Chapter 43 : Interactions between Transposable Elements and the Host Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interactions between Transposable Elements and the Host Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap43-2.gif


This chapter explores the issue of how eukaryotic transposable elements interact with their hosts, trying to disclose the benefits they can bring to the genome by analyzing the interactions at the molecular level in every step of the transposition process. The tendency of transposable elements to increase in copy number antagonizes the interest of the host genome to keep its genetic information free of the interference produced by new insertions. Due to this tradeoff, transposable elements and their hosts have developed mechanisms to control transposition, which is the most critical step in limiting their propensity to spread throughout the host genome. The same proteins would have evolved afterward to become major players in transcription regulation through alterations in chromatin structure. Another hint of how transposable elements could be subject to silencing and heterochromatization by the host genomes comes from studies of the organization of the pericentromeric regions of the chromosomes and the heterochromatic sex chromosomes. One of the more substantial contributions of this work is the conclusion that the phylogenetic distribution of elements in relation to their respective hosts can be explained without the necessity to assume horizontal transfer between species. Transposable elements, by virtue of the properties discussed here, have facilitated the shuffling and reorganization of the genome necessary for the magnitude of protein evolution observed when distant genomes such as yeast, worms, humans, and flies are compared.

Citation: Labrador M, Corces V. 2002. Interactions between Transposable Elements and the Host Genome, p 1008-1023. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch43
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Bailey, J. A.,, L. Carrel,, A. Chakravarti,, and E. E. Eichler. 2000. From the cover: molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97: 6634 6639.
2. Bestor, T. H. 1998. Gene silencing. Methylation meets acetylation. Nature 393: 311 312.
3. Biessmann, H.,, J. M. Mason,, K. Ferry,, M. d’Hulst,, K. Valgeirsdottir,, K. L. Traverse,, and M. L. Pardue. 1990. Addition of telomere-associated HeT DNA sequences "heals: broken chromosome ends in Drosophila. Cell 61: 663 673.
4. Bigot, Y.,, M. H. Hamelin,, P. Capy,, and G. Periquet. 1994. Mariner-like elements in hymenopteran species: insertion site and distribution. Proc. Natl. Acad. Sci. USA 91: 3408 3412.
5. Bingham, P. M. 1997. Cosuppression comes to the animals. Cell 90: 385 387.
6. Birchler, J. A.,, U. Bhadra,, L. Rainbow,, R. Linsk,, and A. T. Nguyen-Huynh. 1994. Weakener of white (Wow), a gene that modifies the expression of the white eye color locus and that suppresses position effect variegation in Drosophila melanogaster. Genetics 137: 1057 1070.
7. Birchler, J. A.,, M. Pal-Bhadra,, and U. Bhadra. 1999. Less from more: cosuppression of transposable elements. Nat. Genet. 21: 148 149.
8. Boeke, J. D.,, and S. E. Devine. 1998. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 93: 1087 1089.
9. Boeke, J. D.,, and O. K. Pickeral. 1999. Retroshuffling the genomic deck. Nature 398: 108 109, 111.
10. Brookman, J. J.,, A. T. Toosy,, L. S. Shashidhara,, and R. A. White. 1992. The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development 116: 1185 1192.
11. Brutnell, T. P.,, and S. L. Dellaporta. 1994. Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138: 213 225.
12. Bushman, F. D. 1994. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc. Natl. Acad. Sci. USA 91: 9233 9237.
13. Bushman, F. D.,, and M. D. Miller. 1997. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol. 71: 458 464.
14. Capy, P.,, R. Vitalis,, T. Langin,, D. Higuet,, and C. Bazin. 1996. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359 368.
15. Carteau, S.,, C. Hoffmann,, and F. Bushman. 1998. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J. Virol. 72: 4005 4014.
16. Cavarec, L.,, S. Jensen,, J. F. Casella,, S. A. Cristescu,, and T. Heidmann. 1997. Molecular cloning and characterization of a transcription factor for the copia retrotransposon with homology to the BTB-containing lola neurogenic factor. Mol. Cell. Biol. 17: 482 494.
17. Cavarec, L.,, S. Jensen,, and T. Heidmann. 1994. Identification of a strong transcriptional activator for the copia retrotransposon responsible for its differential expression in Drosophila hydei and melanogaster cell lines. Biochem. Biophys. Res. Commun. 203: 392 399.
18. Chaboissier, M. C.,, A. Bucheton,, and D. J. Finnegan. 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95: 11781 11785.
19. Chalvet, F.,, L. Teysset,, C. Terzian,, N. Prud’homme,, P. Santamaria,, A. Bucheton,, and A. Pelisson. 1999. Proviral amplification of the gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 18: 2659 2669.
20. Clark, J. B.,, P. C. Kim,, and M. G. Kidwell. 1998. Molecular evolution of P transposable elements in the genus Drosophila. III. The melanogaster species group. Mol. Biol. Evol. 15: 746 755.
21. Conte, D., Jr.,, E. Barber,, M. Banerjee,, D. J. Garfinkel,, and M. J. Curcio. 1998. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol. Cell. Biol. 18: 2502 2513.
22. Conte, D., Jr.,, and M. J. Curcio. 2000. Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol. Microbiol. 35: 415 427.
23. Cousineau, B.,, S. Lawrence,, D. Smith,, and M. Belfort. 2000. Retrotransposition of a bacterial group II intron. Nature 404: 1018 1021.
24. Cousineau, B.,, D. Smith,, S. Lawrence-Cavanagh,, J. E. Mueller,, J. Yang,, D. Mills,, D. Manias,, G. Dunny,, A. M. Lambowitz,, and M. Belfort. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94: 451 462.
25. Craigie, R. 1992. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 8: 187 190.
26. Curcio, M. J.,, A. M. Hedge,, J. D. Boeke,, and D. J. Garfinkel. 1990. TyRNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220: 213 221.
27. Curcio, M. J.,, N. J. Sanders,, and D. J. Garfinkel. 1998. Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8: 3571 3581.
28. Dalmay, T.,, A. Hamilton,, S. Rudd,, S. Angell,, and D. C. Baulcombe. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101: 543 553.
29. Devine, S. E.,, and J. D. Boeke. 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNApolymerase III. Genes Dev. 10: 620 633.
30. Dickson, L.,, L. Liu,, M. Matsuura,, A. M. Lambowitz,, and P. S. Perlman. 2001. Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc. Natl. Acad. Sci. USA 98: 13207 13212.
31. Doak, T. G.,, F. P. Doerder,, C. L. Jahn,, and G. Herrick. 1994. A proposed superfamily of transposase genes: transposonlike elements in ciliated protozoa and a common ‘‘D35E’’ motif. Proc. Natl. Acad. Sci. USA 91: 942 946.
32. Donze, D.,, C. R. Adams,, J. Rine,, and R. T. Kamakaka. 1999. The boundaries of the silenced HMRdomain in Saccharomyces cerevisiae. Genes Dev. 13: 698 708.
33. Doolittle, W. F.,, and C. Sapienza. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601 603.
34. Dorer, D. R.,, and S. Henikoff. 1997. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147: 1181 1190.
35. Du, C.,, M. E. McGuffin,, B. Dauwalder,, L. Rabinow,, and W. Mattox. 1998. Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol. Cell 2: 741 750.
36. Eickbush, T. H. 2000. Molecular biology. Introns gain ground. Nature 404: 940 941, 943.
37. Eickbush, T. H. 1997. Telomerase and retrotransposons: which came first? Science 277: 911 912.
38. Engelman, A.,, K. Mizuuchi,, and R. Craigie. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211 1221.
39. Engels, W. R. 1992. The origin of P elements in Drosophila melanogaster. Bioessays 14: 681 686.
40. Esnault, C.,, J. Maestre,, and T. Heidmann. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24: 363 367.
41. Fanti, L.,, D. R. Dorer,, M. Berloco,, S. Henikoff,, and S. Pimpinelli. 1998. Heterochromatin protein 1 binds transgene arrays. Chromosoma 107: 286 292.
42. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905 916.
43. Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358 363.
44. Fire, A.,, S. Xu,, M. K. Montgomery,, S. A. Kostas,, S. E. Driver,, and C. C. Mello. 1998. Potent and specific genetic interference by double-strandedRNAin Caenorhabditis elegans. Nature 391: 806 811.
45. Gerasimova, T. I.,, and V. G. Corces. 1998. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92: 511 521.
46. Giniger, E.,, K. Tietje,, L. Y. Jan,, and Y. N. Jan. 1994. lola encodes a putative transcription factor required for axon growth and guidance in Drosophila. Development 120: 1385 1398.
47. Goodier, J. L.,, E. M. Ostertag,, and H. H. Kazazian, Jr. 2000. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9: 653 657.
48. Greider, C. W.,, and E. H. Blackburn. 1987. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887 898.
49. Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349 352.
50. Hama, C.,, Z. Ali,, and T. B. Kornberg. 1990. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4: 1079 1093.
51. Hamilton, A. J.,, and D. C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950 952.
52. Hammond, S. M.,, E. Bernstein,, D. Beach,, and G. J. Hannon. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293 296.
53. Hartl, D. L.,, A. R. Lohe,, and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31: 337 358.
54. Henikoff, S. 1998. Conspiracy of silence among repeated transgenes. Bioessays 20: 532 535.
55. Hirochika, H.,, K. Sugimoto,, Y. Otsuki,, H. Tsugawa,, and M. Kanda. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93: 7783 7788.
56. Inouye, S.,, and M. Inouye. 1993. The retron: a bacterial retroelement required for the synthesis of msDNA. Curr. Opin. Genet. Dev. 3: 713 718.
57. Jacobsen, S. E.,, and E. M. Meyerowitz. 1997. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science 277: 1100 1103.
58. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153: 1767 1774.
59. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21: 209 212.
60. Jones, P. L.,, G. J. Veenstra,, P. A. Wade,, D. Vermaak,, S. U. Kass,, N. Landsberger,, J. Strouboulis,, and A. P. Wolffe. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19: 187 191.
61. Ke, N.,, P. A. Irwin,, and D. F. Voytas. 1997. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J. 16: 6272 6280.
62. Ketting, R. F.,, T. H. Haverkamp,, H. G. van Luenen,, and R. H. Plasterk. 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133 141.
63. Ketting, R. F.,, and R. H. Plasterk. 2000. A genetic link between co-suppression and RNA interference in C. elegans. Nature 404: 296 298.
64. Kidwell, M. G.,, and D. Lisch. 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704 7711.
65. Kirchner, J.,, C. M. Connolly,, and S. B. Sandmeyer. 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267: 1488 1491.
66. Kumar, A.,, and J. L. Bennetzen. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479 532.
67. Labrador, M.,, and V. G. Corces. 1997. Transposable element- host interactions: regulation of insertion and excision. Annu. Rev. Genet. 31: 381 404.
68. Labrador, M.,, M. D. C. Seleme,, and A. Fontdevila. 1998. The evolutionary history of Drosophila buzzatii. XXXIV. The distribution of the retrotransposon Osvaldo in original and colonizing populations. Mol. Biol. Evol. 15: 1532 1547.
69. Lecher, P.,, A. Bucheton,, and A. Pelisson. 1997. Expression of the Drosophila retrovirus gypsy as ultrastructurally detectable particles in the ovaries of flies carrying a permissive flamenco allele. J. Gen. Virol. 78: 2379 2388.
70. Lee, M. S.,, and R. Craigie. 1998. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl. Acad. Sci. USA 95: 1528 1533.
71. Levis, R. W.,, R. Ganesan,, K. Houtchens,, L. A. Tolar,, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083 1093.
72. Liao, G. C.,, E. J. Rehm,, and G. M. Rubin. 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 3347 3351.
73. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTRretrotransposition. Cell 72: 595 605.
74. Luff, B.,, L. Pawlowski,, and J. Bender. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3: 505 511.
75. Lyon, M. F. 2000. LINE-1 elements andXchromosome inactivation: a function for "junk" DNA? Proc. Natl. Acad. Sci. USA 97: 6248 6249.
76. Madhani, H. D.,, C. A. Styles,, and G. R. Fink. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673 684.
77. Malik, H. S.,, W. D. Burke,, and T. H. Eickbush. 1999. The age and evolution of non-LTRretrotransposable elements. Mol. Biol. Evol. 16: 793 805.
78. Marin, I.,, A. Franke,, G. J. Bashaw,, and B. S. Baker. 1996. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383: 160 163.
79. Menees, T. M.,, and S. B. Sandmeyer. 1996. Cellular stress inhibits transposition of the yeast retrovirus-like element Ty3 by a ubiquitin-dependent block of virus-like particle formation. Proc. Natl. Acad. Sci. USA 93: 5629 5634.
80. Misquitta, L.,, and B. M. Paterson. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96: 1451 1456.
81. Modolell, J.,, W. Bender,, and M. Meselson. 1983. Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc. Natl. Acad. Sci. USA 80: 1678 1682.
82. Montgomery, E. A.,, S. M. Huang,, C. H. Langley,, and B. H. Judd. 1991. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129: 1085 1098.
83. Moran, J. V.,, R. J. DeBerardinis,, and H. H. Kazazian, Jr. 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530 1534.
84. Moran, J. V.,, S. E. Holmes,, T. P. Naas,, R. J. DeBerardinis,, J. D. Boeke,, and H. H. Kazazian, Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87: 917 927.
85. Mueller, M. W.,, M. Allmaier,, R. Eskes,, and R. J. Schweyen. 1993. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366: 174 176.
86. Murray, M. V.,, M. A. Turnage,, K. J. Williamson,, W. R. Steinhauer,, and L. L. Searles. 1997. The Drosophila suppressor of sable protein binds toRNAand associates with a subset of polytene chromosome bands. Mol. Cell. Biol. 17: 2291 2300.
87. Nakamura, T. M.,, and T. R. Cech. 1998. Reversing time: origin of telomerase. Cell 92: 587 590.
88. Nakamura, T. M.,, G. B. Morin,, K. B. Chapman,, S. L. Weinrich,, W. H. Andrews,, J. Lingner,, C. B. Harley,, and T. R. Cech. 1997. Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955 959.
89. Nan, X.,, H. H. Ng,, C. A. Johnson,, C. D. Laherty,, B. M. Turner,, R. N. Eisenman,, and A. Bird. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386 389.
90. Ngo, H.,, C. Tschudi,, K. Gull,, and E. Ullu. 1998. Doublestranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95: 14687 14692.
91. O’Neill, R. J.,, M. J. O’Neill,, and J. A. Graves. 1998. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68 72.
92. Orgel, L. E.,, and F. H. Crick. 1980. Selfish DNA: the ultimate parasite. Nature 284: 604 607.
93. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1997. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90: 479 490.
94. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1999. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99: 35 46.
95. Pardue, M. L.,, O. N. Danilevskaya,, K. Lowenhaupt,, F. Slot,, and K. L. Traverse. 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48 52.
96. Parkhurst, S. M.,, and V. G. Corces. 1987. Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J. 6: 419 424.
97. Pelisson, A.,, S. U. Song,, N. Prud’homme,, P. A. Smith,, A. Bucheton,, and V. G. Corces. 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 13: 4401 4411.
98. Pickeral, O. K.,, W. Makaowski,, M. S. Boguski,, and J. D. Boeke. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10: 411 415.
99. Pirrotta, V. 1997. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet. 13: 314 318.
100. Prud’homme, N.,, M. Gans,, M. Masson,, C. Terzian,, and A. Bucheton. 1995. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139: 697 711.
101. Pruss, D.,, R. Reeves,, F. D. Bushman,, and A. P. Wolffe. 1994. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J. Biol. Chem. 269: 25031 25041.
102. Rabinow, L.,, S. L. Chiang,, and J. A. Birchler. 1993. Mutations at the Darkener of apricot locus modulate transcript levels of copia and copia-induced mutations in Drosophila melanogaster. Genetics 134: 1175 1185.
103. Ratcliff, F.,, B. D. Harrison,, and D. C. Baulcombe. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558 1560.
104. Razin, A. 1998. CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J. 17: 4905 4908.
105. Rio, D. C. 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24: 543 578.
106. Romano, N.,, and G. Macino. 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6: 3343 3353.
107. Sanchez Alvarado, A.,, and P. A. Newmark. 1999. Doublestranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96: 5049 5054.
108. Sellem, C. H.,, G. Lecellier,, and L. Belcour. 1993. Transposition of a group II intron. Nature 366: 176 178.
109. Sezutsu, H.,, E. Nitasaka,, and T. Yamazaki. 1995. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. Mol. Gen. Genet. 249: 168 178.
110. Sharp, P. A. 1991. ‘‘Five easy pieces.’’ Science 254: 663.
111. Simmons, M. J.,, J. D. Raymond,, C. D. Grimes,, C. Belinco,, B. C. Haake,, M. Jordan,, C. Lund,, T. A. Ojala,, and D. Papermaster. 1996. Repression of hybrid dysgenesis in Drosophila melanogaster by heat-shock-inducible sense and antisense P-element constructs. Genetics 144: 1529 1544.
112. Smith, J. S.,, and J. D. Boeke. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11: 241 254.
113. Smith, P. A.,, and V. G. Corces. 1992. The suppressor of Hairy-wing binding region is required for gypsy mutagenesis. Mol. Gen. Genet. 233: 65 70.
114. Smith, P. A.,, and V. G. Corces. 1995. The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139: 215 228.
115. Sniegowski, P. D.,, and B. Charlesworth. 1994. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137: 815 827.
116. Song, S. U.,, T. Gerasimova,, M. Kurkulos,, J. D. Boeke,, and V. G. Corces. 1994. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 8: 2046 2057.
117. Song, S. U.,, M. Kurkulos,, J. D. Boeke,, and V. G. Corces. 1997. Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development 124: 2789 2798.
118. Spana, C.,, D. A. Harrison,, and V. G. Corces. 1988. The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon. Genes Dev. 2: 1414 1423.
119. Spradling, A. C.,, D. M. Stern,, I. Kiss,, J. Roote,, T. Laverty,, and G. M. Rubin. 1995. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92: 10824 10830.
120. Steinemann, M.,, and S. Steinemann. 1998. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 103: 409 420.
121. Steinemann, M.,, and S. Steinemann. 1997. The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145: 261 266.
122. Tabara, H.,, M. Sarkissian,, W. G. Kelly,, J. Fleenor,, A. Grishok,, L. Timmons,, A. Fire,, and C. C. Mello. 1999. The rde- 1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123 132.
123. Taillebourg, E.,, and J. M. Dura. 1999. A novel mechanism for P element homing in Drosophila. Proc. Natl. Acad. Sci. USA 96: 6856 6861.
124. Takagaki, Y.,, and J. L. Manley. 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372: 471 474.
125. Takeda, S.,, K. Sugimoto,, H. Otsuki,, and H. Hirochika. 1999. A 13-bp cis-regulatory element in the LTRpromoter of the tobacco retrotransposon Ttol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J. 18: 383 393.
126. Takeda, S.,, K. Sugimoto,, H. Otsuki,, and H. Hirochika. 1998. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methyl jasmonate. Plant Mol. Biol. 36: 365 376.
127. Terzian, C.,, C. Ferraz,, J. Demaille,, and A. Bucheton. 2000. Evolution of the gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol. Biol. Evol. 17: 908 914.
128. Voinnet, O.,, Y. M. Pinto,, and D. C. Baulcombe. 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96: 14147 14152.
129. Walsh, C. P.,, and T. H. Bestor. 1999. Cytosine methylation and mammalian development. Genes Dev. 13: 26 34.
130. Walsh, C. P.,, J. R. Chaillet,, and T. H. Bestor. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20: 116 117.
131. Wei, S. Q.,, K. Mizuuchi,, and R. Craigie. 1998. Footprints on the viral DNA ends in moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc. Natl. Acad. Sci. USA 95: 10535 10540.
132. Weiner, A. M. 2000. Do all SINEs lead to LINEs? Nat. Genet. 24: 332 333.
133. Wilke, C. M.,, and J. Adams. 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 31 42.
134. Withers-Ward, E. S.,, Y. Kitamura,, J. P. Barnes,, and J. M. Coffin. 1994. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8: 1473 1487.
135. Xiong, Y.,, and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353 3362.
136. Yang, J.,, H. S. Malik,, and T. H. Eickbush. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96: 7847 7852.
137. Yang, J.,, G. Mohr,, P. S. Perlman,, and A. M. Lambowitz. 1998. Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of aI1 and reverse splicing into DNA transposition sites in vitro. J. Mol. Biol. 282: 505 523.
138. Yoder, J. A.,, C. P. Walsh,, and T. H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335 340.
139. Yun, B.,, R. Farkas,, K. Lee,, and L. Rabinow. 1994. The Doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 8: 1160 1173.
140. Zhu, Y.,, S. Zou,, D. A. Wright,, and D. F. Voytas. 1999. Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13: 2738 2749.
141. Zimmerly, S.,, H. Guo,, R. Eskes,, J. Yang,, P. S. Perlman,, and A. M. Lambowitz. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529 538.
142. Zimmerly, S.,, H. Guo,, P. S. Perlman,, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82: 545 554.
143. Zou, S.,, N. Ke,, J. M. Kim,, and D. F. Voytas. 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634 645.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error