1887

Chapter 33 : I Elements in Drosophila melanogaster

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

I Elements in Drosophila melanogaster, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap33-2.gif

Abstract:

At the beginning of the 1970s Picard and L’Héritier reported that crosses between particular strains of produce progeny exhibiting genetic abnormalities. In 1976 Picard reported that the factor responsible for IR hybrid dysgenesis is a transposable element, the first discovered in , and named it the I factor. The determination of its sequence showed that it belongs to the class of non-long terminal repeat retrotransposons (NLRs) also known as long interspersed nucleotidic elements (LINEs). The I factor is one of the models used to study the mechanism of transposition of NLRs because it can be mobilized at high frequency by dysgenic crosses, giving the opportunity to study the molecular mechanism of transposition in vivo. The species can be divided into two classes of strains according to the IR system of hybrid dysgenesis, inducer (or I) and reactive (or R). I strains contain several complete and functional I factors, R strains do not. The mechanism of transposition of the I factor is thought to be related to target-primed reverse transcription (TPRT) requiring a full-length RNA intermediate. The study of deletion derivatives indicates that the sequences comprised between nucleotides 41 and 100 might be involved in the inhibition of somatic expression. The study of deletion derivatives showed that more than one region of the protein is involved in DNA binding and that the cysteine-rich motifs are not essential for this, but are required for the formation of the high molecular weight structures.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Results of crosses between the two categories of strains involved in the IR system of hybrid dysgenesis.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of the I factor and of its RNA. Boxes represent the two ORFs. C represents cysteine-rich motifs, and EN, RT, and RH represent the endonuclease, reverse transcriptase, and RNase H domains, respectively. Below is shown the RNA of the I factor starting at the first nucleotide of the element and ending after the UAA repeats at the 3′end (double line).

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Retrotransposition of the I factor generating repeats at the 3′end. The endonuclease encoded by the I factor makes staggered nicks in chromosomal DNA (A). The reverse transcriptase of the element associated with the transposition intermediate, which extends beyond the UAA repeats, binds the target site and uses the 3′-OH at the end of chromosomal DNA to initiate reverse transcription (B). After polymerization of a few nucleotides (C) the RNA may dissociate and reassociate to a short complementary sequence in the newly synthesized cDNA (D). Reverse transcriptase proceeds to the 5′end of the RNA template and switches to the target DNA (E). After degradation of the RNA by the I factor RNase H, synthesis of the second strand of the cDNA, and ligation, there is insertion of a full-length I element flanked by a target site duplication. The target site is shown in regular type, the RNA is shown in boldface (except for the extra nucleotides downstream of the UAA repeats, which are in italics []), and the cDNA is shown in bold italics. The duplication of the target sequence is underlined. Lowercase letters in panels E and F indicate newly synthesized DNA of the target site duplication.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Ability to repress I factor activity in "reconstructed" R stocks devoid of transposed I elements obtained in the progeny of RSF females. (A) Experimental scheme. RSF females were backcrossed to R males, and female and male progeny having the complete genotype of an R strain and devoid of transposed copies of the I factor were selected to establish the reconstructed R stocks. I factor activity was estimated by crossing at each generation females of the stocks to I males and determining the hatching percentages of the eggs laid by their daughters (SF females). I and R represent half genomes from an I or an R strain, respectively. (B) Ability over generations of the females of the reconstructed R stocks to repress I factor activity. This ability is high during the first generations (high fertility of their SF daughters) and decreases progressively generation after generation (low fertility of the SF daughters). The frequency of transposition of I factors is higher in more sterile SF females ( ). Data are from reference .

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Modifications of reactivity over generations induced by aging. A strongly reactive strain was maintained by producing each generation from either young-laying females (Y) or old-laying females (O). The reactivity level was determined at various generations by measuring the hatching percentages of the eggs laid by SF females obtained by crossing females of these stocks with I males. Reactivity remained strong in the Y stock but became progressively weaker generation after generation in the O stock. This change in reactivity is reversible as shown when young-laying females are used again (R1 and R2). The frequency of transposition of I factors is higher when SF females are derived from strongly reactive females than when derived from weakly reactive females ( ). Modified from reference with permission.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Distribution of I elements in the eight species of the D. melanogaster subgroup. The phylogenetic relationships between the eight species of the subgroup are drawn according to reference 55. The number of plus signs indicates the intensity of the signals observed in Southern blot experiments (21).

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap33
1. Abad, P.,, C. Vaury,, A. Pelisson,, M. C. Chaboissier,, I. Busseau,, and A. Bucheton. 1989. A long interspersed repetitive element-the I factor of Drosophila teissieri-is able to transpose in different Drosophila species. Proc. Natl. Acad. Sci. USA 86: 8887 8891.
2. Adams, M. D.,, S. E. Celniker,, R. A. Holt,, C. A. Evans,, J. D. Gocayne,, P. G. Amanatides,, S. E. Scherer,, P. W. Li,, R. A. Hoskins,, R. F. Galle,, R. A. George,, S. E. Lewis,, S. Richards,, M. Ashburner,, S. N. Henderson,, G. G. Sutton,, J. R. Wortman,, M. D. Yandell,, Q. Zhang,, L. X. Chen,, R. C. Brandon,, Y. H. Rogers,, R. G. Blazej,, M. Champe,, B. D. Pfeiffer,, K. H. Wan,, C. Doyle,, E. G. Baxter,, G. Helt,, C. R. Nelson,, G. L. Gabor Miklos,, J. F. Abril,, A. Agbayani,, H. J. An,, C. Andrews- Pfannkoch,, D. Baldwin,, R. M. Ballew,, A. Basu,, J. Baxendale,, L. Bayraktaroglu,, E. M. Beasley,, K. Y. Beeson,, P. V. Benos,, B. P. Berman,, D. Bhandari,, S. Bolshakov,, D. Borkova,, M. R. Botchan,, J. Bouck,, P. Brokstein,, P. Brottier,, K. C. Burtis,, D. A. Busam,, H. Butler,, E. Cadieu,, A. Center,, I. Chandra,, J. M. Cherry,, S. Cawley,, C. Dahlke,, L. B. Davenport,, P. Davies,, B. de Pablos,, A. Delcher,, Z. Deng,, A. D. Mays,, I. Dew,, S. M. Dietz,, K. Dodson,, L. E. Doup,, M. Downes,, S. Dugan- Rocha,, B. C. Dunkov,, P. Dunn,, K. J. Durbin,, C. C. Evangelista,, C. Ferraz,, S. Ferriera,, W. Fleischmann,, C. Fosler,, A. E. Gabrielian,, N. S. Garg,, W. M. Gelbart,, K. Glasser,, A. Glodek,, F. Gong,, J. H. Gorrell,, Z. Gu,, P. Guan,, M. Harris,, N. L. Harris,, D. Harvey,, T. J. Heiman,, J. R. Hernandez,, J. Houck,, D. Hostin,, K. A. Houston,, T. J. Howland,, M. H. Wei,, C. Ibegwam,, M. Jalali,, F. Kalush,, G. H. Karpen,, Z. Ke,, J. A. Kennison,, K. A. Ketchum,, B. E. Kimmel,, C. D. Kodira,, C. Kraft,, S. Kravitz,, D. Kulp,, Z. Lai,, P. Lasko,, Y. Lei,, A. A. Levitsky,, J. Li,, Z. Li,, Y. Liang,, X. Lin,, X. Liu,, B. Mattei,, T. C. McIntosh,, M. P. McLeod,, D. McPherson,, G. Merkulov,, N. V. Milshina,, C. Mobarry,, J. Morris,, A. Moshrefi,, S. M. Mount,, M. Moy,, B. Murphy,, L. Murphy,, D. M. Muzny,, D. L. Nelson,, D. R. Nelson,, K. A. Nelson,, K. Nixon,, D. R. Nusskern,, J. M. Pacleb,, M. Palazzolo,, G. S. Pittman,, S. Pan,, J. Pollard,, V. Puri,, M. G. Reese,, K. Reinert,, K. Remington,, R. D. Saunders,, F. Scheeler,, H. Shen,, B. C. Shue,, I. Siden- Kiamos,, M. Simpson,, M. P. Skupski,, T. Smith,, E. Spier,, A. C. Spradling,, M. Stapleton,, R. Strong,, E. Sun,, R. Svirskas,, C. Tector,, R. Turner,, E. Venter,, A. H. Wang,, X. Wang,, Z. Y. Wang,, D. A. Wassarman,, G. M. Weinstock,, J. Weissenbach,, S. M. Williams,, T. Woodage,, K. C. Worley,, D. Wu,, S. Yang,, Q. A. Yao,, J. Ye,, R. F. Yeh,, J. S. Zaveri,, M. Zhan,, G. Zhang,, Q. Zhao,, L. Zheng,, X. H. Zheng,, F. N. Zhong,, W. Zhong,, X. Zhou,, S. Zhu,, X. Zhu,, H. O. Smith,, R. A. Gibbs,, E. W. Myers,, G. M. Rubin,, and J. C. Venter. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185 2195.
3. Arkhipova, I. R. 1995. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics 139: 1359 1369.
4. Arkhipova, I. R.,, and Y. V. Ilyin. 1991. Properties of promoter regions of mdg1 Drosophila retrotransposon indicate that it belongs to a specific class of promoters. EMBO J. 10: 1169 1177.
5. Bazin, C.,, B. Denis,, P. Capy,, E. Bonnivard,, and D. Higuet. 1999. Characterization of permissivity for hobo-mediated gonadal dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 261: 480 486.
6. Berg, J. M. 1990. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem. 265: 6513 6516.
7. Besansky, N. J.,, J. A. Bedell,, and O. Mukabayire. 1994. Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol. Biol. 3: 49 56.
8. Biemont, C. 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393 397.
9. Biessmann, H.,, K. Valgeirsdottir,, A. Lofsky,, C. Chin,, B. Ginther,, R. W. Levis,, and M. L. Pardue. 1992. HeT-A, a transposable element specifically involved in healing broken chromosome ends in Drosophila melanogaster. Mol. Cell. Biol. 12: 3910 3918.
10. Birchler, J. A.,, M. Pal-Bhadra,, and U. Bhadra. 1999. Less from more: cosuppression of transposable elements. Nat. Genet. 21: 148 149.
11. Bouhidel, K.,, C. Terzian,, and H. Pinon. 1994. The full-length transcript of the I factor, a LINE element of Drosophila melanogaster, is a potential bicistronic RNA messenger. Nucleic Acids Res. 22: 2370 2374.
12. Bregliano, J. C.,, A. Laurencon,, and F. Degroote. 1995. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. I. Induction by inhibitors of nucleotide synthesis and by gamma rays. Genetics 141: 571 578.
13. Bucheton, A. 1978. Non-mendelian female sterility in Drosophila melanogaster: influence of ageing and thermic treatments. I. Evidence for a partly inheritable effect of these two factors. Heredity 41: 357 369.
14. Bucheton, A. 1979. Non-mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93: 131 142.
15. Bucheton, A. 1979. Non-mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. II. Action of thermic treatments on the sterility of SF females and on the reactivity of reactive females. Biol. Cell. 34: 43 50.
16. Bucheton, A. 1990. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet. 6: 16 21.
17. Bucheton, A.,, and J.-C. Bregliano. 1982. The I-R system of hybrid dysgenesis in Drosophila melanogaster: heredity of the reactive condition. Biol. Cell. 46: 123 132.
18. Bucheton, A.,, J. M. Lavige,, G. Picard,, and P. L’Heritier. 1976. Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36: 305 314.
19. Bucheton, A.,, R. Paro,, H. M. Sang,, A. Pelisson,, and D. J. Finnegan. 1984. The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor. Cell. 38: 153 163.
20. Bucheton, A.,, and G. Picard. 1978. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40: 207 223.
21. Bucheton, A.,, M. Simonelig,, C. Vaury,, and M. Crozatier. 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322: 650 652.
22. Bucheton, A.,, C. Vaury,, M.-C. Chaboissier,, P. Abad,, A. Pelisson,, and M. Simonelig. 1992. I elements and the Drosophila genome. Genetica 86: 175 190.
23. Busseau, I.,, M.-C. Chaboissier,, A. Pelisson,, and A. Bucheton. 1994. I factors in Drosophila melanogaster: transposition under control. Genetica 93: 101 116.
24. Busseau, I.,, S. Malinsky,, M. Balakireva,, M.-C. Chaboissier,, D. Teninges,, and A. Bucheton. 1998. A genetically marked I element in Drosophila melanogaster can be mobilized when ORF2 is provided in trans. Genetics 148: 267 275.
25. Busseau, I.,, A. Pelisson,, and A. Bucheton. 1989. Characterization of 5′ truncated transposed copies of the I factor in Drosophila melanogaster. Nucleic Acids Res. 17: 6939 6945.
26. Busseau, I.,, A. Pelisson,, and A. Bucheton. 1989. I elements of Drosophila melanogaster generate specific chromosomal rearrangements during transposition. Mol. Gen. Genet. 218: 222 228.
27. Cavalli, G.,, and R. Paro. 1998. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93: 505 518.
28. Chaboissier, M.-C.,, C. Bornecque,, I. Busseau,, and A. Bucheton. 1995. A genetically tagged, defective I element can be complemented by actively transposing I factors in the germline of I-R dysgenic females in Drosophila melanogaster. Mol. Gen. Genet. 248: 434 438.
29. Chaboissier, M.-C.,, A. Bucheton,, and D. J. Finnegan. 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95: 11781 11785.
30. Chaboissier, M.-C.,, I. Busseau,, J. Prosser,, D. J. Finnegan,, and A. Bucheton. 1990. Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO J. 9: 3557 3563.
31. Chaboissier, M.-C.,, D. J. Finnegan,, and A. Bucheton. 2000. Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3′ end. Nucleic Acids Res. 28: 2467 2472.
32. Crozatier, M.,, C. Vaury,, I. Busseau,, A. Pelisson,, and A. Bucheton. 1988. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis in Drosophila melanogaster. Nucleic Acids Res. 16: 9199 9213.
33. Dawson, A.,, E. Hartswood,, T. Paterson,, and D. J. Finnegan. 1997. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. EMBO J. 16: 4448 4455.
34. Dimitri, P.,, B. Arca,, L. Berghella,, and E. Mei. 1997. High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 8052 8057.
35. Dorer, D. R.,, and S. Henikoff. 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993 1002.
36. Eickbush, D. G.,, D. D. Luan,, and T. H. Eickbush. 2000. Integration of Bombyx mori R2 sequences into the 28S ribosomal RNA genes of Drosophila melanogaster. Mol. Cell. Biol. 20: 213 223.
37. Evans, J. P.,, and R. D. Palmiter. 1991. Retrotransposition of a mouse L1 element. Proc. Natl. Acad. Sci. USA 88: 8792 8795.
38. Fawcett, D. H.,, C. K. Lister,, E. Kellett,, and D. J. Finnegan. 1986. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47: 1007 1015.
39. Felger, I.,, and J. A. Hunt. 1992. A non-LTR retrotransposon from the Hawaiian Drosophila: the LOA element. Genetica 85: 119 130.
40. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905 916.
41. Ferrandon, D.,, L. Elphick,, C. Nusslein-Volhard,, and D. St Johnston. 1994. Staufen protein associates with the 3′UTR of bicoidmRNAto form particles that move in a microtubuledependent manner. Cell 79: 1221 1232.
42. Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, p. 503 517. In D. E. Berg, and M. M. Howe, (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
43. Fire, A.,, S. Xu,, M. K. Montgomery,, S. A. Kostas,, S. E. Driver,, and C. C. Mello. 1998. Potent and specific genetic interference by double-strandedRNAin Caenorhabditis elegans. Nature 391: 806 811.
44. Hohjoh, H.,, and M. F. Singer. 1996. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15: 630 639.
45. Hohjoh, H.,, and M. F. Singer. 1997. Sequence-specific singlestrand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16: 6034 6043.
46. Jakubczak, J. L.,, W. D. Burke,, and T. H. Eickbush. 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. USA 88: 3295 3299.
47. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153: 1767 1774.
48. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21: 209 212.
49. Jensen, S.,, and T. Heidmann. 1991. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10: 1927 1937.
50. Kennerdell, J. R.,, and R. W. Carthew. 1998. Use of dsRNAmediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95: 1017 1026.
51. Ketting, R. F.,, T. H. Haverkamp,, H. G. van Luenen,, and R. H. Plasterk. 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133 141.
52. Kidwell, M. G. 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 1655 1659.
53. Kinsey, J. A. 1993. Transnuclear retrotransposition of the Tad element of Neurospora. Proc. Natl. Acad. Sci. USA 90: 9384 9387.
54. Kozak, M. 1987. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7: 3438 3445.
55. Lachaise, D.,, M.-L. Cariou,, J. R. David,, F. Lemenier,, L. Tsacas,, and M. Ashburner,. 1988. Historical biogeography of the Drosophila melanogaster species subgroup, p. 152 225. In M. K. Hecht,, B. Wallace,, and G. T. Prance (ed.), Evolutionary Biology. Plenum Publishing Corporation, New York, N.Y.
56. Laurencon, A.,, and J. C. Bregliano. 1995. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. II. Differential sensitivity to gamma rays. Genetics 141: 579 585.
57. Laurencon, A.,, F. Gay,, J. Ducau,, and J. C. Bregliano. 1997. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. III. Correlation between reactivity levels, crossover frequency and repair efficiency. Genetics 146: 1333 1344.
58. Lavige, J.-M. 1986. I-R system of hybrid dysgenesis in Drosophila melanogaster: further data on the arrest of development of the embryos from SF females. Biol. Cell. 56: 207 216.
59. Lavige, J.-M.,, and P. Lecher. 1982. Mitoses anormales dans les embryons àdéveloppement bloquédans le système I-R de dysgénésie hybride chez Drosophila melanogaster. Biol. Cell. 44: 9 14.
60. Levis, R. W.,, R. Ganesan,, K. Houtchens,, L. A. Tolar,, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083 1093.
61. Luan, D. D.,, and T. H. Eickbush. 1995. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15: 3882 3891.
62. Luan, D. D.,, and T. H. Eickbush. 1996. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase. Mol. Cell. Biol. 16: 4726 4734.
63. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595 605.
64. Maestre, J.,, T. Tchenio,, O. Dhellin,, and T. Heidmann. 1995. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 14: 6333 6338.
65. Malik, H. S.,, W. D. Burke,, and T. H. Eickbush. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16: 793 805.
65a.. Malinsky, S.,, A. Bucheton,, and I. Busseau. 2000. New insights on homology-dependent silencing of I factor activity by transgenes containing ORF1 in Drosophila melanogaster. Genetics 156: 1147 1155.
66. Martin, F.,, C. Maranon,, M. Olivares,, C. Alonso,, and M. C. Lopez. 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzyme. J. Mol. Biol. 247: 49 59.
67. Martin, S. L. 1991. Ribonucleoprotein particles with LINE- 1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11: 4804 4807.
68. Martin, S. L.,, and D. Branciforte. 1993. Synchronous expression of LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 13: 5383 5392.
69. McLean, C.,, A. Bucheton,, and D. J. Finnegan. 1993. The 5′untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol. Cell. Biol. 13: 1042 1050.
70. McMillan, J. P.,, and M. F. Singer. 1993. Translation of the human LINE-1 element, L1Hs. Proc. Natl. Acad. Sci. USA 90: 11533 11537.
71. Minakami, R.,, K. Kurose,, K. Etoh,, Y. Furuhata,, M. Hattori,, and Y. Sakaki. 1992. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor( s) binding to the element. Nucleic Acids Res. 20: 3139 3145.
72. Minchiotti, G.,, C. Contursi,, and P. P. Di Nocera. 1997. Multiple downstream promoter modules regulate the transcription of the Drosophila melanogaster I, Doc and F elements. J. Mol. Biol. 267: 37 46.
73. Misquitta, L.,, and B. M. Paterson. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96: 1451 1456.
74. Mizrokhi, L. J.,, S. G. Georgieva,, and Y. V. Ilyin. 1988. jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter byRNApolymerase II. Cell 54: 685 691.
75. Montgomery, M. K.,, S. Xu,, and A. Fire. 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95: 15502 15507.
76. Moran, J. V.,, R. J. DeBerardinis,, and H. H. Kazazian, Jr. 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530 1534.
77. Moran, J. V.,, S. E. Holmes,, T. P. Naas,, R. J. DeBerardinis,, J. D. Boeke,, and H. H. Kazazian, Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87: 917 927.
78. Ogiwara, I.,, M. Miya,, K. Ohshima,, and N. Okada. 1999. Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs. Mol. Biol. Evol. 16: 1238 1250.
79. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1997. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90: 479 490.
80. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1999. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99: 35 46.
81. Pelisson, A. 1981. The I-R system of hybrid dysgenesis in Drosophila melanogaster: are I factor insertions responsible for the mutator effect of the I—R interaction? Mol. Gen. Genet. 183: 123 129.
82. Pelisson, A.,, and J.-C. Bregliano. 1981. The I-R system of hybrid dysgenesis in Drosophila melanogaster: construction and characterization of a non-inducer stock. Biol. Cell. 40: 159 164.
83. Pelisson, A.,, and J.-C. Bregliano. 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306 313.
84. Pelisson, A.,, D. J. Finnegan,, and A. Bucheton. 1991. Evidence for retrotransposition of the I factor, a LINE element of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 88: 4907 4910.
85. Pelisson, A.,, and G. Picard. 1979. Non mendelian female sterility in Drosophila melanogaster: I factor mapping on inducer chromosomes. Genetica 50: 141 148.
86. Picard, G. 1971. Un cas de stérilité femelle chez D. melanogaster, lieéaùn agent transmis maternellement. C. R. Acad. Sci. 272: 2482 2487.
87. Picard, G. 1976. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83: 107 123.
88. Picard, G. 1978. Non mendelian female sterility in Drosophila melanogaster: further data on chromosomal contamination. Mol. Gen. Genet. 164: 235 247.
89. Picard, G. 1978. Non mendelian sterility in Drosophila melanogaster: sterility in stocks derived from the genetically inducer or reactive offspring of SF and RSF females. Biol. Cell. 31: 245 254.
90. Picard, G.,, J. C. Bregliano,, A. Bucheton,, J. M. Lavige,, A. Pelisson,, and M. G. Kidwell. 1978. Non-mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 32: 275 287.
91. Picard, G.,, and P. L’Heritier. 1971. A maternally inherited factor inducing sterility in Drosophila melanogaster. Drosophila Inf. Serv. 46: 54.
92. Picard, G.,, J.-M. Lavige,, A. Bucheton,, and J.-C. Bregliano. 1977. Non mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo lethality. Biol. Cell. 29: 89 98.
93. Pickeral, O. K.,, W. Makalowski,, M. S. Boguski,, and J. D. Boeke. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10: 411 415.
94. Prescott, J. C.,, and E. H. Blackburn. 1999. Telomerase: Dr Jekyll or Mr Hyde? Curr. Opin. Genet. Dev. 9: 368 373.
95.. Pritchard, M. A.,, J. M. Dura,, A. Pelisson,, A. Bucheton,, and D. J. Finnegan. 1988. A cloned I-factor is fully functional in Drosophila melanogaster. Mol. Gen. Genet. 214: 533 540.
96. Proust, J.,, C. Prudhommeau,, V. Ladeveze,, M. Gotteland,, and M. C. Fontyne-Branchard. 1992. I-R hybrid dysgenesis in Drosophila melanogaster. Use of in situ hybridization to show the association of I factor DNAwith induced sex-linked recessive lethals. Mutat. Res. 268: 265 285.
97. Prudhommeau, C.,, and J. Proust. 1990. I-R hybrid dysgenesis in Drosophila melanogaster; nature and site specificity of induced recessive lethals. Mutat. Res. 230: 135 157.
98. Roche, S. E.,, and D. C. Rio. 1998. Trans-silencing by P elements inserted in subtelomeric heterochromatin involves the Drosophila Polycomb group gene, Enhancer of zeste. Genetics 149: 1839 1855.
99. Ronsseray, S.,, M. Lehmann,, D. Nouaud,, and D. Anxolabehere. 1996. The regulatory properties of autonomous subtelomeric P elements are sensitive to a Suppressor of variegation in Drosophila melanogaster. Genetics 143: 1663 1674.
100. Ronsseray, S.,, L. Marin,, M. Lehmann,, and D. Anxolabehere. 1998. Repression of hybrid dysgenesis in Drosophila melanogaster by combinations of telomeric P-element reporters and naturally occurring P elements. Genetics 149: 1857 1866.
101. Sang, H. M.,, A. Pelisson,, A. Bucheton,, and D. J. Finnegan. 1984. Molecular lesions associated with white gene mutations induced by I-R hybrid dysgenesis in Drosophila melanogaster. EMBO J. 3: 3079 3085.
102. Segal-Bendirdjian, E.,, and T. Heidmann. 1991. Evidence for a reverse transcription intermediate for a marked line transposon in tumoral rat cells. Biochem. Biophys. Res. Commun. 181: 863 870.
103. Seleme, M.,, I. Busseau,, S. Malinsky,, A. Bucheton,, and D. Teninges. 1999. High-frequency retrotransposition of a marked I factor in Drosophila melanogaster correlates with a dynamic expression pattern of the ORF1 protein in the cytoplasm of oocytes. Genetics 151: 761 771.
104. Sezutsu, H.,, E. Nitasaka,, and T. Yamazaki. 1995. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. Mol. Gen. Genet. 249: 168 178.
105. Simonelig, M.,, C. Bazin,, A. Pelisson,, and A. Bucheton. 1988. Transposable and nontransposable elements similar to the I factor involved in inducer-reactive (IR) hybrid dysgenesis in Drosophila melanogaster coexist in various Drosophila species. Proc. Natl. Acad. Sci. USA 85: 1141 1145.
106. Stacey, S. N.,, R. A. Lansman,, H. W. Brock,, and T. A. Grigliatti. 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522 534.
107. Swergold, G. D. 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10: 6718 6729.
108. Tatout, C.,, M. Docquier,, P. Lachaume,, M. Mesure,, P. Lecher,, and H. Pinon. 1994. Germ-line expression of a functional LINE from Drosophila melanogaster: fine characterization allows for potential investigations of trans-regulators. Int. J. Dev. Biol. 38: 27 33.
109. Tchenio, T.,, E. Segal-Bendirdjian,, and T. Heidmann. 1993. Generation of processed pseudogenes in murine cells. EMBO J. 12: 1487 1497.
110. Tschiersch, B.,, A. Hofmann,, V. Krauss,, R. Dorn,, G. Korge,, and G. Reuter. 1994. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13: 3822 3831.
111. Tuschl, T.,, P. D. Zamore,, R. Lehmann,, D. P. Bartel,, and P. A. Sharp. 1999. Targeted mRNA degradation by doublestranded RNA in vitro. Genes Dev. 13: 3191 3197.
112. Vaury, C.,, P. Abad,, A. Pelisson,, A. Lenoir,, and A. Bucheton. 1990. Molecular characteristics of the heterochromatic I elements from a reactive strain of Drosophila melanogaster. J. Mol. Evol. 31: 424 431.
113. Vaury, C.,, A. Bucheton,, and A. Pelisson. 1989. The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215 224.
114. Vaury, C.,, A. Pelisson,, P. Abad,, and A. Bucheton. 1993. Properties of transgenic strains of Drosophila melanogaster containing I transposable elements from Drosophila teissieri. Genet. Res. 61: 81 90.
115. Weiler, K. S.,, and B. T. Wakimoto. 1995. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29: 577 605.
116. Xiong, Y.,, and T. H. Eickbush. 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res. 21: 1318.
117. Xiong, Y. E.,, and T. H. Eickbush. 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55: 235 246.
118. Zakian, V. A. 1995. Telomeres: beginning to understand the end. Science 270: 1601 1607.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error