 206: 64 76.
4. Andino, R.,, G. E. Rieckhof,, R. L. Achacoso,, and D. Baltimore. 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 12: 3587 3598.
5. Andino, R.,, G. E. Rieckhof,, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63: 369 380.
6. Arnold, J. J.,, and C. E. Cameron. 1999. Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro. J. Biol. Chem. 274: 2706 2716.
7. Arnold, J. J.,, and C. E. Cameron. 2000. Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J. Biol. Chem. 275: 5329 5336.
8. Arnold, J. J.,, S. K. Ghosh,, and C. E. Cameron. 1999. Poliovirus RNA-dependent RNA polymerase (3D(pol)). Divalent cation modulation of primer, template, and nucleotide selection. J. Biol. Chem. 274: 37060 37069.
9. Astatke, M.,, K. Ng,, N. D. Grindley,, and C. M. Joyce. 1998. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. USA 95: 3402 3407.
10. Bakhanashvili, M.,, O. Avidan,, and A. Hizi. 1996. Mutational studies of human immunodeficiency virus type 1 reverse transcriptase: the involvement of residues 183 and 184 in the fidelity of DNA synthesis. FEBS Lett. 391: 257 262.
11. Barton, D. J.,, B. J. Morasco,, and J. B. Flanegan. 1996. Assays for poliovirus polymerase, 3D(pol), and authentic RNA replication in HeLa S10 extracts. Methods Enzymol. 275: 35 57.
12. Beckman, M. T.,, and K. Kirkegaard. 1998. Site size of cooperative single-stranded RNA binding by poliovirus RNA-dependent RNA polymerase. J. Biol. Chem. 273: 6724 6730.
13. Bonnin, A.,, J. M. Lazaro,, L. Blanco,, and M. Salas. 1999. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. J. Mol. Biol. 290: 241 251.
14. Boyer, P. L.,, S. G. Sarafianos,, E. Arnold,, and S. H. Hughes. 2000. Analysis of mutations at positions 115 and 116 in the dNTP binding site of HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 97: 3056 3061.
15. Bressanelli, S.,, L. Tomei,, A. Roussel,, I. Incitti,, R. L. Vitale,, M. Mathieu,, R. De Francesco,, and F. A. Rey. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. USA 96: 13034 13039.
16. Burns, C. C.,, M. A. Lawson,, B. L. Semler,, and E. Ehrenfeld. 1989. Effects of mutations in poliovirus 3Dpol on RNA polymerase activity and on polyprotein cleavage. J. Virol. 63: 4866 4874.
17. Canard, B.,, K. Chowdhury,, R. Sarfati,, S. Doublie,, and C. C. Richardson. 1999. The motif D loop of human immunodeficiency vims type 1 reverse transcriptase is critical for nucleoside 5’-triphosphate selectivity. J. Biol. Chem. 274: 35768 35776.
18. Cases-Gonzalez, C. E.,, M. Gutierrez-Rivas,, and L. Menendez-Arias. 2000. Coupling riboseselection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1reverse transcriptase J. Biol. Chem. 275: 19759 19767.
19. Cho, M. W.,, O. C. Richards,, T. M. Dmitrieva,, V. Agol,, and E. Ehrenfeld. 1993. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J. Virol. 67: 3010 3018.
20. Cho, M. W.,, N. Teterina,, D. Egger,, K. Bienz,, and E. Ehrenfeld. 1994. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202: 129 145.
21. Crotty, S.,, D. Maag,, J. J. Arnold,, W. Zhong,, J. Y. Lau,, Z. Hong,, R. Andino,, and C. E. Cameron. 2000. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 6: 1375 1379.
22. Cuconati, A.,, W. Xiang,, F. Lahser,, T. Pfister,, and E. Wimmer. 1998. A protein linkage map of the P2 nonstructural proteins of poliovirus. J. Virol. 72: 1297 1307.
23. Dasgupta, A.,, M. H. Baron,, and D. Baltimore. 1979. Poliovirus replicase: a soluble enzyme able to initiate copying of poliovirus RNA. Proc. Natl. Acad. Sci. USA 76: 2679 2683.
24. Diamond, S. E.,, and K. Kirkegaard. 1994. Clustered charged-to-alanine mutagenesis of poliovirus RNA-dependent RNA polymerase yields multiple temperature-sensitive mutants defective in RNA synthesis. J. Virol. 68: 863 876.
25. Doedens, J. R.,, and K. Kirkegaard. 1995. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J. 14: 894 907.
26. Doublie, S.,, S. Tabor,, A. M. Long,, C. C. Richardson,, and T. Ellenberger. 1998. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391: 251 258.
27. Duggal, R.,, A. Cuconati,, M. Gromeier,, and E. Wimmer. 1997. Genetic recombination of poliovirus in a cell-free system. Proc. Natl. Acad. Sci. USA 94: 13786 13791.
28. Egger, D.,, N. Teterina,, E. Ehrenfeld,, and K. Bienz. 2000. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J. Virol. 74: 6570 6580.
29. Flanegan, J. B.,, and D. Baltimore. 1977. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). Proc. Natl. Acad. Sci. USA 74: 3677 3680.
30. Flanegan, J. B.,, and D. Baltimore. 1979. Poliovirus polyuridylic acid polymerase and RNA replicase have the same viral polypeptide. J. Virol. 29: 352 360.
31. Gao, G.,, M. Orlova,, M. M. Georgiadis,, W. A. Hendrickson,, and S. P. Goff. 1997. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc. Nati. Acad. Sci. USA 94: 407 411.
32. Gohara, D. W.,, S. Crotty,, J. J. Arnold,, J. D. Yoder,, R. Andino,, and C. E. Cameron. 2000. Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. 7. Biol. Chem. 275: 25523 25532.
33. Gohara, D. W.,, C. S. Ha,, S. Kumar,, B. Ghosh,, J. J. Arnold,, T. J. Wisniewski,, and C. E. Cameron. 1999. Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli. Protein Expr. Purif. 17: 128 138.
34. Goodfellow, I.,, Y. Chaudhry,, A. Richardson,, J. Meredith,, J. W. Almond,, W. Barclay,, and D. J. Evans. 2000. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74: 4590 4600.
35. Hansen, J. L.,, A. M. Long,, and S. C. Schultz. 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5: 1109 1122.
36. Hey, T. D.,, O. C. Richards,, and E. Ehrenfeld. 1986. Synthesis of plus- and minus-strand RNA from poliovirion RNA template in vitro. J. Virol. 58: 790 796.
37. Hobson, S. D.,, E. S. Rosenblum,, O. C. Richards,, K. Richmond,, K. Kirkegaard,, and S. C. Schultz. 2001. Oligomeric structures of poliovirus polymerase are important for function. EMBO J. 20: 1153 1163.
38. Hope, D. A., , S. E. Diamond,, and K. Kirkegaard. 1997. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J. Virol. 71: 9490 9498.
39. Huang, H.,, R. Chopra,, G. L. Verdine,, and S. C. Harrison. 1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282: 1669 1675.
40. Jablonski, S. A., , and C. D. Morrow. 1993. Enzymatic activity of poliovirus RNA polymerases with mutations at the tyrosine residue of the conserved YGDD motif: isolation and characterization of polioviruses containing RNA polymerases with FGDD and MGDD sequences. J. Virol. 67: 373 381.
41. Jablonski, S. A., , and C. D. Morrow. 1995. Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J. Virol. 69: 1532 1539.
42. Jacques, P. S.,, B. M. Wohrl,, M. Ottmann,, J. L. Darlix,, and S. F. Le Grice. 1994. Mutating the “primer grip” of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization J. Biol. Chem. 269: 26472 26478.
43. Jarvis, T. C.,, and K. Kirkegaard. 1992. Poliovirus RNA recombination: mechanistic studies in the absence of selection. EMBO J. 11: 3135 3145.
44. Jones, T. A.,, J. Y. Zou,, S. W. Cowan,, and Kjeldgaard. 1991. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47: 110 119.
45. Kati, W. M., , K. A. Johnson,, L. F. Jerva,, and K. S. Anderson. 1992. Mechanism and fidelity of HIV reverse transcriptase;. Biol. Chem. 267: 25988 25997.
46. Kirkegaard, K.,, and D. Baltimore. 1986. The mechanism of RNA recombination in poliovirus. Cell 47: 433 443.
47. Kohlstaedt, L. A., , J. Wang,, J. M. Friedman,, P. A. Rice,, and T. A. Steitz. 1992. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783 1790.
48. Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72: 2197 2206.
49. Kraulis, P. J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946 950.
50. Lama, J.,, A. V. Paul,, K. S. Harris,, and E. Wimmer. 1994. Properties of purified recombinant poliovirus protein 3aB as substrate for viral proteinases and as co-factor for RNA polymerase 3Dpol. J. Biol. Chem. 269: 66 70.
51. Lama, J.,, M. A. Sanz,, and P. L. Rodriguez. 1995. A role for 3AB protein in poliovirus genome replication. J. Biol. Chem. 270: 14430 14438.
52. Lawson, S. L.,, W. W. Wakarchuk,, and S. G. Withers. 1996. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Biochemistry 35: 10110 10118.
53. Lesburg, C. A., , M. B. Cable,, E. Ferrari,, Z. Hong,, A. F. Mannarino,, and P. C. Weber. 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6: 937 943.
54. Lubinski, J. M.,, L. J. Ransone,, and A. Dasgupta. 1987. Primer-dependent synthesis of covalently linked dimeric RNA molecules by poliovirus replicase. J. Virol. 61: 2997 3003.
55. Martin, R. B., 1990. In H. Sigel, and A. Sigel (ed.), Metal Ions in Biological Systems, vol. 26. Dekker, New York, N.Y.
56. McBride, A. E.,, A. Schlegel,, and K. Kirkegaard. 1996. Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc. Natl. Acad. Sci. USA 93: 2296 2301.
57. McKnight, K. L.,, and S. M. Lemon. 1998. The rhino-virus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4: 1569 1584.
58. Merritt, E. J.,, and M. E. P. Meurphy. 1997. Raster3D version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50: 869 873.
59. Morrow, C. D.,, B. Warren,, and M. R. Lentz. 1987. Expression of enzymatically active poliovirus RNA-dependent RNA polymerase in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 6050 6054.
60. Neufeld, K. L.,, J. M. Galarza,, O. C. Richards,, D. F. Summers,, and E. Ehrenfeld. 1994. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol. J. Virol. 68: 5811 5818.
61. Neufeld, K. L.,, O. C. Richards,, and E. Ehrenfeld. 1991. Expression and characterization of poliovirus proteins 3BVPg, 3Cpro, and 3Dpol in recombinant baculovirus-infected Spodoptera frugiperda cells. Virus Res. 19: 173 188.
62. Neufeld, K. L.,, O. C. Richards,, and E. Ehrenfeld. 1991. Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J. Biol. Chem. 266: 24212 24219.
63. Nicholls, A.,, K. Sharp,, and B. Honig. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11: 281 296.
64. Novak, J. E.,, and K. Kirkegaard. 1994. Coupling between genome translation and replication in an RNA virus. Genes Dev. 8: 1726 1737.
65. Nugent, C. I.,, K. L. Johnson,, P. Sarnow,, and K. Kirkegaard. 1999. Functional coupling between replication and packaging of poliovirus replicon RNA. J. Virol. 73: 427 435.
66. Ollis, D. L.,, C. Kline,, and T. A. Steitz. 1985. Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. Nature 313: 818 819.
67. Pata, J. D.,, S. C. Schultz,, and K. Kirkegaard. 1995. Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 1: 466 477.
68. Paul, A. V.,, J. H. van Boom,, D. Filippov,, and E. Wimmer. 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393: 280 284.
69. Paul, A. V.,, J. Mugavero,, J. Yin,, S. Hobson,, S. Schultz,, J. H. van Boom,, and E. Wimmer. 2000. Studies on the attenuation phenotype of polio vaccines: poliovirus RNA polymerase derived from Sabin type 1 sequence is temperature sensitive in the uridylylation of VPg. Virology 272: 72 84.
70. Paul, A. V.,, E. Rieder,, D. W. Kim,, J. H. van Boom,, and E. Wimmer. 2000. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J. Virol. 74: 10359 10370.
71. Pilipenko, E. V.,, S. V. Maslova,, A. N. Sinyakov,, and V. I. Agol. 1992. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 20: 1739 1745.
72. Plotch, S. J.,, and O. Palant. 1995. Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. J. Virol. 69: 71697179.
73. Plotch, S. J.,, O. Palant,, and Y. Gluzman. 1989. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli. J. Virol. 63: 216 225.
74. Polesky, A. H.,, M. E. Dahlberg,, S. J. Benkovi,, C. N. D. Grindley,, and C. M. Joyce. 1992. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J. Biol. Chem. 267: 8417 8428.
75. Powell, M. D.,, M. Ghosh,, P. S. Jacques,, K. J. Howard,, S. F. Le Grice,, and J. G. Levin. 1997. Alanine-scanning mutations in the “primer grip” of p66 HIV-1 reverse transcriptase result in selective loss of RNA priming activity. J. Biol. Chem. 272: 13262 13269.
76. Richards, O. C.,, S. Baker,, and E. Ehrenfeld. 1996. Mutation of lysine residues in the nucleotide binding segments of the poliovirus RNA-dependent RNA polymerase. J. Virol. 70: 8564 8570.
77. Richards, O. C.,, and E. Ehrenfeld. 1997. One of two NTP binding sites in poliovirus RNA polymerase required for RNA replication. J. Biol. Chem. 272: 23261 23264.
78. Richards, O. C.,, and E. Ehrenfeld. 1998. Effects of poliovirus 3AB protein on 3D polymerase-catalyzed reaction. J. Biol. Chem. 273: 12832 12840.
79. Richards, O. C.,, J. L. Hansen,, S. Schultz,, and E. Ehrenfeld. 1995. Identification of nucleotide binding sites in the poliovirus RNA polymerase. Biochemistry 34: 6288 6295.
80. Richards, O. C.,, L. A. Ivanoff,, K. Bienkowska-Szewczyk,, B. Butt,, S. R. Petteway,, M. A. Rothstein,, and E. Ehrenfeld. 1987. Formation of poliovirus RNA polymerase 3D in Escherichia coli by cleavage of fusion proteins expressed from cloned viral cDNA. Virology 161: 348356.
81. Rieder, E.,, A. V. Paul,, D. W. Kim,, J. H. van Boom,, and E. Wimmer. 2000. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J. Virol. 74: 10371 10380.
82. Rothstein, M. A.,, O. C. Richards,, C. Amin,, and E. Ehrenfeld. 1988. Enzymatic activity of poliovirus RNA polymerase synthesized in Escherichia coli from viral cDNA. Virology 164: 301 308.
83. Rueckert, R. R. 1996. Picornaviridae: The Viruses and Their Replication, 3rd ed., vol. 1. Lippincott-Raven Publishers, Philadelphia, Pa.
84. Sandoval, I. V.,, and L. Carrasco. 1997. Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J. Virol. 71: 4679 4693.
85. Schlegel, A.,, T. H. Giddings,, M. S. Ladinsky,, and K. Kirkegaard. 1996. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J. Virol. 70: 6576 6588.
86. Sousa, R.,, Y. J. Chung,, J. P. Rose,, and B. C. Wang. 1993. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364: 593 599.
87. Steitz, T. A.,, and J. A. Steitz. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90: 6498 6502.
88. Suhy, D. A., , T. H. Giddings,, and K. Kirkegaard. 2000. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J. Virol. 74: 8953 8965.
89. Tang, R. S.,, D. J. Barton,, J. B. Flanegan,, and K. Kirkegaard. 1997. Poliovirus RNA recombination in cell-free extracts. RNA 3: 624 633.
90. Teterina, N. L.,, A. E. Gorbalenya,, D. Egger,, K. Bienz,, and E. Ehrenfeld. 1997. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J. Virol. 71: 8962 8972.
91. Thrall, S. H.,, R. Krebs,, B. M. Wohrl,, L. Cellai,, R. S. Goody,, and T. Restle. 1998. Pre-steady-state kinetic characterization of RNA-primed initiation of transcription by H1V-1 reverse transcriptase and analysis of the transition to a processive DNA-primed polymerization mode. Biochemistry 37: 13349 13358.
92. Wakefield, J. K.,, S. A. Jablonski,, and C. D. Morrow. 1992. In vitro enzymatic activity of human immunodeficiency virus type 1 reverse transcriptase mutants in the highly conserved YMDD amino acid motif correlates with the infectious potential of the proviral genome. J. Virol. 66: 6806 6812.
93. Walker, D. E.,, D. McPherson,, S. A. Jablonski,, S. McPherson,, and C. D. Morrow. 1995. An aspartic acid at amino acid 108 is required to rescue infectious virus after transfection of a poliovirus cDNA containing a CGDD but not SGDD amino acid motif in 3Dpol. J. Virol. 69: 8173 8177.
94. Ward, C. D.,, and J. B. Flanegan. 1992. Determination of the poliovirus RNA polymerase error frequency at eight sites in the viral genome. J. Virol. 66: 3784 3793.
95. Ward, C. D.,, M. A. Stokes,, and J. B. Flanegan. 1988. Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J. Virol. 62: 558 562.
96. Wells, V. R.,, S. J. Plotch,, and J. J. DeStefano. 2001. Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. Virus Res. 74: 119 132.
97. Wilson, J. E.,, A. Aulabaugh,, B. Caligan,, S. McPherson,, J. K. Wakefield,, S. Jablonski,, C. D. Morrow,, J. E. Reardon,, and P. A. Furman. 1996. Human immunodeficiency virus type-1 reverse transcriptase. Contribution of Met-184 to binding of nucleoside 5'-triphosphate. J. Biol. Chem. 271: 13656 13662.
98. Wimmer, E.,, C. U. Hellen,, and X. Cao. 1993. Genetics of poliovirus. Annu. Rev. Genet. 27: 353 436.
99. Wimmer, E.,, and A. Nomoto. 1993. Molecular biology and cell-free synthesis of poliovirus. Biologicals 21: 349 356.
100. Wirblich, C.,, H. J. Thiel,, and G. Meyers. 1996. Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J. Virol. 70: 7974 7983.
101. Xiang, W.,, A. Cuconati,, D. Hope,, K. Kirkegaard,, and E. Wimmer. 1998. Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J. Virol. 72: 6732 6741.

Tables

Generic image for table
TABLE 1

Conservation of residues among structural features of poliovirus 3D

Conservation was determined based on sequence alignment of the RNA-dependent RNA polymerases from foot-and-mouth disease virus, encephalomyocarditts virus, mengovirus, hepatitis A virus, poliovirus, echovirus, Coxsackie A virus, Coxsackie Β virus, and human rhinovirus (A. C. Palmenberg, http://www.bocklabs.wisc.edu/acp; A. C. Palmenberg, personal communication).

Interactions were determined using the program “CONTACT” from the CCP4 suite of programs. Interatomic distance cutoffs were set between 2.8 and 3.3 Å.

Residues in boldfaced type are from the same side of either interface I or II (i.e., blue molecule in Color Plates 20 and 22).

Residues that are underlined have been mutated. The mutations and phenotypes are listed in Table 2 .

Interactions are based on a comparison of the 3Dpol ternary complex model with HIV-1 RT.

Citation: Cameron C, Gohara D, Arnold J. 2002. Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, p 255-267. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch21
Generic image for table
TABLE 2

Mutations introduced in poliovirus 3D

Residues on the surface are in boldfaced type.

See footnote , Table 1 .

Inserted residues are indicated as capitalized letters flanked by residues amino- and carboxy-terminal to the insertion.

Gohara and Cameron, unpublished.

Citation: Cameron C, Gohara D, Arnold J. 2002. Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, p 255-267. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch21
Generic image for table
TABLE 3

Kinetic and thermodynamic constants for 3D catalyzed nucleotide incorporation

Values taken from reference .

Vafues taken from Arnold and Cameron, unpublished.

Values taken from reference .

R, ribavirin, which is l--D-ribofuranosyl'l,2,4'triazole-3-carboxamide.

Values taken from D. Maag and C. E. Cameron, unpublished results.

Citation: Cameron C, Gohara D, Arnold J. 2002. Poliovirus RNA-Dependent RNA Polymerase (3D): Structure, Function, and Mechanism, p 255-267. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error