1887

Chapter 5 : Enterococcal Cell Wall

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Enterococcal Cell Wall, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap05-2.gif

Abstract:

Walls of the enterococci may represent 27 to 38% of the dry cell weight (exponential and stationary phase cells, respectively). Three main constituents are generally reported: peptidoglycan (PG), teichoic acid, and polysaccharide. Sometimes, proteins are also mentioned. Most of the ultrastructural analyses of the enterococcal cell walls were conducted in ATCC9790. Structure, biosynthesis, and assembly of the different polymers that constitute the enterococcal cell walls are discussed in this chapter. The backbone of the enterococcal wall is PG, which is organized as a fisherman's net. One of the major functions of the PG in gram-positive organisms is the resistance to bursting induced by high cytoplasmic osmotic pressures. Many details of cell wall synthesis by enterococci are known, thanks in large measure to the extensive study of the mechanisms underlying vancomycin resistance. Cell wall-associated proteins have most extensively been studied in staphylococci and streptococci. Three categories of surface proteins are usually distinguished: those that have a LPXTG motif and anchor at their C-terminal ends, those that bind by way of charge and/or hydrophobic interactions, and those that bind by their N-terminal end. Few proteins have been described that bind through charge and/or hydrophobic interactions. and cells can exchange genetic material (plasmids) by conjugation processes induced by small peptide pheromones. Analysis of the gene sequences of indicated that the pheromones produced by plasmid-free strains originate from the signal sequences of apparent lipoprotein precursors.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5

Key Concept Ranking

Cell Wall Components
0.48260283
Chemicals
0.4615284
Cell Wall
0.45480645
Teichoic Acid
0.4412484
Cellular Processes
0.43774927
0.48260283
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of the cell wall of a gram-positive organism. The multilayered peptidoglycan covers the cytoplasmic membrane bearing embedded proteins and lipoteichoic acids. To the peptidoglycan are bound or associated teichoic acids (rods), polysaccharides (hexagons), and proteins (small and large spheres). Modified from reference with permission.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cross-linked peptidoglycan of enterococci. The A3 type with an (Ala)2-3 cross-bridge is found in . The A4 type with a d-isoAsn cross-bridge is found in , , and several other species.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biosynthesis of the peptidoglycan of . The genes in bold indicate those that were identified in enterococci (see text).

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of the cell wall surface enlargement of . The equatorial wall band marks the site of wall synthesis. It is first notched at the same time as the nascent septum starts to grow down. The septum elongates and is concomitantly split apart to make a new (clear) peripheral wall. Finally, the septum closes up the central gap and divides the original cell in two compartments. Reproduced from reference 4 with permission.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Proposed model of peptidoglycan assembly by a double channeling of cell wall precursors. Channel A is primarily involved with the synthesis of new cross wall. Channel A is involved in the conversion of the cross wall into two layers of thickening peripheral wall. Reproduced from reference 74 with permission.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Variation in cell wall carbohydrate polymer species from the cell wall of strain FA2-2. Polysaccharides were separated by electrophoresis through 10% polyacrylamide and detected with Stains-all. Lane 1, total cell wall polysaccharides; lane 2, capsular polysaccharide; lane 3, purified enterococcal polysaccharide antigen; lane 4, purified cell wall teichoic acid. The mean molecular size (kDa) of each carbohydrate, as assessed by gel filtration, is shown at left.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Proposed pathway for the synthesis of the serotype capsular polysaccharide in . In the first step of polysaccharide biosynthesis, the monosaccharides (represented by the small circles) must be activated by linkage to a nucleotide diphosphate (displayed as a circle with an asterisk). The nucleotide diphosphate provides the necessary energy to catalyze the polymerization of the monosaccharides into the oligosaccharide subunit by the glycosyl transferases shown in step 2. As a third step in the biosynthesis of the polysaccharide, the membrane-bound ABC transport proteins shuttle the oligosaccharide subunit across the cell membrane to the cell wall, where the polysaccharide is anchored to the cell. The transport of additional oligosaccharide subunits allows polymerization into a growing polysaccharide chain.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Model for the organization of cell wall polymers in the cell wall of The lipid-anchored lipoteichoic acid, also known as the streptococcal group D antigen, is shown protruding into the cell wall peptidoglycan. Shown anchored to N-acetylmuramic acid (MNAc) residues of the peptidoglycan are the integral cell wall teichoic acids and the hypothesized enterococcal species antigen. Anchored to the N-acetylglucosamine (GNAc) residues in the peptidoglycan and protruding out from the peptidoglycan is the serotype-specific capsular polysaccharide.

Citation: Coyette J, Hancock L. 2002. Enterococcal Cell Wall, p 177-218. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817923.chap5
1. Adam, M.,, C. Damblon,, M. Jamin,, W. Zorzi,, V. Dusart,, M. Galleni,, A. El Kharroubi,, G. Piras,, B. G. Spratt,, W. Keck,, J. Coyette,, J. M. Ghuysen,, M. Nguyen-Disteche,, and J. M. Frere. 1991. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279: 601 604.
2. Amoroso, A.,, S. Hallut,, F. Sapunaric,, S. Hubert,, and J. Coyette. Unpublished data.
3. Apfel, C. M.,, B. Takacs,, M. Fountoulakis,, M. Stieger,, and W. Keck. 1999. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression and characterization of the essential uppS genes. J. Bacteriol. 181: 483 492.
4. Archibald, A. R.,, I. C. Hancock,, and C. R. Harwood,. 1993. Cell wall structure, synthesis, and turnover, p. 381 410. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. ASM Press, Washington, D.C.
5. Arduino, R. C.,, K. Jacques-Palaz,, B. E. Murray,, and R. M. Rakita. 1994. Resistance of Enterococcus faecium to neutrophil-mediated phagocytosis. Infect. Immun. 62: 5587 5594.
6. Arduino, R., C, B. E. Murray,, and R. M. Rakita. 1994. Roles of antibodies and complement in phagocytic killing of enterococci. Infect. Immun. 62: 987 993.
7. Arias, C. A.,, J. Weisner,, J. M. Blackburn,, and P. E. Reynolds. 2000. Serine and alanine racemase activity of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology 146: 1727 1734.
8. Arthur, M.,, P. E. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4: 401 407.
9. Beliveau, C.,, C. Potvin,, J. Trudel,, A. Asselin,, and G. Bellemare. 1991. Cloning, sequencing and expression in E. coli of a Streptococcus faecalis autolysin. J. Bacteriol .. 173: 5619 5623.
10. Berger-Bachi, B. 1999. Genetic basis of methicillin resistance in Staphylococcus aureus. Cell. Mol. Life Sci. 56: 764 770.
11. Bertrand, J. A.,, G. Auger,, E. Auger,, L. Martin,, D. Blanot,, J. van Heijenoort,, and O. Dideberg. 1997. Crystal structure of UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase from Escherichia coli. EMBO J. 16: 3416 3425.
12. Billot-Klein, D.,, D. Shlaes,, D. Bryant,, D. Bell,, R. Legrand,, L. Gutmann,, and J. van Heijenoort. 1997. Presence of UDP-N-acetylmuramyl-hexapeptides and heptapeptides in enterococci and staphylococci after treatment with ramoplanin, tunicamycin, or vancomycin. J. Bacteriol. 179: 4684 4688.
13. Blattner, F. R.,, V. Burland,, G. I. Plunkett,, H. J. Sofia,, and D. J. Daniels. 1993. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 21: 5408 5417.
14. Bleiweis, A. S.,, and R. M. Krause. 1965. The cell walls of group D streptococci: I. The imunochemistry of the type I carbohydrate. J. Exp. Med. 122: 237 249.
15. Bleiweis, A. S.,, F. E. Young,, and R. M. Krause. 1967. Cell walls of group D streptococci. J. Bacteriol. 94: 1381 1387.
16. Boothby, D.,, L. Daneo-Moore,, M. L. Higgins,, J. Coyette,, and G. D. Shockman. 1973. Turnover of bacterial cell wall peptidoglycans. J. Biol. Chem. 248: 2161 2169.
17. Bossrez, S. 2000. Ph.D. thesis. University de Liege, Liege, Belgium.
18. Bottone, E. J.,, L. Patel,, P. Patel,, and T. Robin. 1998. Mucoid encapsulated Enterococus faecalis: an emerging morphotype isolated from patients with urinary tract infections. Diagn. Microbiol. Infect. Dis. 31: 429 430.
19. Bouhss, A.,, S. Dementin,, C. Parquet,, D. Mengin-Lecreulx,, J. A. Bertrand,, D. Le Beller,, O. Dideberg,, J. van Heijenoort,, and D. Blanot. 1999. Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-L-alanine:D-glutamate ligase (MurD). Biochemistry 38: 12240 12247.
20.Bouhss, A v D. Mengin-Lecreulx,, D. Le Beller,, and J. van Heijenoort. 1999. Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol. Microbiol. 34: 576 585.
21. Boulnois, G. J.,, and K. Jann. 1989. Bacterial polysaccharide capsule synthesis, export and evolution of structural diversity. Mol Microbiol. 3: 1819 1823.
22. Boyd, D. A.,, D. G. Cvitkovitch,, A. S. Bleiweis,, M. Y. Kiriukhin,, D. V. Debabov,, F. C. Neuhaus,, and I. R. Hamilton. 2000. Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutants results in acid sensitivity. J. Bacteriol. 182: 6055 6065.
23. Canepari, P.,, M. M. Lleo,, G. Cornaglia,, R. Fontana,, and G. Satta. 1986. Streptococcus faecium penicillin-binding protein 5 alone is sufficient for growth at submaximal but not at maximal rate. J. Gen. Microbiol. 132: 625 631.
24. Clemans, D. L.,, P. E. Kolenbrander,, D. V. Debabov,, Q. Zhang,, R. W. Lunsford,, H. Sakone,, C. J. Whittaker,, M. Heaton,, and F. C. Neuhaus. 1999. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Infect. Immun. 67: 2161 2474.
25. Clewell, D. B.,, F. Y. An,, S. E. Flanagan,, M. Antiporta,, and G. M. Dunny. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35: 246 247.
26. Clewell, D. B.,, P. K. Tomich,, M. C. Gawron-Burke,, A. E. Franke,, Y. Yagi,, and F. Y. An. 1982. Mapping of Streptococcus faecalis plasmids pADl and pAD2 and studies relating to transposition of Tn917. J. Bacteriol. 152: 1220 1230.
27. Coyette, J.,, J. M. Ghuysen,, and R. Fontana. 1980. The penicillin-binding proteins in Streptococcus faecalis ATCC9790. Eur. J. Biochem. 110: 445 456.
28. Coyette, J.,, J. M. Ghuysen,, and R. Fontana. 1978. Solubilization and isolation of the membrane-bound DD-carboxypeptidase of Streptococcus faecalis ATCC9790. Eur. J. Biochem. 88: 297 305.
29. Coyette, J.,, H. R. Perkins,, I. Polacheck,, G. D. Shockman,, and J. M. Ghuysen. 1974. Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC9790. Eur. J. Biochem. 44: 459 468.
30. Coyette, J.,, A. Somzé,, J. J. Briquet,, J. M. Ghuysen,, and R. Fontana,. 1983. Function of penicillin-binding protein 3 in Streptococcus faecium, p. 523 530. In R. Hakenbeck,, J. V. Holtje,, and H. Labischinski (ed.), The Target of Penicillin. Walter de Gruyter, Berlin, Germany.
31. Crater, D. L.,, and I. van de Rijn. 1995. Hyaluronic acid synthesis operon ( has) expression in group A streptococci. J. Biol. Chem. 270: 18452 18458.
32. DeAngelis, P. L.,, J. Papaconstantinou,, and P. H. Weigel. 1993. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J. Biol. Chem. 268: 14568 14571.
33. Debabov, D. V.,, M. P. Heaton,, Q. Zhang,, K. D. Stewart,, R. H. Lambalot,, and F. C. Neuhaus. 1996. The D-alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC. J. Bacteriol. 178: 3869 3876.
34. De Cueninck, B. J.,, G. D. Shockman,, and R. M. Swenson. 1982. Group B, type III streptococcal cell wall: composition and structural aspects revealed through endo-N-acetylmuramidase-catalyzed hydrolysis. Infect. Immun. 35: 572 581.
35. Delcour, J.,, T. Ferain,, M. Deghorain,, E. Palumbo,, and P. Hols. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76: 159 184.
36. Deng, L.,, D. L. Kasper,, T. P. Krick,, and M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275: 7497 7504.
37. de Roubin, M. R.,, D. Mengin-Lecreulx,, and J. van Heijenoort 1992. Peptidoglycan synthesis in Escherichia coli: variation in the metabolism of alanine and D-alanyl-D-alanine. J. Gen. Microbiol. 138: 1751 1757.
38. Doublet, P.,, J. van Heijenoort,, J. P. Bohin,, and D. Mengin-Lecreulx. 1993. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J. Bacteriol. 175: 2970 2979.
39. Doyle, R. J.,, J. Chaloupka,, and V. Vinter. 1988. Turnover of cell walls in microorganisms. Microbiol. Rev. 52: 554 567.
40. Du, W.,, J. R. Brown,, D. R. Sylvester,, J. Huang,, A. F. Chalker,, C. Y. So,, D. J. Holmes,, D. J. Payne,, and N. G. Wallis. 2000. Two active forms of UDP- N-acetylglucosarnine enolpymvyl-transferase in gram-positive bacteria. J. Bacteriol. 182: 4146 4152.
41. Duez, C.,, I. Thamm,, F. Sapunaric,, J. Coyette,, and J. M. Ghuysen. 1998. The division and cell wall gene cluster of Enterococcus hirae S185. DNA Seq. 9: 149 161.
42. Duez, C.,, W. Zorzi,, F. Sapunaric,, A. Amoroso, I. Thamm,, and J. Coyette. 2001. The penicillin-resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity PBP4, not involving a psr-like gene. Microbiology 147: 2561 2569.
43. Dunny, G. M.,, and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51: 527 564.
44. Dutka-Malen, S.,, S. Evers,, and P. Courvalin. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 33: 24 27. ( Erratum, 33: 1434.)
45. El Kharroubi, A.,, P. Jacques,, G. Piras,, J. Van Beeumen,, J. Coyette,, and J. M. Ghuysen. 1991. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463 469.
46. El Kharroubi, A.,, G. Piras,, P. Jacques,, I. Szabo, J. Van Beeumen,, J. Coyette,, and J. M. Ghuysen. 1989. Active-site membrane topology of the DD-peptidase/ penicillin-binding protein n°6 of Enterococcus hirae ( Streptococcus faecalis) ATCC9790. Biochem. J. 262: 457 462.
47. Elliott, S. D. 1959. Group and type-specific polysaccharides of group D streptococci. Nature 184: 1342.
48. Elliott, S. D. 1962. Teichoic acid and the group antigen of group D streptococci. Nature 193: 1105 1106.
49. Elliott, S. D. 1960. Type and group polysaccharides of group D streptococci. J. Exp. Med. 111: 621 630.
50. Filipe, S. R.,, M. G. Pinho,, and A. Tomasz. 2000. Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J. Biol. Chem. 275: 27768 27774.
51. Fischer, W. 1993. Molecular analysis of lipid macroamphiphiles by hydrophobic interaction chromatography, exemplified with lipoteichoic acids. Anal. Biochem. 208: 49 56.
52. Fischer, W. P. 1994. Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med. Microbiol. Immunol. 183: 61 76.
53. Fischetti, V. A., 2000. Surface proteins on gram-positive bacteria, p. 11 24. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
54. Fontana, R.,, R. Cerini,, P. Longoni,, A. Grossato,, and P. Canepari. 1983. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J. Bacteriol. 155: 1343 1350.
55. Fontana, R.,, L. Grossato,, L. Rossi,, Y. R. Cheng,, and G. Satta. 1985. Transition from resistance to hypersusceptibility to β-lactam antibiotics associated with loss of low-affinity penicillin-binding protein in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob. Agents Chemother. 28: 678 683.
56. Gaglani, M. J.,, C. J. Baker,, and M. S. Edwards. 1997. Contribution of antibody to neutrophil-mediated killing of Enterococcus faecalis. J. Clin. Immunol. 17: 478 484.
57. Ganfield, M. C.,, and R. A. Pieringer. 1980. The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium ( S. faecalis ATCC 9790) from phosphatidylkojibiosyl diacylglycerol and phosphatidylglycerol. J. Biol. Chem. 255: 5164 5169.
58. Ghuysen, J. M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37 67.
59. Ghuysen, J. M. 1968. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32: 425 464.
60. Ghuysen, J. M.,, P. Charlier,, J. Coyette,, C. Duez,, E. Fonz£,, C. Fraipont,, C. Goffin,, B. Joris,, and M. Nguyen-Disteche. 1996. Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. Microb. Drug Resist. 2: 163 175.
61. Ghuysen, J. M.,, and G. Dive,. 1994. Biochemistry of penicilloyl serine transferases, p. 103 129. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Science B.V., Amsterdam, The Netherlands.
62. Ghuysen, J. M.,, and J. L. Strominger. 1963. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. II. Separation and structure of disaccharides. Biochemistry 2: 1119 1125.
63. Goffin, C.,, and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079 1093.
64. Goldman, R.,, and J. L. Strominger. 1972. Purification and properties of C55-isoprenyl-pyrophosphate phosphatase from Micrococcus lysodeikticus. J. Biol. Chem. 16: 5116 5122.
65. Gordon, E.,, B. Flouret,, L. Chantalat,, J. van Heijenoort,, D. Mengin-Lecreulx,, and O. Dideberg. 2001. Crystal structure of UDP- N-acetylmuramoyl- L-alanine- D-glutamate: mesodiaminopimelate ligase from Escherichia coli. J. Biol. Chem. 276: 10999 11006.
66. Gutmann, L.,, S. Al-Obeid,, D. Billot-Klein,, E. Ebnet,, and W. Fischer. 1996. Penicillin tolerance and modification of lipoteichoic acid associated with expression of vancomycin resistance in VanB-type Enterococcus faecium D366. Antimicrob. Agents Chemother. 40: 257 259.
67. Ha, S.,, D. Walker,, Y. Shi,, and S. Walker. 2000. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynethsis. Protein Sci. 9: 1045 1052.
68. Hancock, I.,, and I. Poxton. 1988. Bacterial cell surface techniques. John Wiley & Sons, Chichester, United Kingdom.
69. Hancock, L. E.,, and M. S. Gilmore. 2002. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc. Natl. Acad. Sci. USA 99: 5474 5479.
70. Hancock, L. E. Unpublished data.
71. Hancock, L. E.,, and M. S. Gilmore. 1997. Identification of a highly conserved lipopolysaccharide (LPS) modification operon in Enterococcus faecalis. Adv. Exp. MedBiol. . 418: 1049 1050.
72. Harvey, B. S.,, C. J. Baker,, and M. S. Edwards. 1992. Contributions of complement and immunoglobulin to neutrophil-mediated killing of enterococci. Infect Immun. 60: 3635 3640.
73. Healy, V. L.,, I. A. D. Lessard,, D. I. Roper,, J. R. Knox,, and C. T. Walsh. 2000. Vancomycin resistance in enterococci: reprograrriming of the D-Ala- D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem. Biol. 7: 109 119.
74. Higgins, M. L.,, and G. D. Shockman. 1976. Study of a cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstructions in thin sections of cells. J. Bacteriol. 127: 1346 1358.
75. Hirt, H.,, S. L. Erlandsen,, and G. M. Dunny. 2000. Heterologous inducible expression of Enterococcus faecalis pCFlO aggregation substance Asc10 in Lactococcus lactis and Streptococcus gordonii contributes to cell hydrophobicity and adhesion to fibrin. J. Bacteriol. 182: 2299 2306.
76. Holtje, J. V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181 203.
77. Huebner, J.,, A. Quaas,, W. A. Krueger,, D. A. Goldmann,, and G. B. Pier. 2000. Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. Infect. Immun. 68: 4631 4636.
78. Huebner, J.,, Y. Wang,, W. A. Krueger,, L. C. Madoff,, G. Martirosian,, S. Boisot,, D. A. Goldmann,, D. L. Kasper,, A. O. Tzianabos,, and G. B. Pier. 1999. Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect. Immun. 67: 1213 1219.
79. Ito, E.,, and J. L. Strominger. 1973. Enzymatic synthesis of the peptide in bacterial uridine nucleotides. VII. Comparative biochemistry. J. Biol. Chem. 248: 3131 3136.
80. Iwasaki, H.,, A. Shimada,, and E. Ito. 1986. Comparative studies of lipoteichoic acids from several Bacillus strains. J. Bacteriol. 167: 508 516.
81. Jacques, P.,, A. El Kharroubi,, J. Van Beeumen,, G. Piras,, J. A. Coyette,, and J. M. Ghuysen. 1991. Mode of membrane insertion and sequence of a 32-amino acid peptide stretch of the penicillin-binding protein 4 of Enterococcus hirae. FEMS Microbiol. Lett. 82: 119 124.
82. Jamin, M.,, C. Damblon,, S. Millier,, R. Hakenbeck,, and J. M. Frfere. 1993. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with β-lactams. Biochem. J. 292: 735 741.
83. Jiang, X. M.,, B. Neal,, F. Santiago,, S. J. Lee,, L. K. Romana,, and P. R. Reeves. 1991. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol. Microbiol. 5: 695 713.
84. Jorasch, P.,, F. P. Wolter,, U. Zahringer,, and E. Heinz. 1998. A UDP-glycosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29: 419 430.
85. Joris, B.,, S. Englebert,, C. P. Chu,, R. Kariyama,, L. Daneo-Moore,, G. D. Shock-man,, and J. M. Ghuysen. 1992. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 91: 257 264.
86. Kariyama, R.,, and G. D. Shockman. 1992. Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC9790. J. Bacteriol. 174: 3236 3241.
87. Kehoe, M. A., 1994. Cell-wall associated proteins in gram-positive bacteria, p. 217 261. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Science B.V., Amsterdam, The Netherlands.
88. Kiriukhin, M.,, D. V. Debabov,, D. L. Shinabarger,, and F. C. Neuhaus. 2001. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J. Bacteriol. 183: 3506 3514.
89. Kitada, K.,, and M. Inoue. 1996. Immunochemical characterization of the carbohydrate antigens of serotype k and Lancefield group G " Streptococcus milieu". Oral Microbiol. Immunol. 11: 22 28.
90. Kitada, K.,, T. Yakushiji,, and M. Inoue. 1993. Immunochemical characterization of the carbohydrate antigens of serotype c/Lancefield group C “ Streptococcus milleri.” Oral Microbiol. Immunol. 8: 161 166.
91. Koch, A. L. 1988. Biophysics of bacterial walls viewed as stress-bearing fabric. Microbiol. Rev. 52: 337 353.
92. Koch, A. L. 1991. The wall of bacteria serves the roles that mechano-proteins do in eukaryotes. FEMS Microbiol. Lett 88: 15 26.
93. Labischinski, H.,, and H. Maidhof,. 1994. Bacterial peptidoglycan: overview and evolving concepts, p. 23 38. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Science B.V., Amsterdam, The Netherlands.
94. Lamont, H. C.,, W. L. Staudenbauer,, and J. L. Strominger. 1972. Partial purification and characterization of an aspartate racemase from Streptococcus faecalis. J. Biol. Chem. 247: 5103 5106.
95. Lancefield, R. C. 1933. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 57: 571 595.
96. Lancefield, R. C. 1940. Specific relationship of cell composition to biological activity of hemolytic streptococci. Harvey Lect 36: 251.
97. Leonard, B. A.,, M. Woischnik,, and A. Podbielski. 1998. Production of stabilized virulence factor-negative variants by group A streptococci during stationary phase. Infect. Immun. 66: 3841 3847.
98. Lessard, I. A. D.,, S. D. Pratt,, D. G. McCafferty,, D. E. Bussiere,, C. Hutchins,, B. L. Wanner,, L. Katz,, and C. T. Walsh. 1998. Homologs of the vancomycin resistance of D-Ala-D-Ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli, and Synechocystis: attributes of catalytic efficiency, stereoselectivity and regulation with implications for function. Chem. Biol. 5: 489 504.
99. Ligozzi, M.,, F. Pittaluga,, and R. Fontana. 1983. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 175: 2046 2051.
100. Liu, D.,, A. M. Haase,, L. Lindqvist,, A. A. Lindberg,, and P. R. Reeves. 1993. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and El. J. Bacteriol. 175: 3408 3413.
101. Lleo, M. M.,, R. Fontana, and M. Solioz. 1995. Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J. Bacteriol. 177: 5912 5917.
102. Lounatmaa, K.,, and J. H. Meurman. 1980. Electron microscopic visualization of extracellular polysaccharides on the cell wall of some streptococci. J. Dent. Res. 59: 729 735.
103. Maekawa, S.,, and S. Habadera. 1996. Comparative distribution of the serotypes of Enterococcus faecalis isolated from the urine of patients with urinary tract infections and the feces of healthy persons as determined by the slide agglutination reaction. Kansenshogaku Zasshi 70: 168 174.
104. Maekawa, S.,, M. Yoshioka,, and Y. Kumamoto. 1992. Proposal of a new scheme for the serological typing of Enterococcus faecalis strains. Microbiol. Immunol. 36: 671 681.
105. Mainardi, J. L.,, R. Legrand,, M. Arthur,, B. Schoot,, J. van Heijenoort,, and L. Gutmann. 2000. Novel mechanism of β-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J. Biol. Chem. 275: 16490 16496.
106. Marques, M. B.,, D. L. Kasper,, A. Shroff,, F. Michon,, H. J. Jennings,, and M. R. Wessels. 1994. Functional activity of antibodies to the group B polysaccharide of group B streptococci elicited by a polysaccharide-protein conjugate vaccine. Infect. Immun. 62: 1593 1599.
107. Massidda, O.,, O. Dardenne,, M. B. Whalen,, W. Zorzi,, J. Coyette,, G. D. Shockman,, and L. Daneo-Moore. 1998. The psr gene of Enterococcus hirae ATCC9790 is substantially longer than previously reported. FEMS Microbiol. Lett. 166: 355 360.
108. Massidda, O.,, R. Kariyama,, L. Daneo-Moore,, and G. D. Shockman. 1996. Evidence that the PBP5-synthesis repressor ( psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties. J. Bacteriol. 178: 5272 5278.
109. Matthews, K. R.,, and S. P. Oliver. 1993. Encapsulation of streptococci isolated from bovine milk. Zentralbl. Veterinarmed. 40: 597 602.
110. Mauël, C.,, M. Young,, P. Margot, and D. Karamata. 1989. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388 394.
111. Mauël, C.,, M. Young,, A. Monsutti-Grecescu,, S. A. Marriott,, and D. Karamata. 1994. Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140: 2279 2288.
112. McCarty, M.,, and S. I. Morse. 1964. Cell wall antigens of gram-positive bacteria. Adv. Immun. 6: 249 285.
113. McKenney, D.,, K. L. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. Doring,, J. C. Lee,, D. A. Goldmann,, and G. B. Pier. 1999. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284: 1523 1527.
114. McShan, M. 2000. Personal communication.
115. Meier-Dieter, U.,, K. Barr,, R. Starman,, L. Hatch,, and P. D. Rick. 1992. Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. J. Biol. Chem. 267: 746 753.
116. Mollerach, M. E.,, P. Partoune,, J. Coyette,, and J. M. Ghuysen. 1996. Importance of the E-46-D-160 polypeptide segment of the non-penicillin module for the folding of the low-affinity, multimodular class B penicillin-binding protein 5. J. Bacteriol. 178: 1774 1775.
117. Nakao, A.,, S. Imai,, and T. Takano. 2000 Transposon-mediated insertional mutagenesis of the D-alanyl-lipoteichoic acid ( dlt) operon raises metmdllin resistance in Staphylococcus aureus. Res. Microbiol. 151: 823 829.
118. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174 229.
119. Neuhaus, F. C. 1962. The enzymatic synthesis of D-alanyl- D-alanine. I. Purification and properties of D-alanine- D-alanine synthetase. J. Biol. Chem. 237: 778 786.
120. Neuhaus, F. C. 1962. The enzymatic synthesis of D-alanyl- D-alanine. II. Kinetic studies of D-alanyl- D-alanine synthetase. J. Biol. Chem. 237: 3128 3135.
121. Neuhaus, F. C.,, M. P. Heaton,, D. V. Debabov,, and Q. Zhang. 1996. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb. Drug Resist. 2: 77 84.
122. Neuhaus, F. C.,, and W. G. Struve. 1965. Enzymatic synthesis of analogs of the cell-wall precursor. I. Kinetics and specificity of uridine diphospho- N-acetylmuramyl- L-alanyl- D-glutamyl- L-lysme: D-alanyl- D-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R. Biochemistry 4: 120 131.
123. Noble, C. J. 1978. Carriage of group D streptococci in the human bowel. J. Clin. Pathol. 31: 1182 1186.
124. Ntamere, A. S.,, D. J. Taron,, and F. C. Neuhaus. 1987. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J. Bacteriol. 169: 1702 1711.
125. Paoletti, L. C.,, R. A. Ross,, and K. D. Johnson. 1996. Cell growth rate regulates expression of group B Streptococcus type III capsular polysaccharide. Infect. Immun. 64: 1220 1226.
126. Pazur, J. H. 1982. β-D-glucose 1-phosphate: a structural unit and an immunological determinant of a glycan from streptococcal cell walls. J. Biol. Chem. 257: 589 591.
127. Pazur, J. H.,, A. Cepure,, J. A. Kane,, and W. W. Karakawa. 1971. Glycans from streptococcal cell walls: glycosyl-phosphoryl moieties as immunodominant groups in heteroglycans from group D and group L streptococci. Biochem. Biophys. Res. Commun. 43: 1421 1428.
128. Perego, M.,, P. Glaser,, A. Minutello,, M. A. Strauch,, K. Leopold,, and W. Fischer. 1995. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270: 15598 15606.
129. Plapp, R.,, and J. L. Strominger. 1970. Biosynthesis of peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and interpeptide bridges in Lactobacillus viridescens. J. Biol. Chem. 245: 3667 3674.
130. Plapp, R.,, and J. L. Strominger. 1970. Biosynthesis of peptidoglycan of bacterial cell walls. XVIII. Purification and properties of L-alanyl transfer ribonucleic acid-uridine diphosphate-N-acetylmuramyl-pentapeptide transferase from Lactobacillus vindescens. J. Biol. Chem. 245: 3675 3682.
131. Pooley, H. M.,, F. X. Abellan,, and D. Karamata. 1991. A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J. Gen. Microbiol. 137: 921 928.
132. Price, K. D.,, S. Roels,, and R. Losick. 1997. A Bacillus subtilis gene encoding a protein similar to nucleotide sugar transferases influences cell shape and viability. J. Bacteriol. 179: 4959 4961.
133. Pucci, M.,, J. A. Thanassi,, L. F. Discotto,, R. E. Kessler,, and T. J. Dougherty. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632 5635.
134. Qi, Y.,, and F. M. Hulett. 1998. Role of Pho-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180: 4007 4010.
135. Rakita, R. M.,, V. C. Quan,, K. Jacques-Palaz,, K. V. Singh,, R. C. Arduino,, M. Mee,, and B. E. Murray. 2000. Specific antibody promotes opsonization and PMN-mediated killing of phagocytosis-resistant Enterococcus faecium. FEMS Immunol. Med. Microbiol. 28: 291 299.
136. Raze, D.,, O. Dardenne,, S. Hallut,, M. Martinez-Bueno,, J. Coyette,, and J. M. Ghuysen. 1998. The low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185R is borne on a plasmid carrying other antibiotic resistance determinants. Antimicrob. Agents Chemother. 42: 534 539.
137. Rogers, H. J.,, H. R. Perkins,, and J. B. Ward. 1980. Microbial Cell Walls and Membranes. Chapman and Hall, London, United Kingdom.
138. Rohrer, S.,, K. Ehlert,, M. Tschierske,, H. Labischinski,, and B. Berger-Bachi. 1999. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA 96: 9351 9356.
139. Ross, R. A.,, L. C. Madoff,, and L. C. Paoletti. 1999. Regulation of cell component production by growth rate in the group B Streptococcus. J. Bacteriol. 181: 5389 5394.
140. Rue, L. B.,, L. L. Carias,, R. Hutton-Thomas,, R. Sifaoui,, L. Gutmann,, and S. D. Rudin. 2001. Penidllm-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 45: 1480 1486.
141. Salton, M. R. J. 1964. The Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
142. Sapunaric, E.,, C. Franssen,, R. Stefanic,, A. Amoroso,, O. Dardenne,, and J. Coyette. Synthesis of the low-affinity PBP5 and cellular autolysis are not controlled by the psr gene in Enterococcus hirae. Submitted.
143. Satta, G.,, R. Fontana,, and P. Canepari. 1994. The two-competing site (TCS) model for cell shape regulation in bacteria: the envelope as an integration point for the regulatory circuits essential physiological events. Adv. Microb. Physiol. 36: 181 245.
144. Schleifer, K. H.,, and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407 477.
145. Schleifer, K. H.,, and R. Kilpper-Balz. 1987. Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst. Appl. Microbiol. 10: 1 19.
146. Sharpe, M. E. 1964. Serological types of Streptococcus faecalis and its varieties and their cell wall type antigen . J. Gen. Microbiol. 36: 151 160.
147. Sharpe, M. E.,, and P. M. F. Shattock. 1952. The serological typing of group D streptococci associated with outbreaks of neonatal diarrhoea. J. Gen. Microbiol. 6: 150 165.
148. Shimizu, N.,, T. Koyama,, and K. Ogura. 1998. Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. No sequence similarity between E- and Z-prenyl diphosphate synthases. J. Biol. Chem. 273: 19476 19481.
149. Shockman, G. D. 1992. The autolytic ('suicidase') system of Enterococcus hirae: from lysine acylation autolysis to biochemical and molecular studies of the two muramidases Enterococcus hirae ATCC9790. FEMS Microbiol. Lett. 100: 261 268.
150. Shockman, G. D.,, and J. F. Barrett 1983. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu. Rev. Microbiol. 37: 501 527.
151. Shockman, G. D.,, D. L. Dolinger,, and L. Daneo-Moore,. 1988. The autolytic peptidoglycan hydrolases of Streptococcus faecium: two unusual enzymes, p. 195 210. In P. Actor,, L. Daneo-Moore,, M. L. Higgins,, M. R. J. Salton,, and G. D. Shockman (ed.), Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function. ASM Press, Washington, D.C.
152. Shockman, G. D.,, and J. V. Holtje,. 1994. Microbial peptidoglycan (murein) hydrolases, p. 131 166. In J. M. Ghuysen, and R. Hakenbeck (ed .), Bacterial Cell Wall. Elsevier Science B.V., Amsterdam, The Netherlands.
153. Shockman, G. D.,, and J. T. Martin. 1968. Autolytic enzyme system of Streptococcus faecalis. TV. Electron microscopic observations of autolysin and lysozyme action. J. Bacteriol. 96: 1803 1810.
154. Siewert, G.,, and J. L. Strominger. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. J. Biol. Chem. 243: 783 790.
155. Signoretto, C.,, M. Boaretti,, and P. Canepari. 1998. Peptidoglycan synthesis by Enterococcus faecalis penicillin-binding protein 5. Arch. Microbiol. 170: 185 190.
156. Staudenbauer, W. L.,, and J. L. Strominger. 1972. Activation of D-aspartic acid for incorporation into peptidoglycan. J. Biol. Chem. 247: 5095 5102.
157. Staudenbauer, W. L.,, E. Willoughby,, and J. L. Strominger. 1972. Further studies of the D-aspartic acid-activating enzyme of Streptococcus faecalis and its attachment to the membrane. J. Biol. Chem. 247: 5289 5296.
158. Stevenson, G.,, B. Neal,, D. Liu,, M. Hobbs,, N. H. Packer,, M. Batley,, J. W. Redmond,, L. Lindquist,, and P. Reeves. 1994. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J. Bacteriol. 176: 4144 4156.
159. Strominger, J. L.,, M. Matsuhashi,, J. S. Anderson,, C. P. Dietrich,, P. M. Meadow,, W. Katz,, G. Siewert,, and J. M. Gilbert 1966. Glycopeptide synthesis in Staphylococcus aureus and Micrococcus lysodeikticus. Methods Enzymol. 8: 473 486.
160. Terrak, M.,, T. K. Ghosh,, J. van Heijenoort,, J. Van Beeumen,, M. Lampilas,, J. Aszodi,, J. A. Ayala,, J. M. Ghuysen,, and M. Nguyen-Disteche. 1999. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein lb of Escherichia coli. Mol. Microbiol. 34: 350 364.
161. Ton-That, H.,, H. Labischinski,, B. Berger-Bachi,, and O. Schneewind. 1998. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 273: 29143 29149.
162. Ton-That, H.,, S. K. Mazmanian,, K. F. Faull,, and O. Schneewind. 2000. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH 2-Gly 3 substrates. J. Biol. Chem. 275: 9876 9881.
163. Toon, P.,, P. E. Brown,, and J. Baddiley. 1972. The lipid-teichoic acid complex in the cytoplasmic membrane of Streptococcus faecalis N. C. I. B. 8191. Biochem. J. 127: 399 409.
164. Tsien, H., C, G. D. Shockman,, and M. L. Higgins. 1978. Structural arrangement of polymers within the wall of Streptococcus faecalis. J. Bacteriol. 133: 372 386.
165. Tsukioka, Y.,, Y. Yamashita,, Y. Nakano,, T. Oho,, and T. Koga. 1997. Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans. J. Bacteriol. 179: 4411 4414.
166. Tsukioka, Y.,, Y. Yamashita,, T. Oho,, Y. Nakano,, and T. Koga. 1997. Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans. J. Bacteriol. 179: 1126 1134.
167. van Heijenoort, J. 1998. Assembly of the monomer unit of bacterial peptidoglycan. Cell. Mol. Life Sci. 54: 300 304.
168. van Heijenoort, J., 1994. Biosynthesis of the bacterial peptidoglycan subunit, p. 39 54. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Science, B.V., Amsterdam, The Netherlands.
169. van Heijenoort, J., 1996. Murein synthesis, p. 1025 1034. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella, 2nd ed., vol. 1. ASM Press, Washington, D.C.
170. van Heijenoort, J. 2001. Polymerization by transglycosylation in the synthesis of bacterial peptidoglycan. Glycobiology 11: R1 R12.
171. Walsh, A. W.,, P. J. Falk,, J. Thanassi,, L. Discotto,, M. J. Pucci,, and H. T. Ho. 1999. Comparison of the D-glutamate-adding enzymes from selected gram-positive and gram-negative bacteria . J. Bacteriol. 181: 5395 5407.
172. 171a. Watson, B. K.,, R. C. Moellering,, and L. J. Kunz. 1976. Effects of penicillin and lysozymes on the immunofluorescent and precipitin reactivity of group D streptococci. Am. J. Clin. Pathol. 66: 73 79.
172. Weber, B.,, K. Ehlert,, A. Diehl,, P. Reichmann,, H. Labischinski,, and R. Hakenbeck. 2000. The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated β-lactam resistance. FEMS Microbiol. Lett. 188: 81 85.
173. Wecke, J.,, M. Perego,, and W. Fischer. 1996. D-alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb. Drug Resist. 2: 123 129.
174. Wicken, A. J.,, S. D. Elliot,, and J. Baddiley. 1963. The identity of streptococcal group D antigen with teichoic acid. J. Gen. Microbiol. 31: 231 239.
175. Williamson, R. L.,, L. Gutmann,, T. Horaud,, F. Delbos,, and J. F. Acar. 1986. Use of penicillin-binding proteins for the identification of enterococci. J. Gen. Microbiol. 132: 1929 1937.
176. Xu, Y.,, B. E. Murray,, and G. M. Weinstock. 1998. A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect. Immun. 66: 4313 4323.
177. Xu, Y.,, K. V. Singh,, X. Qin, B. E. Murray,, and G. M. Weinstock. 2000. Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect. Immun. 68: 815 823.
178. Yamashita, Y.,, K. Tomihisa,, Y. Nakano,, Y. Shimazaki,, T. Oho,, and T. Koga. 1999. Recombination between gtfB and gtfC is required for survival of a dTDP-rhamnose synthesis-deficient mutant of Streptococcus mutans in the presence of sucrose. Infect. Immun. 67: 3693 3697.
179. Yamashita, Y.,, Y. Tsukioka,, K. Tomihisa,, Y. Nakano,, and T. Koga. 1998. Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J. Bacteriol. 180: 5803 5807.
180. Yan, Y.,, S. Munshi,, B. Letting,, M. S. Anderson,, J. Chrzas,, and Z. Chen. 2000. Crystal structure of Escherichia coli UDPMurNAc-tripeptide D-alanyl-D-alanine-adding enzyme (MurF) at 2.3 A resolution. J. Mol. Biol. 304: 435 445.
181. Zorzi, W.,, X. Y. Zhou,, O. Dardenne,, J. Lamotte,, D. Raze,, J. Pierre,, L. Gutmann,, and J. Coyette. 1996. Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178: 4948 4957.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error