Chapter 20 : Transposon Tn10

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Transposon Tn10, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap20-2.gif


This chapter summarizes one’s current understanding of the molecular mechanism of Tn/IS transposition and describes how double-strand cleavages are made in other complex systems including V(D)J recombination. Additional information regarding the precise role of integration host factor (IHF) in transpososome assembly has come from experiments conducted with use of the short, linear outside-end fragment assay in which transpososomes are easily detected. A mutational study on a particular insertion hotspot called HisG1 demonstrated that only the first 5 to 6 bp of the flanking sequence influenced target site utilization. Mutants of this class exhibit an altered target specificity (ATS) phenotype. Stereoselectivity was observed for each of the four chemical steps in Tn transposition. First, strand nicking, hairpin formation, hairpin resolution, and target strand transfer exhibited Rp, Sp, Rp, and Rp stereoselectivities, respectively. The stereoselectivity of hairpin resolution (Rp) has only been worked out in the Tn system. Finally, target strand transfer in Mu transposition and HIV integration exhibits Rp-Ps stereoselectivity. From the stereochemical model, predictions for the organization of DNA binding determinants in the active site can be made. In addition, in Tn transposition hairpin resolution must necessarily precede target strand transfer to expose a 3'-OH terminus for joining to the target DNA.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Structure of TnThe direction of transcription is indicated by arrows. IS-Left encodes a truncated form of transposase that is nonfunctional. Half-arrows indicate nearly perfect inverted repeat sequences at the outside (O) and inside (I) ends of IS-Right. Binding sites for transposase and IHF are indicated by hatched and open rectangles, respectively. IS-Left and IS-Right flank, genes encoding resistance to tetracycline; jemA, a predicted sodium-dependent glutamate permease; jemB, unknown function. jemC has some homology to a family of bacterial transcriptional regulators that repress the arsenic and mercury resistance operons. This figure was adapted from ( ) with permission from the publisher.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms of DNA transposition. In nonreplicative transposition, as performed by Tn transposon sequences (thick lines) are completely separated from flanking donor sequences (thin lines) at an early stage of the reaction. In contrast, in replicative transposition, as conducted by bacteriophage Mu, the donor DNA remains attached to the transposon subsequent to strand transfer into the target DNA (dashed lines). In retroviral integration cleavage of the viral DNA generated by reverse transcription resembles DNA cleavage in the Mu reaction. Strand transfer in all three systems occurs by the same chemical mechanism.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Nonreplicative transposition can generate different types of transposition products. In addition to the formation of simple inserts, Tn can generate both deletions and inversions as alternative reaction products; sites of insertion are indicated by a bubble not attached to a box. Inversions of the type shown generate new composite transposons, e.g., Tn-dcba; adapted from reference 74 with permission of the publisher.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

An alternate model for cointegrate and adjacent deletion formation through nonreplicative transposition. Synapsis of transposon ends present on sister chromatids can lead to the formation of products that are characteristic of replicative DNA transposition. If the target for insertion is on a separate DNA molecule from the transposon ends (i.e., intermolecular) a cointegrate can be formed. Alternatively, if the target is on the same molecule, either an adjacent deletion is formed or a duplicative inversion, depending on the particular orientation in which the transposon ends attack the target. Reprinted from ( ) with permission of the publisher.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Chemical steps in selected double-strand DNA cleavage reactions. Note that first-strand cleavage reactions in Tn/ Tn and Tam1/VDJ recombination are on opposite strands, and this leads to a transposon end hairpin in the former and a donor flank hairpin in the latter. The second chemical step in IS/IS transposition resembles that in the reactions above in that it is a transesterification; however, unlike hairpin formation it is an intrastrand event. Adapted from ( ) with permission of the publisher.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Transpososomes in Tn transposition. In vitro reactions using short, linear outside end fragments provide a convenient means of generating Tn transpososomes. Target capture of and strand transfer into a short linear target fragment are shown. Transpososome assembly does not require the presence of a divalent metal ion but reaction chemistry does. For simplicity transposase is shown bound to only one site on each transposon end fragment and only the equivalent of the b- PEC is shown. Also, the relative arrangement of the two transposon ends within each of the transpososomes is not known. PEC, paired ends complex; SEBC, single-end break complex; DEBC, double-end break complex; TCC, target capture complex; STC, strand transfer complex. Adapted from ( ) with permission of the publisher.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Comparison of OP-Cu footprints for HisG1 and LacZ* Tn insertion hotspots. Positions of OP-Cu protections are indicated by black circles, and OP-Cu hypersensitivities are indicated by arrows. Black rectangles show the positions of the target core half-sites. Residues in the 9-bp target core are indicated in bold. The numbering scheme for both bases and phosphates is shown.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Model for sequence-specific target capture. A transposase dimer is shown binding to the target core of a Tn insertion hotspot (left side). Subsequent to the initial contact with the core, the target DNA is shown to form two kinks, the formation of which allows a second region of transposase to contact flanking DNA (right side). Kink formation may be stabilized by the binding of a divalent metal ion to the DNA at the position of the kink and/or the establishment of the kink may be necessary to set up a high-affinity metal ion binding site. Kink formation may also activate the scissile phosphate for nucleophilic attack. It is also possible that the initial contact with the core alters the conformation of transposase so that it is better able to facilitate kink formation (not shown).

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Linear map of Tn transposase showing the relative positions of the major trypsin cleavage sites, the DDE motif, and positions of various classes of mutations. ATS, altered target site specificity mutations; SEM, suppressor of end mutations; TS, transpososome stability mutations. The YREK sequence is part of a highly conserved motif present in the IS family ( ) and a basic residue is usually situated between the E and K ( ). In Tn transposase this basic residue is R296, which is also the position of a TS mutation. α and β refer to different proteolytic fragments generated by trypsin digestion.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Possible arrangement of DNA strands in the active site as predicted from the stereochemical model shown in Color Plate 40. See text for details.

Citation: Haniford D. 2002. Transposon Tn10, p 457-483. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adzuma, K.,, and K. Mizuuchi. 1988. Target immunity of Mu transposition reflects a differential distribution of MuB protein. Cell 53: 257 266.
2. Agrawal, A.,, Q. M. Eastman,, and D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744 751.
3. Agrawal, A.,, and D. G. Schatz. 1997. RAG1 and RAG2 form a stable post-cleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89: 43 53.
4. Allingham, J. S.,, P. A. Pribil,, and D. B. Haniford. 1999. All three residues of the Tn10 transposase DDE catalytic triad function in divalent metal ion binding. J. Mol. Biol. 289: 1195 1206.
5. Arciszewska, L. K.,, D. Drake,, and N. L. Craig. 1989. Transposon Tn7 cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207: 35 52.
6. Bainton, R.,, P. Gamas,, and N. L. Craig. 1991. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65: 805 816.
7. Baker, T. A.,, and K. Mizuuchi. 1992. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 6: 2221 2232.
8. Baker, T. A.,, M. Mizuuchi,, and K. Mizuuchi. 1991. MuB protein allosterically activates strand transfer by transposase of phage Mu. Cell 65: 1003 1013.
9. Beese, L. S.,, and T. A. Steitz. 1991. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBOJ. 10: 25 33.
10. Bender, J.,, and N. Kleckner. 1986. Genetic evidence that Tn10 transposes by a nonreplicative mechanism. Cell 45: 801 815.
11. Bender, J.,, and N. Kleckner. 1992. IS10 transposase mutations that specifically alter target site recognition. EMBOJ. 11: 741 750.
12. Bender, J.,, and N. Kleckner. 1992. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc. Natl. Acad. Sci. USA 89: 7996 8000.
13. Benjamin, H. W.,, and N. Kleckner. 1992. Excision of Tn10 from the donor site during transposition occurs by flush double- strand cleavages at the transposon termini. Proc. Natl. Acad. Sci. USA 89: 4648 4652.
14. Benjamin, H. W.,, and N. Kleckner. 1989. Intramolecular transposition by Tn10. Cell 59: 373 383.
15. Bennett, S. P.,, and S. E. Halford. 1989. Recognition of DNA by type II restriction enzymes. Curr. Top. Cell. Regul. 30: 57 104.
16. Bhasin, A.,, I. Y. Goryshin,, and W. S. Reznikoff. 1999. Hairpin formation in Tn5 transposition. J. Biol. Chem. 274: 37021 37029.
17. Bolland, S.,, and N. Kleckner. 1996. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84: 223 233.
18. Bolland, S.,, and N. Kleckner. 1995. The two single-strand cleavages at each end of Tn10 occur in a specific order during transposition. Proc. Natl. Acad. Sci. USA 92: 7814 7818.
19. Brautigam, C. A.,, and T. A. Steitz. 1998. Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol. 277: 363 377.
20. Brown, P. O., 1997. Integration, p. 161 204. In L. M. Coffin,, S. H. Hughes,, and H. E. Varmus (ed.), Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
21. Bujacz, G.,, M. Jaskolski,, J. Alexandratos,, A. Wlodawer,, G. Merkel,, R. A. Katz,, and A. M. Skalka. 1995. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253: 333 346.
22. Chaconas, G.,, B. D. Lavoie,, and M. A. Watson. 1996. DNA transposition: jumping gene machine, some assembly required. Curr. Biol. 6: 817 820.
23. Chalmers, R.,, A. Guhathakurta,, H. Benjamin,, and N. Kleckner. 1998. IHF modulation of Tn10 transposition: sensory transduction of supercoiling status via a proposed protein/ DNA molecular spring. Cell 93: 897 908.
24. Chalmers, R.,, S. Sewitz,, K. Lipkow,, and P. Crellin. 2000. Complete nucleotide sequence of Tn10. J. Bacteriol. 182: 2970 2972.
25. Chalmers, R. M.,, and N. Kleckner. 1996. IS10/Tn10 transposition efficiently accommodates diverse transposon end configurations. EMBOJ. 15: 5112 5122.
26. Chalmers, R. M.,, and N. Kleckner. 1994. Tn10/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269: 8029 8035.
27. Chow, S. A.,, K. A. Vincent,, V. Ellison,, and P. O. Brown. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723 726.
28. Coen, E.,, T. Robbins,, J. Almeida,, A. Hudson,, and R. Carpenter,. 1989. Consequences and mechanisms of transposition in Antirrhinum majus, p. 413 436. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
29. Colot, V.,, V. Haedens,, and J. L. Rossignol. 1998. Extensive, nonrandom diversity of excision footprints generated by Dslike transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol. Cell. Biol. 18: 4337 4346.
30. Craigie, R.,, D. J. Arndt-Jovin,, and K. Mizuuchi. 1985. A defined system for the DNA strand-transfer reaction at the initiation of bacteriophage Mu transposition: protein and DNA substrate requirements. Proc. Natl. Acad. Sci. USA 82: 7570 7574.
31. Cuomo, C. A.,, C. L. Mundy,, and M. A. Oettinger. 1996. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell. Biol. 16: 5683 5690.
32. Davies, D. R.,, I. Y. Goryshin,, W. S. Reznikoff,, and I. Ray ment. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77 85.
33. Davies, D. R.,, L. Mahnke Braam,, W. S. Reznikoff,, and I. Rayment. 1999. The three dimensional structure of a Tn5 transposase-related protein determined to 2.9 A resolution. J. Biol. Chem. 274: 11904 11913.
34. Derbyshire, K. M.,, L. Hwang,, and N. D. F. Grindley. 1987. Genetic analysis of the interaction of the insertion sequence IS903 transposase with its terminal inverted repeats. Proc. Natl. Acad. Sci. USA 84: 8049 8053.
35. Dyda, F.,, A. B. Hickman,, T. M. Jenkins,, A. Engelman,, R. Craigie,, and D. R. Davies. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981 1985.
36. Eckstein, F. 1985. Nucleoside phosphorothioates. Annu. Rev. Biochem. 54: 367 402.
37. Engelman, A.,, and R. Craigie. 1992. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66: 6361 6369.
38. Engelman, A.,, K. Mizuuchi,, and R. Craigie. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211 1221.
39. Fedoroff, N. V., 1989. Maize transposable elements, p. 375 411. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
40. Fersht, A., 1999. Stereochemistry of enzymatic reactions, p. 245 272. In M. Russell Julet (ed.), Structure and Mechanism in Protein Science. W. H. Freeman and Company, New York, N.Y..
41. Foster, T. J.,, M. A. Davis,, D. E. Roberts,, K. Takeshita,, and N. Kleckner. 1981. Genetic organization of transposon Tn10. Cell 23: 201 213.
42. Fugmann, S. D.,, A. I. Lee,, P. E. Shockett,, I. J. Villey,, and D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18: 495 527.
43. Fugmann, S. D.,, I. J. Villey,, L. M. Ptaszek,, and D. G. Schatz. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell. 5: 97 107.
44. Fujiwara, T.,, and K. Mizuuchi. 1988. Retroviral DNA integration: structure of an integration intermediate. Cell 54: 497 504.
45. Gellert, M. 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64: 39 64.
46. Gerton, J. L.,, D. Herschlag,, and P. O. Brown. 1999. Stereospecificity of reactions catalyzed by HIV-1 integrase. J. Biol. Chem. 274: 33480 33487.
47. Greenstein, D.,, and K. Horiuchi. 1989. Double-strand cleavage and strand joining by the replication initiator protein of the filamentous phage f1. J. Biol. Chem. 264: 12627 12632.
48. Halling, S. M.,, and N. Kleckner. 1982. A symmetrical sixbase- pair target site sequence determines Tn10 insertion specificity. Cell 28: 155 163.
49. Halling, S. M.,, R. W. Simons,, J. C. Way,, R. B. Walsh,, and N. Kleckner. 1982. DNA sequence organization of IS10-right of Tn10 and comparison with IS10-left. Proc. Natl. Acad. Sci. USA 79: 2608 2612.
50. Haniford, D. B.,, H. W. Benjamin,, and N. Kleckner. 1991. Kinetic and structural analysis of a cleaved donor intermediate and a strand transfer intermediate in Tn10 transposition. Cell 64: 171 179.
51. Haniford, D. B.,, A. R. Chelouche,, and N. Kleckner. 1989. A specific class of IS10 transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment. Cell 59: 385 394.
52. Haniford, D. B.,, and N. Kleckner. 1994. Tn10 transposition in vivo: temporal separation of cleavages at the two transposon ends and roles of terminal basepairs subsequent to interaction of ends. EMBOJ. 13: 3401 3411.
53. Harayama, S.,, T. Oguchi,, and T. Iino. 1984. Does Tn10 transpose via the cointegrate molecule? Mol. Gen. Genet. 194: 444 450.
54. Heitman, J. 1992. How the EcoRI endonuclease recognizes and cleaves DNA. Bioessays 14: 445 454.
55. Hiom, K.,, and M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell. 1: 1011 1019.
56. Hiom, K.,, and M. Gellert. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J recombination. Cell 88: 65 72.
57. Hiom, K.,, M. Melek,, and M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463 470.
58. Huisman, O.,, P. R. Errada,, L. Signon,, and N. Kleckner. 1989. Mutational analysis of IS10’s outside end. EMBOJ. 8: 2101 2109.
59. Jeltsch, A.,, J. Alves,, T. Oelgeschlager,, H. Wolfes,, G. Maass,, and A. Pingoud. 1993. Mutational analysis of the function of Gln115 in EcoRI restriction endonuclease, a critical amino acid for recognition of the inner thymidine residues in the sequence-GAATTC- and for coupling specific DNA binding to catalysis. J. Mol. Biol. 229: 221 234.
60. Jenkins, T. M.,, D. Esposito,, A. Engelman,, and R. Craigie. 1997. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBOJ. 16: 6849 6859.
61. Jilk, R. A.,, D. York,, and W. S. Reznikoff. 1996. The organization of the outside end of transposon Tn5. J. Bacteriol. 178: 1671 1679.
62. Junop, M. 1997. Ph.D. thesis. University of Western Ontario, London, Ontario, Canada.
63. Junop, M. S.,, and D. B. Haniford. 1997. Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture. EMBOJ. 16: 2646 2655.
64. Junop, M. S.,, and D. B. Haniford. 1996. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg 2+requirements. EMBOJ. 15: 2547 2555.
65. Junop, M. S.,, D. Hockman,, and D. B. Haniford. 1994. Intragenic suppression of integration-defective IS10 transposase mutants. Genetics 137: 343 352.
66. Kennedy, A. K. 1999. Ph.D. thesis. University of Western Ontario, London, Ontario, Canada.
67. Kennedy, A. K.,, A. Guhathakurta,, N. Kleckner,, and D. B. Haniford. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95: 125 134.
68. Kennedy, A. K.,, and D. B. Haniford. 1996. Isolation and characterization of IS10 transposase separation of function mutants: identification of amino acid residues in transposase that are important for active site function and the stability of transposition intermediates. J. Mol. Biol. 256: 533 547.
69. Kennedy, A. K.,, D. B. Haniford,, and K. Mizuuchi. 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101: 295 305.
70. Kim, D. R.,, Y. Dai,, C. L. Mundy,, W. Yang,, and M. A. Oettinger. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13: 3070 3080.
71. Kim, Y.,, J. C. Grable,, R. Love,, P. J. Greene,, and J. M. Rosenberg. 1990. Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science 249: 1307 1309.
72. Kleckner, N. 1979. DNA sequence analysis of Tn10 insertions: origin and role of the 9-bp flanking repititions during Tn10 translocation. Cell 16: 711 720.
73. Kleckner, N., 1989. Transposon Tn 10, p. 227 268. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
74. Kleckner, N.,, R. M. Chalmers,, D. Kwon,, J. Sakai,, and S. Bolland,. 1996. Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. In H. Saedler, and A. Gierl (ed.), Current Topics in Microbiology and Immunology, vol. 204. Transposable Elements. Springer, Berlin, Germany.
75. Knowles, J. R. 1980. Enzyme-catalyzed phosphoryl transfer reactions. Annu. Rev. Biochem. 49: 877 919.
76. Kostrewa, D.,, and F. K. Winkler. 1995. Mg 2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product at 2A resolution. Biochemistry 34: 683 696.
77. Kulkosky, J.,, K. S. Jones,, R. A. Katz,, J. P. G. Mack,, and A. M. Skalka. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331 2338.
78. Kwon, D.,, R. M. Chalmers,, and N. Kleckner. 1995. Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker. Proc. Natl. Acad. Sci. USA 92: 8234 8238.
79. Landree, M. A.,, J. A. Wibbenmeyer,, and D. B. Roth. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13: 3059 3069.
80. Lavoie, B. D.,, B. S. Chan,, R. G. Allison,, and G. Chaconas. 1991. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu Type 1 transpososome. EMBOJ. 10: 3051 3059.
81. Lewis, L. A.,, and N. D. F. Grindley. 1997. Two abundant intramolecular transposition products resulting from reactions initiated at a single end suggest that IS2 transposes by an unconventional pathway. Mol. Microbiol. 25: 517 529.
82. Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparitive analyses. Adv. Immunol. 56: 27 150.
83. Luck, J. E.,, G. J. Lawrence,, E. J. Finnegan,, D. A. Jones,, and J. G. Ellis. 1998. A flax transposon identified in two spontaneoius mutant alleles of the L6 rust resistance gene. Plant J. 16: 365 369.
84. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725 774.
85. Mahnke Braam, L. A.,, and W. S. Reznikoff. 1998. Functional characterization of the Tn5 transposase by limited proteolysis. J. Biol. Chem. 273: 10908 10913.
86. Martell, A. E.,, and R. M. Smith. 1977. Critical Stability Constants, vol. 3. Plenum, New York, N.Y..
87. Melek, M.,, and M. Gellert. 2000. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101: 625 633.
88. Melek, M.,, M. Gellert,, and D. C. van Gent. 1998. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280: 301 303.
89. Mizuuchi, K. 1983. In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction. Cell 35: 785 794.
90. Mizuuchi, K. 1984. Mechanism of transposition of bacteriophage Mu: polarity of the strand transfer reaction at the initiation of transposition. Cell 39: 395 404.
91. Mizuuchi, K. 1997. Polynucleotidyl transfer reactions in sitespecific DNA recombination. Genes Cells. 2: 1 12.
92. Mizuuchi, K.,, and K. Adzuma. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66: 129 140.
93. Mizuuchi, K.,, T. J. Nobbs,, S. E. Halford,, K. Adzuma,, and J. Qin. 1999. A new method for determining the stereochemistry of DNA cleavage reactions: application to the SfiI and HpaII restriction endonucleases and to the MuA transposase. Biochemistry 38: 4640 4648.
94. Naigamwalla, D. Z.,, and G. Chaconas. 1997. A new set of DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBOJ. 16: 5227 5234.
95. Namgoong, S.-Y.,, and R. M. Harshey. 1998. The same two monomers within a MuA tetramer provide the DDE domains for strand cleavage and strand transfer steps of transposition. Cell 17: 3775 3785.
96. Oettinger, M. A. 1999. V(D)J recombination: on the cutting edge. Curr. Opin. Cell Biol. 11: 325 329.
97. Polard, P.,, B. Ton-Hoang,, L. Haren,, M. Betermier,, R. Walczak,, and M. Chandler. 1996. IS911-mediated transpositional recombination in vitro. J. Mol. Biol. 264: 68 81.
98. Pribil, P. A.,, and D. B. Haniford. 2000. Substrate recognition and induced DNA deformation by transposase at the target capture stage of Tn10 transposition. J. Mol. Biol. 303: 145 159.
99. Ramsden, D. A.,, J. F. McBlane,, D. C. van Gent,, and M. Gellert. 1996. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBOJ. 15: 3197 3206.
100. Rezsohazy, R.,, B. Hallet,, J. Delcour,, and J. Mahillon. 1993. The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol. Microbiol. 9: 1283 1295.
101. Rice, P.,, and K. Mizuuchi. 1995. Structure of the bacteriophage. Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209 220.
102. Rice, P. A.,, W. Yang,, K. Mizuuchi,, and H. A. Nash. 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87: 1295 1306.
103. Richet, E.,, P. Abcarian,, and H. A. Nash. 1986. The interaction of recombination proteins with supercoiled DNA: defining the role of supercoiling in lambda integrative recombination. Cell 46: 1011 1021.
104. Roberts, D.,, D. Ascherman,, and N. Kleckner. 1991. IS10 promotes formation of adjacent deletions at low frequency. Genetics 128: 37 43.
105. Roberts, D.,, and N. Kleckner. 1988. Tn10 transposition promotes RecA-dependent induction of a lambda prophage. Proc. Natl. Acad. Sci. USA 85: 6037 6041.
106. Ross, D.,, J. Swan,, and N. Kleckner. 1979. Physical structures of Tn10-promoted deletions and inversions: role of 1400 basepair inverted repetitions. Cell 16: 721 731.
107. Roth, D. B.,, and N. L. Craig. 1998. VDJ recombination: a transposase goes to work. Cell 94: 411 414.
108. Sakai, J.,, R. M. Chalmers,, and N. Kleckner. 1995. Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition. EMBO J. 14: 4374 4383.
109. Sakai, J.,, and N. Kleckner. 1997. The Tn10 synaptic complex can capture a target DNAonly after transposon excision. Cell 89: 205 214.
110. Sakai, J.,, and N. Kleckner. 1996. Two classes of Tn10 transposase mutants that suppress mutations in the Tn10 terminal inverted repeat. Genetics 144: 861 870.
111. Sakai, J. S.,, N. Kleckner,, X. Yang,, and A. Guhathakurta. 2000. Tn10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer. EMBOJ. 19: 776 785.
112. Santagata, S.,, E. Besmer,, A. Villa,, F. Bozzi,, J. S. Allingham,, C. Sobacchi,, D. B. Haniford,, P. Vezzoni,, M. C. Nussenzweig,, Z. Q. Pan,, and P. Cortes. 1999. The RAG1/RAG2 complex constitute a 3′ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4: 935 947.
113. Sarnovsky, R. J.,, E. W. May,, and N. L. Craig. 1996. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBOJ. 15: 6348 6361.
114. Savilahti, H.,, and K. Mizuuchi. 1996. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Cell 85: 271 280.
115. Savilahti, H.,, P. A. Rice,, and K. Mizuuchi. 1995. The phage Mu transpososome core: DNA requirements for assembly and function. EMBOJ. 14: 4893 4903.
116. Sekine, Y.,, K. Aihara,, and E. Ohtsubo. 1999. Linearization and transposition of circular molecules of insertion sequence IS3. J. Mol. Biol. 294: 21 34.
117. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76: 1933 1937.
118. Shuman, S. 1992. DNA strand transfer reactions catalyzed by vaccinia topoisomerase I. J. Biol. Chem. 267: 8620 8627.
119. Steitz, T. A.,, and J. A. Steitz. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90: 6498 6502.
120. Surette, M. G.,, S. J. Buch,, and G. Chaconas. 1987. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49: 253 262.
121. Surette, M. G.,, B. D. Lavoie,, and G. Chaconas. 1989. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBOJ. 8: 3483 3489.
122. Thielking, V.,, U. Selent,, E. Kohler,, H. Wolfes,, U. Pieper,, R. Geiger,, U. C,, F. K. Winkler,, and A. Pingoud. 1991. Sitedirected mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis. Biochemistry 30: 6416 6422.
123. Ton-Hoang, B.,, P. Polard,, L. Haren,, C. Turlan,, and M. Chandler. 1999. IS911 transposon circles give rise to linear forms that can undergo integration in vitro. Mol. Microbiol. 32: 617 627.
124. Turlan, C.,, and M. Chandler. 2000. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol. 8: 268 274.
125. van Gent, D. C.,, K. Hiom,, T. T. Paull,, and M. Gellert. 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBOJ. 16: 2665 2670.
126. van Gent, D. C.,, K. Mizuuchi,, and M. Gellert. 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271: 1592 1594.
127. Vermote, C. L. M.,, and S. E. Halford. 1992. EcoRV restriction endonuclease: communication between catalytic metal ions and DNA recognition. Biochemistry 31: 6082 6089.
128. Vipond, I. B.,, G. S. Baldwin,, and S. E. Halford. 1995. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. Biochemistry 34: 697 704.
129. Watanabe, T.,, C. Furuse,, and S. Sakaizumi. 1968. Transduction of various R factors by phage P1 in Escherichia coli and by phage P22 in Salmonella typhimurium. J. Bacteriol. 96: 1791 1795.
130. Way, J. C.,, and N. Kleckner. 1984. Essential sites at transposon Tn10 termini. Proc. Natl. Acad. Sci. USA 81: 3452 3456.
131. Weinert, T. W.,, K. Derbyshire,, F. M. Highson,, and N. D. F. Grindley. 1984. Replicative and conservative transpositional recombination of insertion sequences. Cold Spring Harbor Symp. Quant. Biol. 49: 251 260.
132. Weinrich, M. D.,, L. Mahnke-Braam,, and W. S. Reznikoff. 1993. A functional analysis of the Tn5 transposase: identification of domains required for DNA binding and multimerization. J. Mol. Biol. 241: 166 177.
133. Williams, T. L.,, E. L. Jackson,, A. Carritte,, and T. A. Baker. 1999. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Genes Dev. 13: 2725 2737.
134. Winkler, F. K.,, D. W. Banner,, C. Oefner,, D. Tsernoglou,, R. S. Brown,, S. P. Heathman,, R. K. Bryan,, P. D. Martin,, K. Petratos,, and K. S. Wilson. 1993. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBOJ. 12: 1781 1795.
135. Yang, C.-C.,, and H. A. Nash. 1989. The interaction of E. coli IHF protein with its specific binding sites. Cell 57: 869 880.
136. Yang, J.-Y.,, M. Jayaram,, and R. M. Harshey. 1996. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers. Cell 85: 447 455.
137. Yang, J.-Y.,, K. Kim,, M. Jayaram,, and R. M. Harshey. 1995. A domain sharing model for active site assembly within the MuAtetramer during transposition: the enhancer may specify domain contributions. EMBOJ. 14: 2374 2384.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error