Chapter 31 : Mobile Introns: Pathways and Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mobile Introns: Pathways and Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap31-2.gif


While the role of group I and group II intron-encoded proteins in homing has been well defined, the function of these proteins in intron dissemination to new sites remains the subject of intense study. These mobile introns, their intron-encoded proteins, and the mechanisms by which mobility occurs are the subject of this chapter. Although transition metals are not required for colicin DNase activity, it is likely that they play a stabilizing role related to the membrane translocation that must occur for colicin’s biological function. These data lend credence to the idea that the HNH domain, like the GIY-YIG domain, is an endonu clease cassette that can become associated with other protein domains to form multifunctional proteins. The open reading frames (ORFs) specifying group II intron-encoded proteins, when present, are located in the loop region of the structural domain IV, with most of the coding sequence outside the intron catalytic core. Of the three activities of the group II intron-encoded proteins, the maturase domain is present in all known cases. Endonuclease activity of an intron-encoded protein was first shown for the yeast mtDNA introns aI1 and aI2. Group I and group II introns are self-splicing elements with wide genomic distribution, reflecting their dispersal through active mobility mechanisms. These two types of introns represent different ways in which selfish elements exploit functions that promote their invasiveness. Basic research into the structure and function of intron-encoded proteins and of the dynamics of mobility pathways is yielding a refined view of their modus operandi.

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Intron splicing pathways and structures. Introns are grouped according to splicing pathway. The intron structures shown correspond to the intron type that appears on a grey background.

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Group II intron RNP. (A) Domains of intron-encoded proteins. Abbreviations: M, maturase; E, endonuclease; Z, conserved domain adjacent to RT. (B) The RNPbound to DNA. Abbreviations, IS, intron insertion site; CS, protein cleavage site. The intron and exon binding site interactions (IBS-EBS and δ-δ′) are defined in the text. (C) Critical target residues. The intron insertion site is marked by a downward-directed arrow, and the protein cleavage site is marked by an upward-directed arrow. Critical residues for protein recognition are shown as white letters on a black background, and important but noncritical residues are boxed.

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Group I intron homing pathways. After cleavage of the recipient and exonucleolytic degradation (step 1), 3′ends of the cleaved recipient invade the intron donor allele (step 2). Thereafter, either the DSBRor synthesis-dependent strand annealing (SDSA) pathways can be followed (steps 3 to 6) as shown and described in the text. The dumbbell represents intron endonuclease, I-I. The intron is shown in black; grey horizontal arrows indicate exonucleolytic degradation.

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abelson, J.,, C. R. Trotta,, and H. Li. 1998. tRNA splicing. J. Biol. Chem. 273: 12685 12688.
2. Anglana, M.,, and S. Bacchetti. 1999. Construction of a recombinant adenovirus for efficient delivery of the I- SceI yeast endonuclease to human cells and its application in the in vivo cleavage of chromosomes to expose new potential telomeres. Nucleic Acids Res. 27: 4276 4281.
3. Asselbergs, F. A. M.,, and S. Rival. 1996. Creation of a novel, versatile multiple cloning site cut by four rare-cutting homing endonucleases. BioTechniques 20: 558 562.
4. Belfort, M. 1990. Phage T4 introns: self-splicing and mobility. Annu. Rev. Genet. 24: 363 385.
5. Belfort, M.,, and P. S. Perlman. 1995. Mechanisms of intron mobility. J. Biol. Chem. 270: 30237 30240.
6. Belfort, M.,, and R. J. Roberts. 1997. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25: 3379 3388.
7. Belle, A. 2000. Marker exclusion by bacteriophage T4 is mediated by site-specific non-intron encoded homing endonucleases. Dissertation. State University of New York at Albany, Albany.
8. Bell-Pedersen, D.,, S. M. Quirk,, M. Aubrey,, and M. Belfort. 1989. A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene 82: 119 126.
9. Bell-Pedersen, D.,, S. M. Quirk,, M. Bryk,, and M. Belfort. 1991. I- TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc. Natl. Acad. Sci. USA 88: 7719 7723.
10. Boeke, J. D.,, and J. P. Stoye,. 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements, p. 343 435. In J. M. Coffin,, S. H. Coffin,, S. H. Hughes,, and H. E. Varmus (ed.), Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
10.a. Bonocora, R. P.,, and D. A. Shub. 2001. A novel group I intron-encoded endonuclease specific for the anticodon region of tRNAfMet genes. Mol. Microbiol. 39: 1299 1306.
11. Bryk, M.,, M. Belisle,, J. E. Mueller,, and M. Belfort. 1995. Selection of a remote cleavage site by I- TevI, the td intronencoded endonuclease. J. Mol. Biol. 247: 197 210.
12. Bryk, M.,, S. M. Quirk,, J. E. Mueller,, N. Loizos,, C. Lawrence,, and M. Belfort. 1993. The td intron endonuclease makes extensive sequence tolerant contacts across the minor groove of its DNA target. EMBO J. 12: 2141 2149.
13. Caprara, M. G.,, V. Lehnert,, A. M. Lambowitz,, and E. Westhof. 1996. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87: 1135 1145.
14. Carignani, G.,, O. Groudinsky,, D. Frezza,, E. Schiavon,, E. Bergantino,, and P. P. Slonimski. 1983. An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35: 733 742.
15. Cavalier-Smith, T. 1991. Intron phylogeny: a new hypothesis. Trends Genet. 7: 145 148.
16. Cech, T. R. 1988. Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review. Gene 73: 259 271.
17. Cech, T. R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543 568.
18. Cech, T. R. 1985. Self-splicing RNA: implications for evolution. Int. Rev. Cytol. 93: 3 22.
19. Chong, S.,, and M.-Q. Xu. 1997. Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J. Biol. Chem. 272: 15587 15590.
20. Choulika, A.,, A. Perrin,, B. Dujon,, and J. F. Nicolas. 1995. Induction of homologous recombination in mammalian chromosomes by using the I- SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 1968 1973.
21. Christ, F.,, S. Schoettler,, W. Wende,, S. Steuer,, A. Pingoud,, and V. Pingoud. 1999. The monomeric homing endonuclease PI- SceI has two catalytic centres for cleavage of the two strands of its DNA substrate. EMBO J. 18: 6908 6916.
22. Christ, F.,, S. Steuer,, H. Thole,, W. Wende,, A. Pingoud,, and V. Pingoud. 2000. A model for the PI-Sce I-DNA complex based on multiple base and phosphate backbone-specific photocross- links. J. Mol. Biol. 300: 841 849.
23. Clodi, E.,, K. Semrad,, and R. Schroeder. 1999. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. 18: 3776 3782.
24. Clyman, J.,, and M. Belfort. 1992. Trans and cis requirements for intron mobility in a prokaryotic system. Genes Dev. 6: 1269 1279.
25. Coen, D.,, J. Deutch,, P. Netter,, E. Petrochilo,, and P. P. Slonimski. 1970. Mitochondrial genetics. I. Methodology and phenomenology. Symp. Soc. Exp. Biol. 23: 449 496.
26. Cohen-Tannoudji, M.,, S. Robine,, A. Choulika,, D. Pinto,, F. El Marjou,, C. Babinet,, D. Louvard,, and F. Jaisser. 1998. I SceI- induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18: 1444 1448.
27. Colleaux, L.,, L. D’Auriol,, M. Betermier,, G. Cottarel,, A. Jacquier,, F. Galibert,, and B. Dujon. 1986. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44: 521 533.
28. Colleaux, L.,, C. Rougeulle,, P. Avner,, and B. Dujon. 1993. Rapid physical mapping of YAC inserts by random integration of I- SceI sites. Hum. Mol. Genet. 2: 265 271.
29. Copenhaver, G. P.,, and C. S. Pikaard. 1996. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4a. Plant J. 9: 259 272.
30. Copertino, D. W.,, and R. B. Hallick. 1993. Group II and group III introns of twintrons: potential relationships to nuclear pre-mRNA introns. Trends Biochem. Sci. 18: 467 471.
31. Cousineau, B.,, S. Lawrence,, D. Smith,, and M. Belfort. 2000. Retrotransposition of a bacterial group II intron. Nature 404: 1018 1021.
32. Cousineau, B.,, D. Smith,, S. Lawrence-Cavanagh,, J. E. Mueller,, J. Yang,, D. Mills,, D. Manias,, G. Dunny,, A. M. Lambowitz,, and M. Belfort. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94: 451 462.
33. Critchlow, S. E.,, and S. P. Jackson. 1998. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23: 394 398.
34. Curcio, M. J.,, and M. Belfort. 1996. Retrohoming: cDNAmediated mobility of group II introns requires a catalytic RNA. Cell 84: 9 12.
35. Dalgaard, J. Z.,, R. A. Garrett,, and M. Belfort. 1994. Purification and characterization of two forms of I- DmoI, a thermophilic site-specific endonuclease encoded by an archaeal intron. J. Biol. Chem. 269: 28885 28892.
36. Dalgaard, J. Z.,, R. A. Garrett,, and M. Belfort. 1993. A sitespecific endonuclease encoded by a typical archaeal intron. Proc. Natl. Acad. Sci. USA 90: 5414 5417.
37. Dalgaard, J. Z.,, A. Klar,, M. J. Moser,, W. R. Holley,, A. Chatterjee,, and I. S. Mian. 1997. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the H-N-H family. Nucleic Acids Res. 25: 4626 4638.
38. Dalgaard, J. Z.,, M. J. Moser,, R. Hughey,, and I. S. Mian. 1997. Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J. Comput. Biol. 4: 193 214.
39. Delahodde, A.,, V. Goguel,, A. M. Becam,, F. Creusot,, J. Perea,, J. Banroques,, and C. Jacq. 1989. Site-specific DNA endonuclease and RNA maturase activities of two homologous in tron-encoded proteins from yeast mitochondria. Cell 56: 431 441.
40. Derbyshire, V.,, J. C. Kowalski,, J. T. Dansereau,, C. R. Hauer,, and M. Belfort. 1997. Two-domain structure of the td intronencoded endonuclease I- TevI correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265: 494 506.
41. Derbyshire, V.,, D. W. Wood,, W. Wu,, J. T. Dansereau,, J. Z. Dalgaard,, and M. Belfort. 1997. Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc. Natl. Acad. Sci. USA 94: 11466 11471.
42. Dickson, L.,, H.-R. Huang,, L. Liu,, M. Matsuura,, A. M. Lambowitz,, and P. S. Perlman. 2001. Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc. Natl. Acad. Sci. USA 98: 13207 13212.
43. Donoho, G.,, M. Jasin,, and P. Berg. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18: 4070 4078.
44. Duan, X.,, F. S. Gimble,, and F. A. Quiocho. 1997. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89: 555 564.
45. Dujardin, G.,, C. Jacq,, and P. P. Slonimski. 1982. Single base substitution in an intron of oxidase gene compensates splicing defects of cytochrome b gene. Nature 298: 628 632.
46. Dujon, B. 1980. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and ribI loci. Cell 20: 185 197.
47. Dujon, B.,, M. Belfort,, R. A. Butow,, C. Jacq,, C. Lemieux,, P. S. Perlman,, and V. M. Vogt. 1989. Mobile introns: definition of terms and recommended nomenclature. Gene 82: 115 118.
48. Dujon, B.,, and F. Michel. 1976. Genetics and physical characterization of a segment of the mitochondrial DNA involved in the control of genetic recombination, p. 175 184. In C. Saccone and A. M. Kroon (ed.), The Genetic Function of Mitochondrial DNA. North-Holland Biomedical Press, Elsevier, Amsterdam, The Netherlands.
49. Eddy, S. R.,, and L. Gold. 1992. Artificial mobile DNA element constructed from the EcoRI endonuclease gene. Proc. Natl. Acad. Sci. USA 89: 1544 1547.
50. Eddy, S. R.,, and L. Gold. 1991. The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev. 5: 1032 1041.
51. Edgell, D. R.,, M. Belfort,, and D. A. Shub. 2000. Barriers to intron promiscuity in bacteria. J. Bacteriol. 182: 5281 5289.
52. Edgell, D. R.,, N. M. Fast,, and W. F. Doolittle. 1996. Selfish DNA: the best defense is a good offense. Curr. Biol. 6: 385 388.
53. Eickbush, T. H. 2000. Introns gain ground. Nature 404: 940 943.
54. Eskes, R.,, L. Liu,, H. Ma,, M. Chao,, L. Dickson,, A. M. Lambowitz,, and P. S. Perlman. 2000. Multiple homing pathways used by yeast mitochondrial group II introns. Mol. Cell. Biol. 20: 8432 8446.
55. Eskes, R.,, J. Yang,, A. M. Lambowitz,, and P. S. Perlman. 1997. Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88: 865 874.
56. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905 916.
57. Flick, K. E.,, M. S. Jurica,, R. J. Monnat, Jr.,, and B. L. Stoddard. 1998. DNA binding and cleavage by the nuclear intronencoded homing endonuclease I- PpoI. Nature 394: 96 101.
58. Fonzi, W. A.,, and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717 728.
59. Friedhoff, P.,, I. Franke,, G. Meiss,, W. Wende,, K. L. Krause,, and A. Pingoud. 1999. A similar active site for non-specific and specific endonucleases. Nat. Struct. Biol. 6: 112 113.
60. Galburt, E. A.,, M. S. Chadsey,, M. S. Jurica,, B. S. Chevalier,, D. Erho,, W. Tang,, R. J. Monnat, Jr.,, and B. L. Stoddard. 2000. Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. J. Mol. Biol. 300: 877 887.
61. Galburt, E. A.,, B. Chevalier,, W. Tang,, M. S. Jurica,, K. E. Flick,, R. J. Monnat, Jr., and B. L. Stoddard. 1999. A novel endonuclease mechanism directly visualized for I- PpoI. Nat. Struct. Biol. 6: 1096 1099.
62. George, J. W.,, and K. N. Kreuzer. 1996. Repair of doublestrand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication. Genetics 143: 1507 1520.
63. Gimble, F. S. 2000. Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Lett. 185: 99 107.
64. Gimble, F. S.,, and B. W. Stephens. 1995. Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI- SceI endonuclease. J. Biol. Chem. 270: 5849 5856.
65. Gimble, F. S.,, and J. Wang. 1996. Substrate recognition and induced DNA distortion by the PI- SceI endonuclease, an enzyme generated by protein splicing. J. Mol. Biol. 263: 163 180.
66. Goldschmidt-Clermont, M.,, Y. Choquet,, J. Girard-Bascou,, F. Michel,, M. Schirmer-Rahire,, and J.-D. Rochaix. 1991. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65: 135 143.
67. Goldschmidt-Clermont, M.,, J. Girard-Bascou,, Y. Choquet,, and J.-D. Rochaix. 1990. Trans-splicing mutants of Chlamydomonas reinhardtii. Mol. Gen. Genet. 223: 417 425.
68. Goodrich-Blair, H.,, V. Scarlato,, J. M. Gott,, M.-Q. Xu,, and D. A. Shub. 1990. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell 63: 417 424.
69. Goodrich-Blair, H.,, and D. A. Shub. 1996. Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84: 211 221.
70. Goodrich-Blair, H.,, and D. A. Shub. 1994. The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res. 22: 3715 3721.
71. Gorbalenya, A. E. 1994. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci. 3: 1117 1120.
72. Gorbunova, V.,, and A. A. Levy. 1997. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25: 4650 4657.
73. Grindl, W.,, W. Wende,, V. Pingoud,, and A. Pingoud. 1998. The protein splicing domain of the homing endonuclease PI SceI is responsible for specific DNA binding. Nucleic Acids Res. 26: 1857 1862.
74. Guo, H.,, M. Karberg,, M. Long,, J. P. Jones III,, B. Sullenger,, and A. M. Lambowitz. 2000. Group II introns designated to insert into therapeutically-relevantDNAtarget sites in human cells. Science 289: 452 457.
75. Guo, H.,, S. Zimmerly,, P. S. Perlman,, and A. M. Lambowitz. 1997. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in doublestranded DNA. EMBO J. 16: 6835 6848.
76. Heath, P. J.,, K. M. Stephens,, R. J. Monnat, Jr.,, and B. L. Stoddard. 1997. The structure of I- CreI, a group I intronencoded homing endonuclease. Nat. Struct. Biol. 4: 468 476.
77. Hiller, R.,, M. Hetzer,, R. J. Schweyen,, and M. W. Mueller. 2000. Transposition and exon shuffling by group II intron RNA molecules in pieces. J. Mol. Biol. 297: 301 308.
78. Hiom, K. 1999. DNA repair: Rad52—the means to an end. Curr. Biol. 9: R446 R448.
79. Hirata, R.,, and Y. Anraku. 1992. Mutations at the putative junction sites of the yeastVMA1protein, the catalytic subunit of the vacuolar membrane H+-ATPase inhibit its processing by protein splicing. Biochem. Biophys. Res. Commun. 188: 40 47.
80. Hirata, R.,, Y. Ohsumi,, A. Nakano,, H. Kawasaki,, K. Suzuki,, and Y. Anraku. 1990. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265: 6726 6733.
81. Holmes, A.,, and J. E. Haber. 1999. Physical monitoring of HO-induced homologous recombination. Methods Mol. Biol. 113: 403 415.
82. Honeycutt, R. J.,, M. McClelland,, and B. W. S. Sobral. 1993. Physical map of the genome of Rhizobium meliloti 1021. J. Bacteriol. 175: 6945 6952.
83. Hu, D.,, M. Crist,, X. Duan,, F. A. Quiocho,, and F. S. Gimble. 2000. Probing the structure of the PI- SceI-DNA complex by affinity cleavage and affinity photocross-linking. J. Biol. Chem. 275: 2705 2712.
84. Huang, Y.-J.,, M. M. Parker,, and M. Belfort. 1999. Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics 153: 1501 1512.
85. Ichiyanagi, K.,, Y. Ishino,, M. Ariyoshi,, K. Komori,, and M. Kosuke. 2000. Crystal structure of an archaeal intein-encoded homing endonuclease PI- PfuI. J. Mol. Biol. 300: 889 901.
86. Jacquier, A.,, and B. Dujon. 1985. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41: 383 394.
87. Jurica, M. S.,, R. J. Monnat, Jr.,, and B. L. Stoddard. 1998. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I- CreI. Mol. Cell. 2: 469 476.
88. Kadyrov, F. A.,, V. M. Kriukov,, M. G. Shliapnikov,, and A. A. Baev. 1994. SegE—a new site-specific endodeoxyribonuclease from bacteriophage T4. Doklady Biochem. 339: 404 406.
89. Kane, P. M.,, C. T. Yamashiro,, D. F. Wolczyk,, N. Neff,, M. Goebl,, and T. H. Stevens. 1990. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250: 651 657.
89.a. Karberg, M.,, H. Guo,, J. Zhong,, R. Coon,, J. Perutka,, and A. M. Lambowitz. 2001. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat. Biotechnol. 19: 1162 1167.
90. Kennell, J. C.,, J. V. Moran,, P. S. Perlman,, R. A. Butow,, and A. M. Lambowitz. 1993. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73: 133 146.
91. Kleanthous, C.,, U. C. Kuhlmann,, A. J. Pommer,, N. Ferguson,, S. E. Radford,, G. R. Moore,, R. James,, and A. M. Hemmings. 1999. Structural and mechanistic basis of immunity toward endonuclease colicins. Nat. Struct. Biol. 6: 243 252.
92. Ko, T.-P.,, C.-C. Liao,, W.-Y. Ku,, K.-F. Chak,, and H. S. Yuan. 1999. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor 1m7 protein. Structure 7: 91 102.
93. Kolodner, R.,, S. D. Hall,, and C. Luisi-DeLuca. 1994. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol. Microbiol. 11: 23 30.
94. Komori, K.,, N. Fujita,, K. Ichiyanagi,, H. Shinagawa,, K. Morikawa,, and Y. Ishino. 1999. PI- PfuI and PI- PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. I. Purification and identification of the homing-type endonuclease activities. Nucleic Acids Res. 27: 4167 4174.
95. Komori, K.,, K. Ichiyanagi,, K. Morikawa,, and Y. Ishino. 1999. PI- PfuI and PI- PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization of the binding and cleavage abilities by site-directed mutagenesis. Nucleic Acids Res. 27: 4175 4182.
96. Kowalski, J. C.,, M. Belfort,, M. A. Stapleton,, M. Holpert,, J. T. Dansereau,, S. Pietrokovski,, S. M. Baxter,, and V. Derbyshire. 1999. Configuration of the catalytic domain of intron endonuclease I- TevI: coincidence of computational and molecular findings. Nucleic Acids Res. 27: 2115 2125.
97. Kreuzer, K. N. 2000. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25: 165 173.
98. Kuhlmann, U. C.,, G. R. Moore,, R. James,, C. Kleanthous,, and A. M. Hemmings. 1999. Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett. 463: 1 2.
99. Kuhsel, M. G.,, R. Strickland,, and J. D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570 1573.
100. Kusano, K.,, K. Sakagami,, T. Yokochi,, T. Naito,, Y. Tokinaga,, E. Ueda,, and I. Kobayashi. 1997. A new type of illegitimate recombination is dependent on restriction and homologous interaction. J. Bacteriol. 179: 5380 5390.
101. Lambowitz, A. M. 1989. Infectious introns. Cell 56: 323 326.
102. Lambowitz, A. M.,, and M. Belfort. 1993. Introns as mobile genetic elements. Annu. Rev. Biochem. 62: 587 622.
103. Lambowitz, A. M.,, M. G. Caprara,, S. Zimmerly,, and P. S. Perlman,. 1999. Group I and group II ribozymes as RNPs: clues to the past and guides to the future, p. 451 485. In R. F. Gesteland,, T. R. Cech,, and J. F. Atkins (ed.), The RNA World, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
104. Lambowitz, A. M.,, and P. S. Perlman. 1990. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem. Sci. 15: 440 444.
105. Lazowska, J.,, B. Meunier,, and C. Macadre. 1994. Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J. 13: 4963 4972.
106. Lewin, A. S.,, J. Thomas, Jr.,, and H. K. Tirupati. 1995. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein. Mol. Cell. Biol. 15: 6971 6978.
107. Liu, S. L.,, A. Hessel,, and K. E. Sanderson. 1993. Genomic mapping with I- CeuI, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc. Natl. Acad. Sci. USA 90: 6874 6878.
108. Liu, S. L.,, and K. E. Sanderson. 1995. I- CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J. Bacteriol. 177: 3355 3357.
109. Loizos, N.,, E. R. M. Tillier,, and M. Belfort. 1994. Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease. Proc. Natl. Acad. Sci. USA 91: 11983-– 11987.
110. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTRretrotransposition. Cell 72: 595 605.
111. Lukacsovich, T.,, D. Yang,, and A. S. Waldman. 1994. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I- SceI. Nucleic Acids Res. 22: 5649 5657.
112. Lykke-Andersen, J.,, C. Aagaard,, M. Semionenkov,, and R. A. Garrett. 1997. Archaeal introns: splicing, intercellular mobility and evolution. Trends Biochem. Sci. 22: 326 331.
113. Lykke-Andersen, J.,, R. A. Garrett,, and J. Kjems. 1997. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. EMBO J. 16: 3272 3281.
114. Lykke-Andersen, J.,, R. A. Garrett,, and J. Kjems. 1996. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 24: 3982 3989.
115. Lykke-Andersen, J.,, H. P. Thi-Ngoc,, and R. A. Garrett. 1994. DNAsubstrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Res. 22: 4583 4590.
116. Macreadie, I. G.,, R. M. Scott,, A. R. Zinn,, and R. A. Butow. 1985. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41: 395 402.
117. Martinez-Abarca, F.,, F. M. Garcia-Rodriguez,, and N. Toro. 2000. Homing of a bacterial group II intron with an intronencoded protein lacking a recognizable endonuclease domain. Mol. Microbiol. 35: 1405 1412.
118. Martinez-Abarca, F.,, and N. Toro. 2000. RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucleic Acids Res. 28: 4397 4402.
119. Matsuura, M.,, R. Saldanha,, H. Ma,, H. Wank,, J. Yang,, G. Mohr,, S. Cavanagh,, G. M. Dunny,, M. Belfort,, and A. M. Lambowitz. 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11: 2910 2924.
120. McClure, M. A. 1991. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol. Biol. Evol. 8: 835 856.
121. Meunier, B.,, G.-L. Tian,, C. Macadre,, P. P. Slonimski,, and J. Lazowska,. 1990. Group II introns transpose in yeast mitochondria, p. 169 174. In E. Quagliariello,, S. Papa,, F. Palmieir,, and C. Saccone (ed.), Structure,Function and Biogenesis of Energy Transfer Systems. Elsevier, Amsterdam, The Netherlands.
122. Michel, F.,, and D. J. Cummings. 1985. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr. Genet. 10: 69 79.
123. Michel, F.,, and B. Dujon. 1986. Genetic exchanges between bacteriophage T4 and filamentous fungi? Cell 46: 323.
124. Michel, F.,, and J.-L. Ferat. 1995. Structure and activities of group II introns. Annu. Rev. Biochem. 64: 435 461.
125. Michel, F.,, K. Umesono,, and H. Ozeki. 1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82: 5 30.
126. Michel, F.,, and E. Westhof. 1990. Modelling of the threedimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216: 585 610.
127. Mills, D. A.,, D. A. Manias,, L. L. McKay,, and G. M. Dunny. 1997. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179: 6107 6111.
128. Mills, D. A.,, L. L. McKay,, and G. M. Dunny. 1996. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J. Bacteriol. 178: 3531 3538.
129. Mohr, G.,, P. S. Perlman,, and A. M. Lambowitz. 1993. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 21: 4991 4997.
130. Mohr, G.,, D. Smith,, M. Belfort,, and A. M. Lambowitz. 2000. Rules for DNA target site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14: 559 573.
131. Moran, J. V.,, K. L. Mecklenburg,, P. Sass,, S. M. Belcher,, D. Mahnke,, A. Lewin,, and P. Perlman. 1994. Splicing defective mutants of the COX1 gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucleic Acids Res. 22: 2057 2064.
132. Moran, J. V.,, S. Zimmerly,, R. Eskes,, J. C. Kennell,, A. M. Lambowitz,, R. A. Butow,, and P. S. Perlman. 1995. Mobile group II introns of yeast mtDNA are novel site-specific retroelements. Mol. Cell. Biol. 15: 2828 2838.
133. Mota, E. M.,, and R. A. Collins. 1988. Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332: 654 656.
134. Mueller, J. E.,, M. Bryk,, N. Loizos,, and M. Belfort,. 1993. Homing endonucleases, p. 111 143. In S. M. Linn,, R. S. Lloyd,, and R. J. Roberts (ed.), Nucleases, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
135. Mueller, J. E.,, J. Clyman,, Y.-J. Huang,, M. M. Parker,, and M. Belfort. 1996. Intron mobility in phage T4 occurs in the context of recombination-dependentDNAreplication by way of multiple pathways. Genes Dev. 10: 351 364.
136. Mueller, J. E.,, D. Smith,, and M. Belfort. 1996. Exon coconversion biases accompanying intron homing: battle of the nucleases. Genes Dev. 10: 2158 2166.
137. Mueller, J. E.,, D. Smith,, M. Bryk,, and M. Belfort. 1995. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J. 14: 5724 5735.
138. Mueller, M. W.,, M. Allmaier,, R. Eskes,, and R. J. Schweyen. 1993. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366: 174 176.
139. Muscarella, D. E.,, and V. M. Vogt. 1989. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell 56: 443 454.
140. Palmer, J. D.,, and J. M. Logsdon, Jr. 1991. The recent origins of introns. Curr. Opin. Genet. Devel. 1: 470 477.
141. Paques, F.,, and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 349 404.
142. Parker, M. M.,, M. Belisle,, and M. Belfort. 1999. Intron homing with limited exon homology: illegitimate double-strandbreak repair in intron acquisition by phage T4. Genetics 153: 1513 1523.
143. Parker, M. M.,, D. A. Court,, K. Preiter,, and M. Belfort. 1996. Homology requirements for double-strand break-mediated recombination in a phage lambda- td intron model system. Genetics 143: 1057 1068.
144. Perlman, P. S.,, and R. A. Butow. 1989. Mobile introns and intron-encoded proteins. Science 246: 1106 1109.
145. Perron, K.,, M. Goldschmidt-Clermont,, and J.-D. Rochaix. 1999. A factor related to pseudouridine synthase is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J. 18: 6481 6490.
146. Pietrokovski, S. 1998. Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci. 7: 64 71.
147. Pingoud, V.,, H. Thole,, F. Christ,, W. Grindl,, W. Wende,, and A. Pingoud. 1999. Photocross-linking of the homing endonu clease PI-SecI to its recognition sequence. J. Biol. Chem. 274: 10235 10243.
148. Pommer, A. J.,, U. C. Kuhlmann,, A. Cooper,, A. M. Hemmings,, G. R. Moore,, R. James,, and C. Kleanthous. 1999. Homing in on the role of transition metals in the HNH motif of colicin endonucleases. J. Biol. Chem. 274: 27153 27160.
149. Pyle, A. M. 2000. New tricks from an itinerant intron. Nat. Struct. Biol. 7: 352 354.
150. Quirk, S. M.,, D. Bell-Pedersen,, and M. Belfort. 1989. Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell 56: 455 465.
151. Remacle, C.,, and R. F. Matagne. 1993. Transmission, recombination and conversion of mitochondrial markers in relation to the mobility of a group I intron in Chlamydomonas. Curr. Genet. 23: 518 525.
152. Rochaix, J. D.,, M. Rahire,, and F. Michel. 1985. The chloroplast ribosomal intron of Chlamydomonas reinhardtii codes for a polypeptide related to mitochondrial maturases. Nucleic Acids Res. 13: 975 984.
153. Roman, J.,, and S. A. Woodson. 1997. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc. Natl. Acad. Sci. USA 95: 2134 2139.
154. Rong, Y. S.,, and K. G. Golic. 2000. Gene targeting by homologous recombination in Drosophila. Science 288: 2013 2018.
155. Rouet, P.,, F. Smih,, and M. Jasin. 1994. Expression of a sitespecific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064 6068.
156. Rouet, P.,, F. Smih,, and M. Jasin. 1994. Introduction of double- strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14: 8096 8106.
157. Ruby, S. W.,, and J. Abelson. 1991. Pre-mRNA splicing in yeast. Trends Genet. 7: 79 85.
158. Rudi, K.,, and K. S. Jakobsen. 1999. Complex evolutionary patterns of tRNA Leu(UAA) group I introns in cyanobacterial radiation. J. Bacteriol. 181: 3445 3451.
159. Russell, D. W.,, R. Jensen,, M. J. Zoller,, J. Burke,, B. Errede,, M. Smith,, and I. Herskowitz. 1986. Structure of the Saccharomyces cerevisiae HOgene and analysis of its upstream regulatory region. Mol. Cell. Biol. 6: 4281 4294.
160. Russell, R. L.,, and R. J. Huskey. 1974. Partial exclusion between T-even bacteriophages: an incipient genetic isolation mechanism. Genetics 78: 989 1014.
161. Saldanha, R.,, R. Chen,, H. Wank,, M. Matsuura,, J. Edwards,, and A. M. Lambowitz. 1999. RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38: 9069 9083.
162. Saldanha, R.,, G. Mohr,, M. Belfort,, and A. M. Lambowitz. 1993. Group I and group II introns. FASEB J. 7: 15 24.
163. Segal, D. J.,, and D. Carroll. 1995. Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 92: 806 810.
164. Sellem, C. H.,, G. Lecellier,, and L. Belcour. 1993. Transposition of a group II intron. Nature 366: 176 178.
165. Sharma, M.,, R. L. Ellis,, and D. M. Hinton. 1992. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc. Natl. Acad. Sci. USA 89: 6658 6662.
166. Sharma, M.,, and D. M. Hinton. 1994. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J. Bacteriol. 176: 6439 6448.
167. Sharp, P. A. 1985. On the origin of RNA splicing and introns. Cell 42: 397 400.
168. Sharp, P. A. 1987. Splicing of messenger RNA precursors. Science 235: 766 771.
169. Shearman, C.,, J.-J. Godon,, and M. Gasson. 1996. Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol. Microbiol. 21: 45 53.
170. Shingledecker, K.,, S.-Q. Jiang,, and H. Paulus. 1998. Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207: 187 195.
171. Shlyapnikov, S. V.,, V. V. Lunin,, M. Perbandt,, K. M. Polyaaakov,, V. Y. Lunin,, V. M. Levdikov,, C. Betzel,, and A. M. Mikhailov. 2000. Atomic structure of the Serratia marcescens endonuclease at 1.1 Å resolution and the enzyme reaction mechanism. Acta Crystallogr. Sect D 56: 567 572.
172. Shub, D. A.,, H. Goodrich-Blair,, and S. R. Eddy. 1994. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends- Biochem. Sci. 19: 402 404.
173. Silva, G.,, J. Z. Dalgaard,, M. Belfort,, and P. Van Roey. 1999. Crystal structure of the thermostable archaeal intron-encoded endonuclease I- DmoI. J. Mol. Biol. 286: 1123 1136.
174. Simpson, G. G.,, and W. Filipowicz. 1996. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. 32: 1 41.
175. Singh, N. N.,, and A. M. Lambowitz. 2001. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated byDNAfootprinting and modification interference. J. Mol. Biol. 309: 361 386.
176. Skelly, P. J.,, C. M. Hardy,, and G. D. Clark-Walker. 1991. A mobile group II intron of a naturally occuring rearranged mitochondrial genome in Kluyveromyces lactis. Curr. Genet. 20: 115 120.
177. Smih, F.,, P. Rouet,, P. J. Romanienko,, and M. Jasin. 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23: 5012 5019.
178. Souza, D. W.,, and D. Armentano. 1999. Novel cloning method for recombinant adenovirus construction in Escherichia coli. BioTechniques 26: 502 508.
179. Szostak, J. W.,, T. L. Orr-Weaver,, R. J. Rothstein,, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33: 25 35.
180. Taghian, D. G.,, and J. A. Nickoloff. 1997. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17: 6386 6393.
181. Thierry, A.,, L. Gaillon,, F. Galibert,, and B. Dujon. 1995. Construction of a complete genomic library of Saccharomyces cerevisiae and physical mapping of chromosome XI at 3.7 kb resolution. Yeast 11: 121 135.
182. Tirupati, H. K.,, L. C. Shaw,, and A. S. Lewin. 1999. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis. J. Biol. Chem. 274: 30393 30401.
183. Toda, T.,, and M. Itaya. 1995. I- CeuI recognition sites in the rrn operons of the Bacillus subtilis 168 chromosome: inherent landmarks for genome analysis. Microbiology 141: 1937 1945.
184. Van Roey, P.,, C. A. Waddling,, K. M. Fox,, M. Belfort,, and V. Derbyshire. 2001. Intertwined structure of the DNA-binding domain of intron endonuclease I- TevI with its substrate. EMBO J. 20: 3631 3637.
185. Verhoeven, E. E. A.,, M. Van Kesteren,, G. F. Moolenaar,, R. Visse,, and N. Goosen. 2000. Catalytic sites for 3′and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J. Biol. Chem. 275: 5120 5123.
186. Wank, H.,, J. SanFilippo,, R. N. Singh,, M. Matsuura,, and A. M. Lambowitz. 1999. A reverse-transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell 4: 239 250.
187. Weeks, K. M.,, and T. R. Cech. 1996. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271: 345 348.
188. Wenzlau, J. M.,, R. J. Saldanha,, R. A. Butow,, and P. S. Perlman. 1989. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56: 421 430.
189. Xiong, Y.,, and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353 3362.
190. Xu, M.-Q.,, S. D. Kathe,, H. Goodrich-Blair,, S. A. Nierzwicki- Bauer,, and D. A. Shub. 1990. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in Cyanobacteria. Science 250: 1566 1570.
191. Yang, J.,, H. S. Malik,, and T. H. Eickbush. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96: 7847 7852.
192. Yang, J.,, G. Mohr,, P. S. Perlman,, and A. M. Lambowitz. 1998. Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity in aI1 and reverse splicing into DNA transposition sites in vitro. J. Mol. Biol. 282: 505 523.
193. Yang, J.,, S. Zimmerly,, P. S. Perlman,, and A. M. Lambowitz. 1996. Efficient integration of an intron RNA into doublestranded DNA by reverse splicing. Nature 381: 332 335.
194. Yeo, C. C.,, J. M. Tham,, M. W.-C. Yap,, and C. L. Poh. 1997. Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. Microbiology 143: 2833 2840.
195. Zhang, A.,, V. Derbyshire,, J. L. Salvo,, and M. Belfort. 1995. Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. RNA 1: 783 793.
196. Zimmerly, S.,, H. Guo,, R. Eskes,, J. Yang,, P. S. Perlman,, and A. M. Lambowitz. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529 538.
197. Zimmerly, S.,, H. Guo,, P. S. Perlman,, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82: 545 554.
198. Zimmerly, S.,, J. V. Moran,, P. S. Perlman,, and A. M. Lambowitz. 1999. Group II intron reverse transcription in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. J. Mol. Biol. 289: 473 490.
199. Zinn, A. R.,, and R. A. Butow. 1985. Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and involvement of a double- strand break. Cell 40: 887 895.


Generic image for table
Table 1

Intron distribution

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31
Generic image for table
Table 2

Characteristics of homing endonucleases

Citation: Belfort M, Derbyshire V, Parker M, Cousineau B, Lambowitz A. 2002. Mobile Introns: Pathways and Proteins, p 761-783. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch31

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error