Chapter 29 : V(D)J Recombination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

V(D)J Recombination, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap29-2.gif


This chapter focuses on V(D)J recombination, but other mechanisms also contribute to antigen receptor diversity. Although in mice and humans V(D)J recombination is the major source of diversity, this is not true of all vertebrates. Terminal deoxynucleotidyltransferase (TdT) is normally expressed only in early lymphoid cells, so these insertions are relatively specific to V(D)J recombination (compared with other types of double-strand break repair). Work of the past several years has shown that V(D)J recombination has two distinct stages. In the first stage, the RAG1 protein and RAG2 protein act together to recognize the RSSs and their correct 12/23 pairing, and make double-strand breaks at the border between each heptamer and the neighboring coding sequence. In the second stage, an array of factors also used in other types of ‘‘nonhomologous end joining’’ acts to assemble the coding joints and signal joints. The RAG1 and RAG2 proteins are the only lymphoid-specific factors needed for V(D)J recombination. RAG1 and RAG2 are normally coexpressed only in early lymphoid cells, where V(D)J recombination takes place. Transcription of the two neighboring RAG genes is convergent, and it has been shown that the control region of both genes is located upstream of RAG2. As for the regulation of V(D)J recombination, several new experimental systems should soon lead to a better understanding of locus accessibility, and make experimental modification of rearrangement possible.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

. Recombination signal sequences and their arrangements at the antigen receptor loci. (A) The consensus sequence of an RSS, indicating the alternative spacer lengths of 12 or 23 bp. (B) The arrangements of RSSs at immunoglobulin and Tcell receptor loci. A 12-spacer RSS is indicated by an open triangle, a 23-spacer RSS by a filled triangle.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Arrangements of RSSs and their products in recombination substrates. RSSs are denoted by triangles (open for a 12-RSS, filled for a 23-RSS), and their "coding" flanks are denoted by rectangles. Only the products that are retained in the substrate backbone after recombination are shown.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The formation of self-complementary "P nucleotide" insertions in coding joints. During cleavage ofDNAat the RSS-coding border, the ends of coding DNA are converted to hairpins. These hairpins can be nicked a few bases off-center (shown here as one base off-center on the left end, two bases off-center on the right). This nicking leaves self-complementary single-strand extensions (large letters). After fill-in and joining, these extensions (marked P) can be incorporated in the junction.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Nonstandard products of V(D)J recombination. Joining of one RSS to its partner's coding flank generates a hybrid joint. Breakage and rejoining of an RSS to its coding flank produces an open-and-shut joint, which can only be recognized if the junctional sequence has been altered. The local sequence changes in coding, hybrid, and open-and-shut joints are denoted by hatched boxes.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

DNA cleavage by the RAG proteins. In the first step, a nick is made at the 5′ end of the RSS heptamer, leaving a 3′-OH on the coding flank. In the second step, this hydroxyl group attacks the opposite strand to produce a hairpin coding end and a blunt signal end. In this figure, the reaction is shown as a coupled process at a pair of RSSs, as it would be in the presence of Mg (see text).

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Hairpin formation by the RAG proteins at a singlestranded RSS. The 3′-OH on the duplex coding flank can attack the left or right end of the single-stranded RSS heptamer, producing either a normal coding end hairpin or a hairpin that also includes the RSS sequence.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

RAG-mediated reversal of cleavage. The hydroxyl group on an RSS end can attack the hairpin end of its partner RSS to make a hybrid joint (solid arrow), or can reattack its own hairpin end to make an open-and-shut joint (dashed arrow). Only the hybrid joint product is shown.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

One- or two-ended transposition by RAG1/2. The RAG proteins can insert an RSS end covalently into a target DNA. The reaction requires a 12/23 RSS pair, but may either insert a single RSS or insert both ends into opposite strands in a coupled reaction.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

RAG-mediated transposition and its reversal by disintegration. A cleaved signal end can attack a target DNA (double ellipse), and this reaction can also be reversed by the RAG proteins. The transposition can be single-ended, as is shown, or doubleended.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

. A possible mode of chromosomal translocation by RAGpromoted transposition. A cleaved signal end at an Ig or TCR locus can insert into another chromosome (heavy lines) by transpositional strand transfer. In the resulting branchedDNAstructure, the 3′-OH of the targetDNAcan be processed further to generate a hairpin end and an interchromosomal junction containing the RSS. Because this reaction is likely to occur within a complex that also contains the hairpin coding end from the original cleavage, joining of the two hairpin ends would then generate the reciprocal chromosomal translocation.

Citation: Gellert M. 2002. V(D)J Recombination, p 705-729. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agrawal, A.,, Q. M. Eastman,, and D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744 751.
2. Agrawal, A.,, and D. G. Schatz. 1997. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89: 43 53.
3. Aguilar, L. K.,, and J. W. Belmont. 1991. Vγ3 Tcell receptor rearrangement and expression in the adult thymus. J. Immunol. 146: 1348 1352.
4. Akamatsu, Y.,, and M. A. Oettinger. 1998. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences. Mol. Cell. Biol. 18: 4670 4678.
5. Alexandre, D.,, P. Chuchana,, M.-G. Roncarolo,, H. Yssel,, H. Spits,, G. Lefranc,, and M.-P. Lefranc. 1991. Reciprocal hybrid joints demonstrate successive V-J rearrangements on the same chromosome in the human TCR gamma locus. Int. Immunol. 3: 973 982.
6. Anderson, C. W.,, and S. P. Lees-Miller. 1992. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryot. Gene Expr. 2: 283 314.
7. Angelin-Duclos, C.,, and K. Calame. 1998. Evidence that immunoglobulin VH-DJ recombination does not require germ line transcription of the recombining variable gene segment. Mol. Cell. Biol. 18: 6253 6264.
8. Aravind, L.,, and E. V. Koonin. 1999. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J. Mol. Biol. 287: 1023 1040.
9. Atkinson, P. W.,, W. D. Warren,, and D. A. O’Brochta. 1993. The hobo transposable element of Drosophila can be crossmobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90: 9693 9697.
10. Bailey, S. N.,, and N. Rosenberg. 1997. Assessing the pathogenic potential of the V(D)J recombinase by interlocus immunoglobulin light-chain gene rearrangement. Mol. Cell. Biol. 17: 887 894.
11. Barnes, D. E.,, G. Stamp,, I. Rosewell,, A. Denzel,, and T. Lindahl. 1998. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8: 1395 1398.
12. Bassing, C. H.,, F. W. Alt,, M. M. Hughes,, M. D’Auteuil,, T. D. Wehrly,, B. B. Woodman,, F. Gartner,, J. M. White,, L. Davidson,, and B. P. Sleckman. 2000. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405: 583 586.
13. Besmer, E.,, J. Mansilla-Soto,, S. Cassard,, D. J. Sawchuk,, G. Brown,, M. Sadofsky,, S. M. Lewis,, M. C. Nussenzweig,, and P. Cortes. 1998. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol. Cell 2: 817 828.
14. Blackwell, T. K.,, and F. W. Alt. 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu. Rev. Genet. 23: 605 636.
15. Blunt, T.,, N. J. Finnie,, G. E. Taccioli,, G. C. M. Smith,, J. Demengeot,, T. Gottlieb,, R. Mizuta,, A. J. Varghese,, F. W. Alt,, P. A. Jeggo,, and S. P. Jackson. 1995. Defective DNAdependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80: 813 823.
16. Bogue, M. A.,, C. Jhappan,, and D. B. Roth. 1998. Analysis of variable (diversity) joining recombination in DNA dependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc. Natl. Acad. Sci. USA 95: 15559 15564.
17. Bogue, M. A.,, C. Wang,, C. Zhu,, and D. B. Roth. 1997. V(D)J recombination in Ku86-deficient mice: distinct effects on coding, signal, and hybrid joint formation. Immunity 7: 37 47.
18. Bogue, M. A.,, C. Zhu,, E. Aguilar-Cordova,, L. A. Donehower,, and D. B. Roth. 1996. p53 is required for both radiationinduced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dev. 10: 553 565.
19. Bosma, G. C.,, R. P. Custer,, and M. J. Bosma. 1983. A severe combined immunodeficiency mutation in the mouse. Nature 301: 527 530.
20. Boubnov, N. V.,, Z. P. Wills,, and D. T. Weaver. 1995. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res. 23: 1060 1067.
21. Boulton, S. J.,, and S. P. Jackson. 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17: 1819 1828.
22. Callebaut, I.,, and J. P. Mornon. 1998. The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis. Cell. Mol. Life Sci. 54: 880 891.
23. Carlson, L. M.,, M. A. Oettinger,, D. G. Schatz,, E. L. Masteller,, E. A. Hurley,, W. T. McCormack,, D. Baltimore,, and C. B. Thompson. 1991. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell 64: 201 208.
24. Carney, J. P.,, R. S. Maser,, H. Olivares,, E. M. Davis,, M. Le Beau,, J. R. Yates,, L. Hays,, W. F. Morgan,, and J. H. Petrini. 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477 486.
25. Casellas, R.,, T. A. Shih,, M. Kleinewietfeld,, J. Rakonjac,, D. Nemazee,, K. Rajewsky,, and M. C. Nussenzweig. 2001. Contribution of receptor editing to the antibody repertoire. Science 291: 1541 1544.
26. Chen, H. T.,, A. Bhandoola,, M. J. Difilippantonio,, J. Zhu,, M. J. Brown,, X. Tai,, E. P. Rogakou,, T. M. Brotz,, W. M. Bonner,, T. Ried,, and A. Nussenzweig. 2000. Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290: 1962 1965.
27. Chen, Y. Y.,, L. C. Wang,, M. S. Huang,, and N. Rosenberg. 1994. An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Genes Dev. 8: 688 697.
28. Cherry, S. R.,, and D. Baltimore. 1999. Chromatin remodeling directly activates V(D)J recombination. Proc. Natl. Acad. Sci. USA 96: 10788 10793.
29. Cheung, S.,, K. Arndt,, and P. Lu. 1984. Correlation of lac operator DNA imino proton exchange kinetics with its function. Proc. Natl. Acad. Sci. USA 81: 3665 3669.
30. Chow, S. A.,, K. A. Vincent,, V. Ellison,, and P. O. Brown. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723 726.
31. Chun, J. J.,, D. G. Schatz,, M. A. Oettinger,, R. Jaenisch,, and D. Baltimore. 1991. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64: 189 200.
32. Coen, E. S.,, R. Carpenter,, and C. Martin. 1986. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47: 285 296.
33. Colot, V.,, V. Haedens,, and J. L. Rossignol. 1998. Extensive, nonrandom diversity of excision footprints generated by Dslike transposon ascot-1 suggests new parallels with V(D)J recombination. Mol. Cell. Biol. 18: 4337 4346.
34. Connelly, J. C.,, E. S. de Leau,, and D. R. Leach. 1999. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res. 27: 1039 1046.
35. Critchlow, S. E.,, R. P. Bowater,, and S. P. Jackson. 1997. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7: 588 598.
36. Cuomo, C. A.,, C. L. Mundy,, and M. A. Oettinger. 1996. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell. Biol. 16: 5683 5690.
37. Cuomo, C. A.,, and M. A. Oettinger. 1994. Analysis of regions of RAG-2 important for V(D)J recombination. Nucleic Acids Res. 22: 1810 1814.
38. Danska, J. S.,, F. Pflumio,, C. J. Williams,, O. Huner,, J. E. Dick,, and C. J. Guidos. 1994. Rescue of Tcell-specific V(D)J recombination in SCID mice by DNA-damaging agents. Science 266: 450 455.
39. Difilippantonio, M. J.,, C. J. McMahan,, Q. M. Eastman,, E. Spanopoulou,, and D. G. Schatz. 1996. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87: 253 262.
40. Dvir, A.,, S. R. Peterson,, M. W. Knuth,, H. Lu,, and W. S. Dynan. 1992. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. USA 89: 11920 11924.
41. Eastman, Q. M.,, T. M. Leu,, and D. G. Schatz. 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380: 85 88.
42. Eastman, Q. M.,, I. J. Villey,, and D. G. Schatz. 1999. Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking. Mol. Cell. Biol. 19: 3788 3797.
43. Engelman, A.,, K. Mizuuchi,, and R. Craigie. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211 1221.
44. Engler, P.,, E. Klotz,, and U. Storb. 1992. N region diversity of a transgenic substrate in fetal and adult lymphoid cells. J. Exp. Med. 176: 1399 1404.
45. Errami, A.,, D. M. He,, A. A. Friedl,, W. J. I. Overkamp,, B. Morolli,, E. A. Hendrickson,, F. Eckardt-Schupp,, M. Oshimura,, P. H. M. Lohman,, S. P. Jackson,, and M. Z. Zdzienicka. 1998. XR-C1, a new CHO cell mutant which is defective in DNA-PKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res. 26: 3146 3153.
46. Ezekiel, U. R.,, P. Engler,, D. Stern,, and U. Storb. 1995. Asymmetric processing of coding ends and the effect of coding end nucleotide composition on V(D)J recombination. Immunity 2: 381 389.
47. Feeney, A. J. 1992. Predominance of VH-D-JH junctions occurring at sites of short sequence homology results in limited junctional diversity in neonatal antibodies. J. Immunol. 149: 222 229.
48. Feeney, A. J.,, A. Tang,, and K. M. Ogwaro. 2000. B-cell repertoire formation: role of the recombination signal sequence in non-random V segment utilization. Immunol. Rev. 175: 59 69.
49. Fong, I. C.,, A. A. Zarrin,, G. E. Wu,, and N. L. Berinstein. 2000. Functional analysis of the human RAG 2 promoter. Mol. Immunol. 37: 391 402.
50. Frank, K. M.,, J. M. Sekiguchi,, K. J. Seidl,, W. Swat,, G. A. Rathbun,, H. L. Cheng,, L. Davidson,, L. Kangaloo,, and F. W. Alt. 1998. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396: 173 177.
51. Freemont, P. S.,, I. M. Hanson,, and J. Trowsdale. 1991. A novel cysteine-rich sequence motif. Cell 64: 483 484.
52. Fugmann, S. D.,, A. I. Lee,, P. E. Shockett,, I. J. Villey,, and D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18: 495 527.
53. Fugmann, S. D.,, I. J. Villey,, L. M. Ptaszek,, and D. G. Schatz. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5: 97 107.
54. Fujimoto, S.,, and H. Yamagishi. 1987. Isolation of an excision product of T-cell-receptor α-chain gene rearrangement. Nature 327: 242 243.
55. Furuse, M.,, Y. Nagase,, H. Tsubouchi,, K. Murakami-Murofushi,, T. Shibata,, and K. Ohta. 1998. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17: 6412 6425.
56. Gao, Y.,, J. Chaudhuri,, C. Zhu,, L. Davidson,, D. T. Weaver,, and F. W. Alt. 1998. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for Ku in V(D)J recombination. Immunity 9: 367 376.
57. Gao, Y.,, Y. Sun,, K. M. Frank,, P. Dikkes,, Y. Fujiwara,, K. J. Seidl,, J. J. M. Sekiguchi,, G. A. Rathbun,, W. Swat,, J. Wang,, R. T. Bronson,, B. A. Malynn,, M. Bryans,, C. Zhu,, J. Chaudhuri,, L. Davidson,, R. Ferrini,, T. Stamato,, S. H. Orkin,, M. E. Greenberg,, and F. W. Alt. 1998. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95: 891 902.
58. Gauss, G. H.,, and M. R. Lieber. 1996. Mechanistic constraints on diversity in human V(D)J recombination. Mol. Cell. Biol. 16: 258 269.
59. Gellert, M. 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64: 39 64.
60. Gerstein, R. M.,, and M. R. Lieber. 1993. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 7: 1459 1469.
61. Ghosh, J. K.,, W. J. Romanow,, and C. Murre. 2001. Induction of a diverse TCell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J. Exp. Med. 193: 769 776.
62. Gilfillan, S.,, A. Dierich,, M. Lemeur,, C. Benoist,, and D. Mathis. 1993. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261: 1175 1178.
63. Golding, A.,, S. Chandler,, E. Ballestar,, A. P. Wolffe,, and M. S. Schlissel. 1999. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J. 18: 3712 3723.
64. Gomez, C. A.,, L. M. Ptaszek,, A. Villa,, F. Bozzi,, C. Sobacchi,, E. G. Brooks,, L. D. Notarangelo,, E. Spanopoulou,, Z. Q. Pan,, P. Vezzoni,, P. Cortes,, and S. Santagata. 2000. Mutations in conserved regions of the predicted RAG2 kelch repeats block initiation of V(D)J recombination and result in primary immunodeficiencies. Mol. Cell. Biol. 20: 5653 5664.
65. Gottlieb, T. M.,, and S. P. Jackson. 1993. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131 142.
66. Grawunder, U.,, T. M. J. Leu,, D. G. Schatz,, A. Werner,, A. G. Rolink,, F. Melchers,, and T. H. Winkler. 1995. Downregulation of RAG1 and RAG2 gene expression in pre-B cells after functional immunoglobulin heavy chain rearrangement. Immunity 3: 601 608.
67. Grawunder, U.,, M. Wilm,, X. Wu,, P. Kulesza,, T. E. Wilson,, M. Mann,, and M. R. Lieber. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388: 492 495.
68. Grawunder, U.,, D. Zimmer,, S. Fugmann,, K. Schwarz,, and M. R. Lieber. 1998. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell 2: 477 484.
69. Gu, H.,, I. Forster,, and K. Rajewsky. 1990. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9: 2133 2140.
70. Gu, Y.,, S. Jin,, Y. Gao,, D. T. Weaver,, and F. W. Alt. 1997. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNAend-binding activity, and inability to support V(D)J recombination. Proc. Natl. Acad. Sci. USA 94: 8076 8081.
71. Haber, J. E. 1998. The many interfaces of Mre11. Cell 95: 583 586.
72. Haber, J. E. 1999. Sir-Ku-itous routes to make ends meet. Cell 97: 829 832.
73. Hammarsten, O.,, and G. Chu. 1998. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl. Acad. Sci. USA 95: 525 530.
74. Han, J. O.,, S. B. Steen,, and D. B. Roth. 1999. Intermolecular V(D)J recombination is prohibited specifically at the joining step. Mol. Cell 3: 331 338.
75. Han, S.,, B. Zheng,, D. G. Schatz,, E. Spanopoulou,, and G. Kelsoe. 1996. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274: 2094 2097.
76. Hansen, J. D.,, and S. L. Kaattari. 1995. The recombination activation gene 1 (RAG1) of rainbow trout ( Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis. Immunogenetics 42: 188 195.
77. Hartl, D. L.,, A. R. Lohe,, and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31: 337 358.
78. Hartley, K. O.,, D. Gell,, G. C. Smith,, H. Zhang,, N. Divecha,, M. A. Connelly,, A. Admon,, S. P. Lees-Miller,, C. W. Anderson,, and S. P. Jackson. 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82: 849 856.
79. Hempel, W. M.,, P. Stanhope-Baker,, N. Mathieu,, F. Huang,, M. S. Schlissel,, and P. Ferrier. 1998. Enhancer control of V(D)J recombination at the TCR beta locus: differential effects on DNA cleavage and joining. Genes Dev. 12: 2305 2317.
80. Hesse, J. E.,, M. R. Lieber,, M. Gellert,, and K. Mizuuchi. 1987. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 49: 775 783.
81. Hesse, J. E.,, M. R. Lieber,, K. Mizuuchi,, and M. Gellert. 1989. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 3: 1053 1061.
82. Hiom, K.,, and M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1: 1011 1019.
83. Hiom, K.,, and M. Gellert. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88: 65 72.
84. Hiom, K.,, M. Melek,, and M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463 470.
85. Hsieh, C.-L.,, and M. R. Lieber. 1992. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11: 315 325.
86. Jeggo, P. A. 1998. DNA breakage and repair. Adv. Genet. 38: 185 218.
87. Junop, M. S.,, M. Modesti,, A. Guarne,, R. Ghirlando,, M. Gellert,, and W. Yang. 2000. Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. EMBO J. 19: 5962 5970.
88. Kale, S. B.,, M. A. Landree,, and D. B. Roth. 2001. Conditional RAG-1 mutants block the hairpin formation step of V(D)J recombination. Mol. Cell. Biol. 21: 459 466.
89. Kienker, L. J.,, W. A. Kuziel,, and P. W. Tucker. 1991. Tcell receptor γ and δ gene junctional sequences in SCID mice: excessive P nucleotide insertion. J. Exp. Med. 174: 769 773.
90. Kim, D. R.,, Y. Dai,, C. L. Mundy,, W. Yang,, and M. A. Oettinger. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13: 3070 3080.
91. Kim, D. R.,, and M. A. Oettinger. 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell. Biol. 18: 4679 4688.
92. Kirch, S. A.,, G. A. Rathbun,, and M. A. Oettinger. 1998. Dual role of RAG2 in V(D)J recombination: catalysis and regulation of ordered Ig gene assembly. EMBO J. 17: 4881 4886.
93. Kirch, S. A.,, P. Sudarsanam,, and M. A. Oettinger. 1996. Regions of RAG1 protein critical for V(D)J recombination. Eur. J. Immunol. 26: 886 891.
94. Kirchgessner, C. U.,, C. K. Patil,, J. W. Evans,, C. A. Cuomo,, L. M. Fried,, T. Carter,, M. A. Oettinger,, and J. M. Brown. 1995. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267: 1178 1183.
95. Knight, K. L.,, and M. A. Crane. 1994. Generating the antibody repertoire in rabbit. Adv. Immunol. 56: 179 218.
96. Komori, T.,, A. Okada,, V. Stewart,, and F. W. Alt. 1993. Lack ofNregions in antigen receptor variable region genes of TdTdeficient lymphocytes. Science 261: 1171 1175.
97. Kwon, J.,, A. N. Imbalzano,, A. Matthews,, and M. A. Oettinger. 1998. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2: 829 839.
98. Kwon, J.,, K. B. Morshead,, J. R. Guyon,, R. E. Kingston,, and M. A. Oettinger. 2000. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6: 1037 1048.
99. Lafaille, J. J.,, A. DeCloux,, M. Bonneville,, Y. Takagaki,, and S. Tonegawa. 1989. Junctional sequences of Tcell receptor gamma delta genes: implications for gamma delta Tcell lineages and for a novel intermediate of V-(D)-J joining. Cell 59: 859 870.
100. Landree, M. A.,, J. A. Wibbenmeyer,, and D. B. Roth. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13: 3059 3069.
101. Lee, Y.,, D. E. Barnes,, T. Lindahl,, and P. J. McKinnon. 2000. Defective neurogenesis resulting from DNA ligase IV deficiency requires ATM. Genes Dev. 14: 2576 2580.
102. Lewis, S.,, A. Gifford,, and D. Baltimore. 1985. DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes. Science 228: 677 685.
103. Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56: 27 150.
104. Lewis, S. M.,, and J. E. Hesse. 1991. Cutting and closing without recombination in V(D)J joining. EMBO J. 10: 3631 3639.
105. Lewis, S. M.,, J. E. Hesse,, K. Mizuuchi,, and M. Gellert. 1988. Novel strand exchanges in V(D)J recombination. Cell 55: 1099 1107.
106. Li, Z.,, D. I. Dordai,, J. Lee,, and S. Desiderio. 1996. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5: 575 589.
107. Li, Z.,, T. Otevrel,, Y. Gao,, H.-L. Cheng,, B. Seed,, T. D. Stamato,, G. E. Taccioli,, and F. W. Alt. 1995. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83: 1079 1089.
108. Lieber, M. R.,, J. E. Hesse,, K. Mizuuchi,, and M. Gellert. 1988. Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints. Proc. Natl. Acad. Sci. USA 85: 8588 8592.
109. Lin, W.-C., and S. Desiderio. 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260: 953 959.
110. Lin, W.-C.,, and S. Desiderio. 1995. V(D)J recombination and the cell cycle. Immunol. Today 16: 279 289.
111. Lipkowitz, S.,, M. H. Stern,, and I. R. Kirsch. 1990. Hybrid Tcell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasia lymphocytes. J. Exp. Med. 172: 409 418.
112. Livak, F.,, and D. G. Schatz. 1996. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature Tcells. Mol. Cell. Biol. 16: 609 618.
113. Luo, G.,, M. S. Yao,, C. F. Bender,, M. Mills,, A. R. Bladl,, A. Bradley,, and J. H. Petrini. 1999. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl. Acad. Sci. USA 96: 7376 7381.
114. Ma, A.,, P. Fisher,, R. Dildrop,, E. Oltz,, G. Rathbun,, P. Achacoso,, A. Stall,, and F. W. Alt. 1992. Surface IgM mediated regulation of RAG gene expression in Eμ-N- myc B cell lines. EMBO J. 11: 2727 2734.
115. Mage, R. G. 1998. Diversification of rabbit VH genes by gene-conversion-like and hypermutation mechanisms. Immunol. Rev. 162: 49 54.
116. Malynn, B.,, T. Blackwell,, G. Fulop,, G. Rathbun,, A. Furley,, P. Ferrier,, L. Heinke,, R. Phillips,, G. Yancopoulos,, and F. Alt. 1988. The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 54: 453 460.
117. Maser, R. S.,, K. J. Monsen,, B. E. Nelms,, and J. H. Petrini. 1997. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17: 6087 6096.
118. McBlane, F.,, and J. Boyes. 2000. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10: 483 486.
119. McBlane, J. F.,, D. C. van Gent,, D. A. Ramsden,, C. Romeo,, C. A. Cuomo,, M. Gellert,, and M. A. Oettinger. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83: 387 395.
120. McCormack, W. T.,, L. W. Tjoelker,, L. M. Carlson,, B. Petryniak,, C. F. Barth,, E. H. Humphries,, and C. B. Thompson. 1989. Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell 56: 785 791.
121. McMurry, M. T.,, and M. S. Krangel. 2000. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287: 495 498.
122. Melek, M.,, and M. Gellert. 2000. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101: 625 633.
123. Melek, M.,, M. Gellert,, and D. C. van Gent. 1998. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280: 301 303.
124. Mizuuchi, K. 1992. Polynucleotidyl transfer reactions in transpositional DNA recombination. J. Biol. Chem. 267: 21273 21276.
125. Mizuuchi, K.,, and K. Adzuma. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66: 129 140.
126. Mo, X.,, T. Bailin,, S. Noggle,, and M. J. Sadofsky. 2000. A highly ordered structure in V(D)J recombination cleavage complexes is facilitated by HMG1. Nucleic Acids Res. 28: 1228 1236.
127. Mo, X.,, T. Bailin,, and M. J. Sadofsky. 1999. RAG1 and RAG2 cooperate in specific binding to the recombination signal sequence in vitro. J. Biol. Chem. 274: 7025 7031.
128. Modesti, M.,, J. E. Hesse,, and M. Gellert. 1999. DNA binding of XRCC4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18: 2008 2018.
129. Modesti, M.,, and R. Kanaar. 2001. DNA repair: spot(light)s on chromatin. Curr. Biol. 11: R229 R232.
130. Mombaerts, P.,, J. Iacomini,, R. S. Johnson,, K. Herrup,, S. Tonegawa,, and V. E. Papaioannou. 1992. RAG-1-deficient mice have no mature B and Tlymphocytes. Cell 68: 869 877.
131. Monroe, R. J.,, F. Chen,, R. Ferrini,, L. Davidson,, and F. W. Alt. 1999. RAG2 is regulated differentially in B and Tcells by elements 5′ of the promoter. Proc. Natl. Acad. Sci. USA 96: 12713 12718.
132. Morzycka-Wroblewska, E.,, F. E. H. Lee,, and S. V. Desiderio. 1988. Unusual immunoglobulin gene rearrangement leads to replacement of recombinational signal sequences. Science 242: 261 263.
133. Moshous, D.,, I. Callebaut,, R. de Chasseval,, B. Corneo,, M. Cavazzana-Calvo,, F. Le Deist,, I. Tezcan,, O. Sanal,, Y. Bertrand,, N. Philippe,, A. Fischer,, and J.-P. de Villartay. 2001. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177 186.
134. Mostoslavsky, R.,, N. Singh,, A. Kirillov,, R. Pelanda,, H. Cedar,, A. Chess,, and Y. Bergman. 1998. Kappa chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12: 1801 1811.
135. Murphy, W. J.,, S. K. Durum,, M. R. Anver,, D. K. Ferris,, D. W. McVicar,, J. J. O’Shea,, S. K. Ruscetti,, M. R. Smith,, H. A. Young,, and D. L. Longo. 1994. Induction of T-cell differentiation and lymphomagenesis in the thymus of mice with severe combined immune-deficiency (scid). J. Immunol. 153: 1004 1014.
136. Nagawa, F.,, K. Ishiguro,, A. Tsuboi,, T. Yoshida,, A. Ishikawa,, T. Takemori,, A. J. Otsuka,, and H. Sakano. 1998. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18: 655 663.
137. Nelms, B. E.,, R. S. Maser,, J. F. MacKay,, M. G. Lagally,, and J. H. Petrini. 1998. In situ visualization of DNA doublestrand break repair in human fibroblasts. Science 280: 590 592.
138. Nick McElhinny, S. A.,, C. M. Snowden,, J. McCarville,, and D. A. Ramsden. 2000. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20: 2996 3003.
139. Noordzij, J. G.,, N. S. Verkaik,, N. G. Hartwig,, R. de Groot,, D. C. van Gent,, and J. J. van Dongen. 2000. N-terminal truncated human RAG1 proteins can direct T-cell receptor but not immunoglobulin gene rearrangements. Blood 96: 203 209.
140. Oettinger, M. A.,, D. G. Schatz,, C. Gorka,, and D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517 1523.
141. Okazaki, K.,, D. D. Davis,, and H. Sakano. 1987. Tcell receptor β gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell 49: 477 485.
142. Papavasiliou, F.,, R. Casellas,, H. Suh,, X. F. Qin,, E. Besmer,, R. Pelanda,, D. Nemazee,, K. Rajewsky,, and M. C. Nussenzweig. 1997. V(D)J recombination in mature B cells: a mechanism for altering antibody responses. Science 278: 298 301.
143. Patel, D. J.,, L. Shapiro,, and D. Hare,. 1987. NMR-distance geometry studies of helical errors and sequence dependent conformations of DNA in solution, p. 115 161. In R. D. Wells, and S. C. Harvey (ed.), Unusual DNA Structures. Springer, New York, N.Y..
144. Paull, T. T.,, and M. Gellert. 1998. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1: 969 979.
145. Paull, T. T.,, and M. Gellert. 2000. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc. Natl. Acad. Sci. USA 97: 6409 6414.
146. Paull, T. T.,, and M. Gellert. 1999. Nbs1 potentiates ATPdriven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13: 1276 1288.
147. Paull, T. T.,, E. P. Rogakou,, V. Yamazaki,, C. U. Kirchgessner,, M. Gellert,, and W. M. Bonner. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10: 886 895.
148. Pennycook, J. L.,, Y. H. Chang,, J. Celler,, R. A. Phillips,, and G. E. Wu. 1993. High-frequency of normal DJH joints in Bcell progenitors in severe combined immunodeficiency mice. J. Exp. Med. 178: 1007 1016.
149. Pergola, F.,, M. Z. Zdzienicka,, and M. R. Lieber. 1993. V(D)J recombination in mammalian cell mutants defective in DNA double-strand break repair. Mol. Cell. Biol. 13: 3464 3471.
150. Peterson, S. R.,, A. Kurimasa,, M. Oshimura,, W. S. Dynan,, E. M. Bradbury,, and D. J. Chen. 1995. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double- strand-break-repair mutant mammalian cells. Proc. Natl. Acad. Sci. USA 92: 3171 3174.
151. Qiu, J. X.,, S. B. Kale,, H. Yarnell Schultz,, and D. B. Roth. 2001. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol. Cell 7: 77 87.
152. Ramsden, D. A.,, and M. Gellert. 1995. Formation and resolution of double strand break intermediates in V(D)J rearrangement. Genes Dev. 9: 2409 2420.
153. Ramsden, D. A.,, and M. Gellert. 1998. Ku protein stimulates DNA end-joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17: 609 614.
154. Ramsden, D. A.,, J. F. McBlane,, D. C. van Gent,, and M. Gellert. 1996. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15: 3197 3206.
155. Ramsden, D. A.,, T. T. Paull,, and M. Gellert. 1997. Cell-free V(D)J recombination. Nature 388: 488 491.
156. Ramsden, D. A.,, and G. E. Wu. 1991. Mouse κ light-chain recombination signal sequences mediate recombination more frequently than do those of λ light chain. Proc. Natl. Acad. Sci. USA 88: 10721 10725.
157. Reynaud, C. A.,, B. Bertocci,, A. Dahan,, and J. C. Weill. 1994. Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv. Immunol. 57: 353 378.
158. Reynaud, C. A.,, and J. C. Weill. 1996. Postrearrangement diversification processes in gut-associated lymphoid tissues. Curr. Top. Microbiol. Immunol. 212: 7 15.
159. Rice, P.,, R. Craigie,, and D. R. Davies. 1996. Retroviral integrases and their cousins. Curr. Opin. Struct. Biol. 6: 76 83.
160. Robins, P.,, and T. Lindahl. 1996. DNA ligase IV from HeLa cell nuclei. J. Biol. Chem. 271: 24257 24261.
161. Rodgers, K. K.,, Z. Bu,, K. G. Fleming,, D. G. Schatz,, D. M. Engelman,, and J. E. Coleman. 1996. A zinc-binding domain involved in the dimerization of RAG1. J. Mol. Biol. 260: 70 84.
162. Rodgers, K. K.,, I. J. Villey,, L. Ptaszek,, E. Corbett,, D. G. Schatz,, and J. E. Coleman. 1999. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2. Nucleic Acids Res. 27: 2938 2946.
163. Rogakou, E. P.,, C. Boon,, C. Redon,, and W. M. Bonner. 1999. Megabase chromatin domains involved in DNA double- strand breaks in vivo. J. Cell Biol. 146: 905 916.
164. Rogakou, E. P.,, D. R. Pilch,, A. H. Orr,, V. S. Ivanova,, and W. M. Bonner. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273: 5858 5868.
165. Roman, C. A. J.,, and D. Baltimore. 1996. Genetic evidence that the RAG1 protein directly participates in V((D)J recombination through substrate recognition. Proc. Natl. Acad. Sci. USA 93: 2333 2338.
166. Romanow, W. J.,, A. W. Langerak,, P. Goebel,, I. L. Wolvers- Tettero,, J. J. van Dongen,, A. J. Feeney,, and C. Murre. 2000. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5: 343 353.
167. Roth, D. B.,, J. P. Menetski,, P. B. Nakajima,, M. J. Bosma,, and M. Gellert. 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70: 983 991.
168. Roth, D. B.,, P. B. Nakajima,, J. P. Menetski,, M. J. Bosma,, and M. Gellert. 1992. V(D)J recombination in mouse thymocytes: double-strand breaks near Tcell receptor δ rearrangement signals. Cell 69: 41 53.
169. Roth, D. B.,, C. Zhu,, and M. Gellert. 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90: 10788 10792.
170. Ruetsch, N. R.,, G. C. Bosma,, and M. J. Bosma. 2000. Unexpected rearrangement and expression of the immunoglobulin lambda1 locus in scid mice. J. Exp. Med. 191: 1933 1943.
171. Sadofsky, M.,, J. E. Hesse,, D. C. van Gent,, and M. Gellert. 1995. RAG-1 mutations that affect the target specificity of V(D)J recombination: a possible direct role of RAG-1 in site recognition. Genes Dev. 9: 2193 2199.
172. Sadofsky, M. J.,, J. E. Hesse,, and M. Gellert. 1994. Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res. 22: 1805 1809.
173. Sadofsky, M. J.,, J. E. Hesse,, J. F. McBlane,, and M. Gellert. 1993. Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res. 21: 5644 5650.
174. Sakano, H.,, K. Huppi,, G. Heinrich,, and S. Tonegawa. 1979. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280: 288 294.
175. Santagata, S.,, E. Besmer,, A. Villa,, F. Bozzi,, J. S. Allingham,, C. Sobacchi,, D. B. Haniford,, P. Vezzoni,, M. C. Nussenzweig,, Z. Q. Pan,, and P. Cortes. 1999. The RAG1/RAG2 complex constitutes a 3′ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4: 935 947.
176. Sarnovsky, R. J.,, E. W. May,, and N. L. Craig. 1996. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 15: 6348 6361.
177. Sawchuk, D. J.,, F. Weis-Garcia,, S. Malik,, E. Besmer,, M. Bustin,, M. C. Nussenzweig,, and P. Cortes. 1997. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins. J. Exp. Med. 185: 2025 2032.
178. Schatz, D. G.,, M. A. Oettinger,, and M. S. Schlissel. 1992. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10: 359 383.
179. Schlissel, M.,, A. Constantinescu,, T. Morrow,, M. Baxter,, and A. Peng. 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell-cycle-regulated. Genes Dev. 7: 2520 2532.
180. Schlissel, M. S. 1998. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol. Cell. Biol. 18: 2029 2037.
181. Schuler, W.,, N. R. Ruetsch,, M. Amsler,, and M. J. Bosma. 1991. Coding joint formation of endogenous Tcell receptor genes in lymphoid cells from scid mice: unusual P-nucleotide additions in VJ-coding joints. Eur. J. Immunol. 21: 589 596.
182. Schuler, W.,, I. J. Weiler,, A. Schuler,, R. A. Phillips,, N. Rosenberg,, T. K. Mak,, J. F. Kearney,, R. P. Perry,, and M. J. Bosma. 1986. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46: 963 972.
183. Schwarz, K.,, G. H. Gauss,, L. Ludwig,, U. Pannicke,, Z. Li,, D. Lindner,, W. Friedrich,, R. A. Seger,, T. E. Hansen-Hagge,, S. Desiderio,, M. R. Lieber,, and C. R. Bartram. 1996. RAG mutations in human B cell-negative SCID. Science 274: 97 99.
184. Shin, E. K.,, L. E. Perryman,, and K. Meek. 1997. A kinasenegative mutation of DNA-PK(CS) in equine SCID results in defective coding and signal joint formation. J. Immunol. 158: 3565 3569.
185. Shinkai, Y.,, G. Rathbun,, K.-P. Lam,, E. M. Oltz,, V. Stewart,, M. Mendelsohn,, J. Charron,, M. Datta,, F. Young,, A.M. Stall,, and F. W. Alt. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855 867.
186. Shockett, P. E.,, and D. G. Schatz. 1999. DNAhairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell. Biol. 19: 4159 4166.
187. Silver, D. P.,, E. Spanopoulou,, R. C. Mulligan,, and D. Baltimore. 1993. Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination. Proc. Natl. Acad. Sci. USA 90: 6100 6104.
188. Sleckman, B. P.,, J. R. Gorman,, and F. W. Alt. 1996. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14: 459 481.
189. Smith, G. C.,, and S. P. Jackson. 1999. The DNA-dependent protein kinase. Genes Dev. 13: 916 934.
190. Spanopoulou, E.,, P. Cortes,, C. Shih,, C. M. Huang,, D. P. Silver,, P. Svec,, and D. Baltimore. 1995. Localization, interaction, and RNA binding properties of the V(D)J recombination- activating proteins RAG1 and RAG2. Immunity 3: 715 726.
191. Spanopoulou, E.,, F. Zaitseva,, F. Wang,, S. Santagata,, D. Baltimore,, and G. Panayotou. 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87: 263 276.
192. Stanhope-Baker, P.,, K. M. Hudson,, A. L. Shaffer,, A. Con stantinescu,, and M. S. Schlissel. 1996. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85: 887 897.
193. Steen, S. B.,, L. Gomelsky,, and D. B. Roth. 1996. The 12/23 rule is enforced at the cleavage step of V(D)J recombination in vivo. Genes Cells 1: 543 553.
194. Steen, S. B.,, J. O. Han,, C. Mundy,, M. A. Oettinger,, and D. B. Roth. 1999. Roles of the ‘‘dispensable’’ portions of RAG- 1 and RAG-2 in V(D)J recombination. Mol. Cell. Biol. 19: 3010 3017.
195. Steen, S. B.,, C. Zhu,, and D. B. Roth. 1996. Double-strand breaks, DNA hairpins, and the mechanism of V(D)J recombination. Curr. Top. Microbiol. Immunol. 217: 61 77.
196. Stewart, G. S.,, R. S. Maser,, T. Stankovic,, D. A. Bressan,, M. I. Kaplan,, N. G. Jaspers,, A. Raams,, P. J. Byrd,, J. H. Petrini,, and A. M. Taylor. 1999. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxiatelangiectasia- like disorder. Cell 99: 577 587.
197. Swanson, P. C.,, and S. Desiderio. 1998. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9: 115 125.
198. Taccioli, G. E.,, A. G. Amatucci,, H. J. Beamish,, D. Gell,, X. H. Xiang,, M. I. Torres Arzayus,, A. Priestley,, S. P. Jackson,, A. Marshak Rothstein,, P. A. Jeggo,, and V. L. Herrera. 1998. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355 366.
199. Taccioli, G. E.,, G. Rathbun,, E. Oltz,, T. Stamato,, P. A. Jeggo,, and F. W. Alt. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207 210.
200. Takeda, S.,, E. L. Masteller,, C. B. Thompson,, and J.-M. Buerstedde. 1992. RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc. Natl. Acad. Sci. USA 89: 4023 4027.
201. Tevelev, A.,, and D. G. Schatz. 2000. Intermolecular V(D)J recombination. J. Biol. Chem. 275: 8341 8348.
202. Thompson, C. B. 1992. Creation of immunoglobulin diversity by intrachromosomal gene conversion. Trends Genet. 8: 416 422.
203. Thompson, C. B. 1995. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3: 531 539.
204. Timsit, Y.,, E. Vilbois,, and D. Moras. 1991. Base-pairing shift in the major groove of (CA)n tracts by B-DNA crystal structures. Nature 354: 167 170.
205. Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature 302: 575 581.
206. Trujillo, K. M.,, S. S. Yuan,, E. Y. Lee,, and P. Sung. 1998. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273: 21447 21450.
207. Turka, L. A.,, D. G. Schatz,, M. A. Oettinger,, J. J. M. Chun,, C. Gorka,, K. Lee,, W. T. McCormack,, and C. B. Thompson. 1991. Thymocyte expression of the recombination activating genes RAG-1 and RAG-2 can be terminated by T-cell receptor crosslinking. Science 253: 778 781.
208. Usui, T.,, T. Ohta,, H. Oshiumi,, J. Tomizawa,, H. Ogawa,, and T. Ogawa. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95: 705 716.
209. van Gent, D. C.,, K. Hiom,, T. T. Paull,, and M. Gellert. 1997. Stimulation of V(D)J cleavage by High Mobility Group proteins. EMBO J. 16: 2265 2670.
210. van Gent, D. C.,, J. F. McBlane,, D. A. Ramsden,, M. J. Sadofsky,, J. E. Hesse,, and M. Gellert. 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81: 925 934.
211. van Gent, D. C.,, K. Mizuuchi,, and M. Gellert. 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271: 1592 1594.
212. van Gent, D. C.,, D. A. Ramsden,, and M. Gellert. 1996. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85: 107 113.
213. Varon, R.,, C. Vissinga,, M. Platzer,, K. M. Cerosaletti,, K. H. Chrzanowska,, K. Saar,, G. Beckmann,, E. Seemanova,, P. R. Cooper,, N. J. Nowak,, M. Stumm,, C. M. Weemaes,, R. A. Gatti,, R. K. Wilson,, M. Digweed,, A. Rosenthal,, K. Sperling,, P. Concannon,, and A. Reis. 1998. Nibrin, a novel DNA double- strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467 476.
214. Villa, A.,, S. Santagata,, F. Bozzi,, S. Giliani,, A. Frattini,, L. Imberti,, L. B. Gatta,, H. D. Ochs,, K. Schwarz,, L. D. Notarangelo,, P. Vezzoni,, and E. Spanopoulou. 1998. Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93: 885 896.
215. Villa, A.,, C. Sobacchi,, L. D. Notarangelo,, F. Bozzi,, M. Abinun,, T. G. Abrahamsen,, P. D. Arkwright,, M. Baniyash,, E. G. Brooks,, M. E. Conley,, P. Cortes,, M. Duse,, A. Fasth,, A. M. Filipovich,, A. J. Infante,, A. Jones,, E. Mazzolari,, S. M. Muller,, S. Pasic,, G. Rechavi,, M. G. Sacco,, S. Santagata,, M. L. Schroeder,, R. Seger,, D. Strina,, A. Ugazio,, J. Valiaho,, M. Vihinen,, L. B. Vogler,, H. Ochs,, P. Vezzoni,, W. Friedrich,, and K. Schwarz. 2001. V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97: 81 88.
216. Vink, C.,, E. Yeheskiely,, G. A. van der Marel,, J. H. van Boom,, and R. H. A. Plasterk. 1991. Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Res. 19: 6691 6698.
217. Wagner, S. D.,, and M. S. Neuberger. 1996. Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol. 14: 441 457.
218. Wei, Y. F.,, P. Robins,, K. Carter,, K. Caldecott,, D. J. Pappin,, G. L. Yu,, R. P. Wang,, B. K. Shell,, R. A. Nash,, P. Schä r,, D. E. Barnes,, W. A. Haseltine,, and T. Lindahl. 1995. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15: 3206 3216.
219. West, R. B.,, and M. R. Lieber. 1998. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol. Cell. Biol. 18: 6408 6415.
220. Willett, C. E.,, J. J. Cherry,, and L. A. Steiner. 1997. Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 45: 394 404.
221. Xiao, Y.,, and D. T. Weaver. 1997. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25: 2985 2991.
222. Yancopoulos, G. D.,, and F. W. Alt. 1986. Regulation of the assembly and expression of variable-region genes. Annu. Rev. Immunol. 4: 339 368.
223. Yaneva, M.,, T. Kowalewski,, and M. R. Lieber. 1997. Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J. 16: 5098 5112.
224. Yarnell Schultz, H.,, M. A. Landree,, J. X. Qiu,, S. B. Kale,, and D. B. Roth. 2001. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol. Cell 7: 65 75.
225. Yoder, J. A.,, and G. W. Litman. 2000. Immune-type diversity in the absence of somatic rearrangement. Curr. Top. Microbiol. Immunol. 248: 271 282.
226. Yu, K.,, and M. R. Lieber. 2000. The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol. Cell. Biol. 20: 7914 7921.
227. Yu, W.,, Z. Misulovin,, H. Suh,, R. R. Hardy,, M. Jankovic,, N. Yannoutsos,, and M. C. Nussenzweig. 1999. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science 285: 1080 1084.
228. Yu, W.,, H. Nagaoka,, M. Jankovic,, Z. Misulovin,, H. Suh,, A. Rolink,, F. Melchers,, E. Meffre,, and M. C. Nussenzweig. 1999. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400: 682 687.
229. Zachau, H. G. 1993. The immunoglobulin kappa locus—or what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 135: 167 173.
230. Zhu, C.,, and D. B. Roth. 1995. Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 2: 101 112.
231. Zhu, J.,, S. Petersen,, L. Tessarollo,, and A. Nussenzweig. 2001. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11: 105 109.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error