Chapter 7 : Poliovirus Receptors and Cell Entry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Poliovirus Receptors and Cell Entry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap07-2.gif


Poliovirus is an ideal model for understanding how non-enveloped viruses enter cells and initiate infection. The study of entry of a wide variety of viruses reveals common themes that are the consequence of a central problem faced by all viruses in the passage from cell to cell or from host to host. The final stage of assembly for many viruses involves proteolytic processing of a virion protein. The replication cycle is initiated when poliovirus encounters the poliovirus receptor (Pvr), a transmembrane glycoprotein with three extracellular immunoglobulin (Ig)- like domains. Although there is still considerable controversy concerning the role of the two particles, the A particle may be an intermediate in the cell entry pathway, and the 80S empty particle may be the final protein product that accumulates after the RNA is released into the cytoplasm to initiate translation and replication. An attempt has been made to obtain structural “snapshots” of stable intermediates in the poliovirus cell entry pathway and to couple the structural information with the results of genetic, biophysical, and biochemical observations to fill in the gaps in the pathway. On the basis of structural, genetic, and biochemical evidence available to date, a working model for the cell entry of poliovirus, related enteroviruses, and major group rhinoviruses is proposed. An alternative model is proposed in which the transition from the initial binding complex to the tight-binding complex is characterized by movements of VP1, VP2, and VP3 that mimic the umbrella-like movements of the virion to A particle transition.

Citation: Hogle J, Racaniello V. 2002. Poliovirus Receptors and Cell Entry, p 71-83. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Structural features of poliovirus. (A) Electron micrograph of negatively stained poliovirus, magnification ×270.000. Courtesy of N. Cheng and D. M. Belnap, NIH. (B) Schematic of the poliovirus capsid, showing the arrangement of VP1, VP2, and VP3; VP4 is on the interior. The biological protomer (gray) is not the same as the icosahedral asymmetric subunit (triangle at right). (C) Diagram of the wedge-like structure formed by eight -strands of each capsid protein. Also shown are ribbon diagrams of poliovirus VP1, VP2, and VP3. Adapted from J. M. Hogle et al., 229:1358-1365, 1985, with permission. (D) Model of poliovirus type 1, based on X-ray crystallographic structure determined at 2.9 Å ( ). The model is highlighted by radial depth cuing so that portions of the model farthest from the center are bright. The fivefold axis of symmetry (5×) is characterized by a star-shaped mesa. Surrounding the fivefold axis is the canyon, which is the receptor-binding site. At the threefold axis is a propeller-shaped feature. (E) Model of poliovirus type 1 (20 Å), made by image reconstruction from cryo-electron microscopy data. The star-shaped mesa, canyon, and propeller are visible.

Citation: Hogle J, Racaniello V. 2002. Poliovirus Receptors and Cell Entry, p 71-83. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Interaction of poliovirus with its cellular receptor, Pvr. (A) Image reconstruction of poliovirus type 1 and a soluble form of Pvr ( ). Only domain 1 of Pvr binds in the canyon of the virus; there are 60 receptor-binding sites on the viral capsid. (B) Model of Pvr produced from homology modeling and the density map from cryo-electron microscopy data of the virus-receptor complex ( ). Ig-like domains are labeled. Carbohydrate side chains have been modeled on domains 1 and 2. (C) “Roadmap” view of poliovirus 1 (left) and rhinovirus 14 (right). The corresponding triangular area of the capsid surface, bounded by a fivefold and two threefold icosahedral symmetry axes, is shown. The radial distances of surface residues from the virion center are coded by different shades of gray. Receptor footprints (Pvr on poliovirus, ICAM-1 on rhinovirus 14) are white.

Citation: Hogle J, Racaniello V. 2002. Poliovirus Receptors and Cell Entry, p 71-83. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Models for poliovims entry into cells. (Top) Overview. The 160S native virion binds to the cell receptor, Pvr, and at temperatures greater than 33°C is converted to the A particle. The viral RNA (curved line) might exit the particle from the plasma membrane or from within vesicles, although clathrin-mediated endocytosis is not required for poliovirus entry. (Bottom) Hypothetical mechanism for translocation of poliovirus RNA across the cell membrane, (a) Cross section of the initial virus-receptor complex. The viral RNA is in the capsid, and lipid occupies the hydrophobic pocket, (b) Docking of the receptor in the canyon leads to loss of the lipid in the hydrophobic pocket, allowing the capsid to undergo conformational changes including the externalization of VP4 and the N terminus of VP1. (c) Five copies of the N terminus of VP1 insert into the membrane and form a channel by a mechanism that may be facilitated by myristoyl-VP4. (d) Later in the entry process VP1 moves away from the fivefold axis, the five amphipathic helices rotate, and the internal plug formed by the N termini of VP3 moves, resulting in the formation of a channel through which the viral RNA may pass.

Citation: Hogle J, Racaniello V. 2002. Poliovirus Receptors and Cell Entry, p 71-83. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Structures of poliovirus A (135S) and 80S particles. Stereo views of reconstructions of the 160S, 135S, and 80S particles ( ) are shown in the left panel. Pseudo-atomic models for each of the forms of the virus were derived by fitting the atomic model of the capsid proteins derived from X-ray crystallographic studies of the 160S particle ( ) to the low-resolution reconstruction density, treating each of the capsid proteins, VP1, VP2, and VP3, as rigid bodies. The models for the capsid proteins of one protomer for (A) the 160S particle, (B) the 135S particle, and (C) the 80S particles and their fit to the reconstruction densities are shown in the panel on the right. The fivefold axis (pentagons) and threefold axis (triangles) are indicated. In (D) the individual capsid proteins for the 160S particle (dark gray), 135S particle (light gray), and 80S particle (intermediate gray) are represented as simple stick models. Note that there is significant density in all three reconstructions that corresponds to the VP3 -tube plug at the fivefold axes (gray arrows).

Citation: Hogle J, Racaniello V. 2002. Poliovirus Receptors and Cell Entry, p 71-83. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aoki, J.,, S. Koike,, I. Ise,, Y. Sato-Yoshia,, and A. Nomoto. 1994. Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J. Biol. Chem. 269: 8431 8438.
2. Arita, M.,, S. Koike,, J. Aoki,, H. Horie,, and A. Nomoto. 1998. Interaction of poliovirus with its purified receptor and conformational alteration in the virion. J. Virol. 72: 3578 3586.
3. Baker, K. A.,, R. E. Dutch,, R. A. Lamb,, and T. S. Jardetsky. 1999. Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell 3: 309 319.
4. Basavappa, R.,, A. Gomez-Yafal,, and J. M. Hogle. 1998. The poliovirus empty capsid specifically recognizes the poliovirus receptor and undergoes some, but not all, of the transitions associated with cell entry. J. Virol. 72: 7551 7556.
5. Basavappa, R.,, R. Syed,, O. Flore,, J. R Icenogle,, D. J. Filman,, and J. M. Hogle. 1994. Role and mechanism of the maturation cleavage of VPO in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 3: 1651 1669.
6. Belnap, D. M.,, D. J. Filman,, B. L. Trus,, N. Cheng,, F. P. Booy,, J. F. Conway,, S. Curry,, C. N. Hiremath,, S. K. Tsang,, A. C. Steven,, and J. M. Hogle. 2000. Molecular tectonic model of vims structural transitions: the putative cell entry states of poliovirus. J. Virol. 74: 1342 1354.
7. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97: 73 78.
8. Bernhardt, G.,, J. A. Bibb,, J. Bradley,, and E. Wimmer. 1994. Molecular characterization of the cellular receptor for poliovirus. Virology 199: 105 113.
9. Bouchard, M. J.,, Y. Dong,, B. M. McDermott, Jr.,, D. H. Lam,, K. R. Brown,, M. Shelanski,, A. R. Bellve,, and V. R. Racaniello. 2000. Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol. Cell Biol. 20: 2865 2873.
10. Bullough, P. A.,, F. M. Hughson,, J. J. Skehel,, and D. C. Wiley. 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371: 37 43.
11. Chan, D. C.,, D. Fass,, J. M. Berger,, and P. S. Kim. 1997. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89: 263 273.
12. Chow, M.,, R. Basavappa,, and J. M. Hogle,. 1997. The role of conformational transitions in poliovirus pathogenesis, p. 157 186. In W. Chiu,, R. Garcea,, and R. Burnette (ed.), Structural Biology of Viruses. Oxford University Press, Oxford, United Kingdom.
13. Colonno, R.,, J. Condra,, S. Mizutani,, P. Callahan,, M.-E. Davies,, and M. Murcko. 1988. Evidence for the direct involvement of the rhinovims canyon in receptor binding. Proc. Natl. Acad. Sci. USA 85: 5449 5453.
14. Colston, E.,, and V. R. Racaniello. 1994 - Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J. 13: 5855 5862.
15. Colston, E. M.,, and V. R. Racaniello. 1995. Poliovirus variants selected on mutant receptor-expressing cells identify capsid residues that expand receptor recognition. J. Virol. 69: 4823 4829.
16. Couderc, T.,, N. Guedo,, V. Calvez,, I. Pelletier,, J. Hogle,, F. Colbere-Garapin,, and B. Blondel. 1994. Substitutions in the capsids of poliovirus mutants selected in human neuroblastoma cells confer on the Mahoney type 1 strain a phenotype neurovirulent in mice. J. Virol. 68: 8386 8391.
17. Couderc, T.,, J. Hogle,, H. Le Blay,, F. Horaud,, and B. Blondel. 1993. Molecular characterization of mouse-virulent poliovirus type 1 Mahoney mutants: involvement of residues of polypeptides VP1 and VP2 located on the inner surface of the capsid protein shell. J. Virol. 67: 3808 3817.
18. Curry, S.,, M. Chow,, and J. M. Hogle. 1996. The poliovirus 135S particle is infectious. J. Virol. 70: 7125 7131.
19. De Sena, J.,, and B. Mandel. 1977. Studies on the in vitro uncoating of poliovirus II. Characteristics of the membrane-modified particle. Virology 78: 554 566.
20. DeTulleo, L.,, and T. Kurchhausen. 1998. The clathrin endocytic pathway in viral infection. EMBO J. 17: 4585 4593.
21. Dove, A. W.,, and V. R. Racaniello. 1997. Cold-adapted poliovirus mutants bypass a postentry replication block. J. Virol. 71: 4728 4735.
22. Everaert, L.,, R. Vrijsen,, and A. Boeye. 1989. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171: 76 82.
23. Fass, D.,, S. C. Harrison,, and P. S. Kim. 1996. Retrovirus envelope domain at 1.7 angstrom resolution. Nat. Struct. Biol. 3: 465 469.
24. Fenwick, M. L.,, and P. D. Cooper. 1962. Early interactions between poliovirus and ERK cells. Some observations on the nature and significance of the rejected particles. Virology 18: 212 223.
25. Filman, D. J.,, R. Syed,, M. Chow,, A. J. Macadam,, P. D. Minor,, and J. M. Hogle. 1989. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8: 1567 1579.
26. Filman, D. J.,, M. W. Wien,, J. A. Cunningham,, J. M. Bergelson,, and J. M. Hogle. 1998. Structure determination of echovirus 1. Acta Crystallogr. D Biol. Crystallogr. 54: 1261 1272.
27. Fricks, C. E.,, and J. M. Hogle. 1990. The cell-induced conformational change of poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64: 1934 1945.
28. Grant, R. A.,, C. N. Hiremath,, D. J. Filman,, R. Syed,, K. Andries,, and J. M. Hogle. 1994. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 4: 784 797.
29. He, Y.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97: 79 84.
30. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits,, and D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5fold axis and not in the canyon: a structural view. EMBO J. 19: 6317 6325.
31. Hogle, J. M.,, M. Chow,, and D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229: 1358 1365.
32. Huang, Y.,, J. M. Hogle,, and M. Chow. 2000. Is the 135S poliovirus particle an intermediate during cell entry? J. Virol. 74: 8757 8761.
33. Incardona, N. L.,, and P. Kaesberg. 1964. A pH-induced structural change in bromegrass mosaic virus. Biophys. J. 4: 11 21.
34. Jackson, T.,, F. M. Ellard,, R. A. Ghazaleh,, S. M. Brookes,, W. E. Blakemore,, A. H. Corteyn,, D. I. Stuart,, J. W. Newman,, and A. M. Q. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70: 5282 5287.
35. Joklik, W. K.,, and J. E. Darnell. 1961. The absorption and early fate of purified poliovirus in HeLa cells. Virology 13: 439 447.
36. Kaplan, G.,, M. S. Freistadt,, and V. R. Racaniello. 1990. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 64: 4697 4702.
37. Kim, S.,, T. J. Smith,, M. S. Chapman,, M. G. Rossmann,, D. C. Pevear,, F. J. Dutko,, P. J. Felock,, G. D. Diana,, and M. A. McKinlay. 1989. Crystal structure of human rhinovirus serotype 1A (HRV1A). J. Mol. Biol. 210: 91 111.
38. Koike, S., 1. Ise, and A. Nomoto. 1991. Functional domains of the poliovirus receptor. Proc. Natl. Acad. Sci. USA 88: 4104 4108.
39. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J 18: 6249 6259.
40. Li, Q.,, A. G. Yafal,, Y. H. Lee,, J. Hogle,, and M. Chow. 1994. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J. Virol. 68: 3965 3970.
41. Lonberg-Holm, K.,, L. B. Goser,, and J. C. Kauer. 1975. Early alteration of poliovirus in infected cells and its specific inhibition. J. Gen. Virol. 27: 329 342.
42. Madshus, I. H.,, S. Olsnes,, and K. Sandvig. 1984. Mechanism of entry into the cytosol of poliovirus type 1: requirement for low pH. J. Cell. Biol. 98: 1194 1200.
43. Malashkevich, V. N.,, D. C. Chan,, C. T. Chutkowksi,, and P. S. Kim. 1998. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci. USA 95: 9134 9139.
44. Malashkevich, V. N.,, B. J. Schneider,, M. L. McNally,, M. A. Milhollen,, J. X. Pang,, and P. S. Kim. 1999. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc. Natl. Acad. Sci. USA 96: 2662 2667.
45. Mason, P. W.,, E. Rieder,, and B. Baxt. 1994. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91: 1932 1936.
46. McDermott, B. M., Jr.,, A. H. Rux,, R. J. Eisenberg,, G. H. Cohen,, and V. R. Racaniello. 2000. Two distinct binding affinities of poliovirus for its cellular receptor. J. Biol. Chem. 275: 23089 23096.
47. Morrison, M. E.,, and V. R. Racaniello. 1992. Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J. Virol. 66: 2807 2813.
48. Morrison, M. E.,, H. Yuan-Jing,, M. W. Wien,, J. W. Hogle,, and V. R. Racaniello. 1994. Homolog scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J. Virol. 68: 2578 2588.
49. Moss, E. G.,, and V. R. Racaniello. 1991. Host range determinants located on the interior of the poliovirus capsid. EMBO J. 10: 1067 1074.
50. Mosser, A. G.,, and R. R. Rueckert. 1993. WIN 51711-dependent mutants of poliovirus type 3: evidence that virions decay aftet release from cells unless drug is present. J. Virol. 67: 1246 1254.
51. Muckelbauer, J. K.,, M. Kremer,, I. Minor,, G. Diana,, F. J. Dutko,, J. Groarke,, D. C. Pevear,, and M. G. Rossmann. 1995. The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3: 653 667.
52. Nugent, C. I.,, K. L. Johnson,, P. Samow,, and K. Kirkegaard. 1999. Functional coupling between replication and packaging of poliovirus replicon RNA. J. Virol. 73: 427 435.
53. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90: 507 511.
54. Perez, L.,, and L. Carrasco. 1993. Entry of poliovirus into cells does not require a low-pH step. J. Virol. 67: 4543 4548.
55. Racaniello, V. R., 2001. Picornaviridae: the viruses and their replication, p. 685 722. In P. Howley, and D. Knipe (ed.), Fields Virology, 4th ed., vol. 1. Lippincott Williams & Wilkins, Philadelphia, Pa.
56. Robinson, I. K.,, and S. C. Harrison. 1982. Structure of the expanded state of tomato bushy stunt virus. Nature 297: 563 568.
57. Rossmann, M. G.,, J. Bella,, P. R. Kolatkar,, Y. He,, E. Wimmer,, R. J. Kuhn,, and T. S. Baker. 2000. Cell recognition and entry by rhino- and enteroviruses. Virology 269: 239 247.
58. Rossmann, M. G.,, and J. E. Johnson. 1989. Icosahedral RNA virus structure. Annu. Rev. Biochem. 58: 533 573.
59. Rueckert, R. R. 1976. On the structure and morphogenesis of picornaviruses. Compr. Virol. 6: 131 200.
60. Selinka, H.-C.,, A. Zibert,, and E. Wimmer. 1992. A chimeric poliovirus/CD4 receptor confers susceptibility to poliovirus on mouse cells. J. Virol. 66: 2523 2526.
61. Selinka, H.-C.,, A. Zibert,, and E. Wimmer. 1991. Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proc. Natl. Acad. Sci. USA 88: 3598 3602.
62. Smyth, M.,, J. Tate,, E. Hoey,, C. Lyons,, S. Martin,, and D. Stuart. 1995. Implications for viral uncoating from the structure of bovine enterovirus. Struct. Biol. 2: 224 231.
63. Spear, P. G.,, R. J. Eisenberg,, and G. H. Cohen. 2000. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275: 1 8.
64. Speelman, B.,, B. R. Brooks,, and C. B. Post. 2001. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Biophys J. 80: 121 129.
65. Speir, J. A.,, S. Munshi,, G. Wang,, T. S. Baker,, and J. E. Johnson. 1995. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3: 63 78.
66. Takahashi, K.,, H. Nakanishi,, M. Miyahara,, K. Mandel,, K. Satoh,, A. Satoh,, H. Nishioka,, J. Aoki,, A. Nomoto,, A. Mizoguchi,, and Y. Takai. 1999. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J. Cell. Biol. 145: 539 549.
67. Tosteson, M. T.,, and M. Chow. 1997. Characterization of the ion channels formed by poliovirus in planar lipid membranes. J. Virol. 71: 507 511.
68. Tsang, S.,, B. M. McDermott,, V. R. Racaniello,, and J. M. Hogle. 2001. A kinetic analysis of the effect of poliovirus receptor on viral uncoating: the receptor as a catalyst. J. Virol. 75: 4984 4989.
69. Tsang, S. K.,, P. Danthi,, M. Chow,, and J. M. Hogle. 2000. Stabilization of poliovirus by capsid-binding antiviral drugs is due to entropic effects. J. Mol. Biol. 296: 335 340.
70. Weissenhorn, W.,, A. Dessen,, L. J. Calder,, S. C. Harrison,, J. J. Skehel,, and D. C. Wiley. 1999. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16: 3 9.
71. Weissenhorn, W.,, A. Dessen,, S. C. Harrison,, J. J. Skehel,, and D. C. Wiley. 1997. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387: 426 430.
72. Wilson, I. A.,, J. J. Skehel,, and D. C. Wiley. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289: 366 373.
73. Xiao, C.,, C. M. Bator,, V. D. Bowman,, E. Rieder,, Y. He,, B. Hebert,, J. Bella,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2001. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J. Virol. 75: 2444 2451.
74. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. G. Kaplan,, D. Feigelstock,, R. H. Cheng,, and J. M. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19: 1207 1216.
75. Zhao, X.,, M. Singh,, V. N. Malashkevich,, and P. S. Kim. 2000. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc. Natl. Acad. Sci. USA 97: 14172 14177.
76. Zibert, A.,, H. C. Selinka,, O. Elroy-Stein,, and E. Wimmer. 1992. The soluble form of two N-terminal domains of the poliovirus receptor is sufficient for blocking viral infection. Virus Res. 25: 51 61.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error