Chapter 48 : Evolution of DNA Transposons in Eukaryotes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Evolution of DNA Transposons in Eukaryotes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap48-2.gif


The availability of genomic sequences from all kingdoms of life and sophisticated searching algorithms has revolutionized our ability to detect distantly related transposons purely on the basis of sequence similarity, thus improving our understanding of their macroevolutionary trends. This chapter focuses on DNA transposons in eukaryotic genomes and particularly the four available genomes from plants and animals. Phylogenetic analysis of such a megafamily is fraught with difficulties because only this shared D,D35E domain can be employed, and even then the alignment of many of the amino acids in-between is uncertain without structural information, which is only available for several integrases and the Tn transposase. An interesting feature of this superfamily is that the transposase genes of members of the family have occasionally been recruited to perform host functions. The genomic sequences from and have also revealed many sequences encoding related proteins. Bacterial transposons experience a very different host environment from those in eukaryotes, and even among eukaryotes, there is huge variation in these dynamics due to vagaries of the transposonhost interaction. The chapter focuses what recent eukaryotic genomic sequences tell us about the history of DNA transposons. Many other DNA transposons exist at relatively low copy numbers, for example, in filamentous fungi, and have multiple lineages in particular hosts, for example, the -like elements of plants; however, these situations require extensive analysis of large sequence sets within species and consideration of the evolution of the transposon family across species.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Relationships within the / superfamily rooted with the IS grouping of bacterial and fungal transposons. Subfamilies of elements are indicated. Bacterial and plant sequence names are in plain text, fungal names are underlined, nematode names are in italic, insect names are in boldface, and vertebrate names are in bold italic. Numbers above the major branches indicate the percentage of 1,000 bootstrap replications in which that branch was present. Transposase sequences were aligned using CLUSTAL X ( ), and the tree was constructed using neighbor joining in PAUP* version 4.0b4(PPC) ( ) with distances corrected for multiple replacements by TREE-PUZZLE v5.0 ( ) using the BLOSUM62 matrix and maximum likelihood with uniform rates.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Host genes derived from the mammalian transposons. The tree includes the available transposase translations of the to consensus sequences (from the humrep.ref file of RepBase 6.1 at RepBase Update; http://charon.girinst.org/server/RepBase/) and eight genes in mammalian genomes apparently derived from the / transposons. The mammalian CENP-B proteins were used to root the tree, based on their apparent antiquity and homologs being present in all multicellular eukaryotes. The C-terminal regions, which can be aligned among most of these but not with the CENP-B protein, were excluded; otherwise, see the Fig. 1 legend for phylogenetic methods.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Relationships within the hAT superfamily. Clear groupings of transposons are indicated. The tree was rooted at the midpoint in the absence of a convincing outgroup; otherwise, see the Fig. 1 legend for phylogenetic methods and typeface treatment. The published translation for was extended to full length. is not present because no consensus sequence capable of encoding a transposase is available; the other consensus sequences generally still have many ambiguous positions (RepBase 6.1).

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Relationships of 54 copies in the human genome. The various copies are indicated by the accession number of the sequenced clone containing them. The tree is based on full-length DNA sequences rooted by the hydra and beetle consensus sequences. Phylogenetic methods are as given in the Fig. 1 legend, except that the HKY model was used to correct DNA distances.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Relationships of 24 copies in the human genome. In the absence of a close relative, the tree was rooted at the midpoint. See the Fig. 4 legend for details.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Relationships of the 66 copies in the nematode genome. Copies are named for the cosmid or yeast artificial chromosome clone in which they occur. Those in boldface are identical to one of the two consensus sequences which differ by a nonsynonymous transition; the others showing no sequence differences from the consensus sequences have small indels. Maximum parsimony was employed using PAUP* version 4.0b4a to build the tree because so few changes have occurred that correction for multiple changes is unnecessary; the tree is rooted at the midpoint.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Relationships of the 46 copies in the nematode genome. See the legends to Figs. 1 and 6 for details.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Relationships of elements in the genome. The pSX copies are from Merriman et al. ( ), while the remainder are indicated by the GenBank accession (preceded with AE00) in which they are found (scaffolds are from the Celera data), with their chromosomal locations, if known, shown after a period. Phylogenetic methods are as given in the Fig. 6 legend; values are as given in the Fig. 1 legend.

Citation: Robertson H. 2002. Evolution of DNA Transposons in Eukaryotes, p 1093-1110. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. D.,et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185 2195.
2. Altschul, S. F.,, T. L. Madden,, A. A. Schäffer,, J. Zhang,, Z. Zhang,, W. Miller,,and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389 3402.
3. Arkhipova, I.,, and M. Meselson. 2000. Transposable elements in sexual and ancient asexual taxa. Proc. Natl. Acad. Sci. USA 97: 14473 14477.
4. Avancini, R. M. P.,, K. K. O. Walden,,and H. M. Robertson. 1996. The genomes of most animals have multiple members of the Tcl family of transposable elements. Genetica 98: 131 140.
5. Barbosa-Cisneros, O.,, S. Fraire-Velazquez,, J. Moreno,,and R. Herrera-Esparza. 1997. CENP-B autoantigen is a conserved protein from humans to high plants: identification of the aminoterminal domain in Phaseolus vulgaris. Rev. Rheumatol. 64: 368 374.
6. Beames, B.,, and M. D. Summers. 1990. Sequence comparison of cellular and viral copies of host cell DNA insertions found in Autographa californica nuclear polyhedrosis virus. Virology 174: 354 363.
7. Benos, P. V.,et al. 2000. From sequence to chromosome: the tip of the X chromosome of D. melanogaster. Science 287: 2220 2222.
8. Bigot, Y.,, C. Augé-Gouillou,,and G. Periquet. 1996. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1- mariner transposon family. Gene 174: 265 271.
9. Bonnivard, E.,, C. Bazin,, B. Denis,, and D. Higuet. 2000. A scenario for the hobo transposable element invasion, deduced from the structure of natural populations of Drosophila melanogaster using tandem TPE repeats. Genet. Res. 75: 13 23.
10. Calvi, B. R.,, T. J. Hong,, S. D. Findley,,and W. M. Gelbart. 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66: 465 471.
11. Capy, P.,, R. Vitalis,, T. Langin,, D. Higuet,,and C. Bazin. 1996. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359 368.
12. Capy, P.,, T. Langin,, D. Higuet,, P. Maurer,,and C. Bazin. 1997. Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? Genetica 100: 63 72.
13. Carroll, D.,, D. S. Knutzon,,and J. E. Garrett,. 1989. Transposable elements in Xenopus species, p. 567 574. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
14. Cary, L. C.,, M. Goebel,, B. G. Corsaro,, H. Wang,, E. Rosen,, and M. J. Fraser. 1989. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172: 156 169.
15. C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode. C. elegans: a platform for investigating biology. Science 282: 20122018.
16. Chen, C.-L. 1998. Distribution of P elements in Muscamorpha. Ph.D. thesis. University of Illinois, Urbana-Champaign.
17. Cho, K. H.,, J. S. Lee,, Y. D. Choi,,and K. S. Boo. 1999. Structural polymorphism of the luciferase gene in the firefly, Luciola lateralis. Insect Mol. Biol. 8: 193 200.
18. Clark, J. B.,,and M. G. Kidwell. 1997. A phylogenetic perspective on P transposable element evolution in Drosophila. Proc. Natl. Acad. Sci. USA 94: 11428 11433.
19. Clark, J. B.,, W. P. Maddison,, and M. G. Kidwell. 1994. Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol. Biol. Evol. 11: 40 50.
20. Coates, C. J.,, K. M. Johnson,, H. D. Perkins,, A. J. Howells,, D. A. O’Brochta,,and P. W. Atkinson. 1996. The hermit transposable element of the Australian sheep blowfly, Lucilia cuprina, belongs to the hAT family of transposable elements. Genetica 97: 23 31.
21. Crollius, H. R.,, O. Jaillon,, C. Dasilva,, C. Ozouf-Costaz,, C. Fizames,, C. Fischer,, L. Bouneau,, A. Billault,, F. Quetier,, W. Saurin,, A. Bernot,,and J. Weissenbach. 2000. Characteriza tion and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res. 10: 939 949.
22. Daniels, S. B.,, K. R. Petersen,, L. D. Strausbaugh,, M. G. Kidwell,, and A. Chovnick. 1990. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124: 339 355.
23. Davies, D. R.,, L. M. Braam,, W. S. Reznikoff,,and I. Rayment. 1999. The three-dimensional structure of a Tn5 transposaserelated protein determined to 2.9-A resolution. J. Biol. Chem. 274: 11904 11913.
24. De Aguiar, D.,, and D. L. Hartl. 1999. Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. Genetica 107: 79 85.
25. DeVault, J. D.,,and S. K. Narang. 1994. Transposable element in Lepidoptera: hobo-like transposons in Heliothis virescens and Helicoverpa zea. Biochem. Biophys. Res. Commun. 203: 169 175.
26. Doak, T. G.,, F. P. Doerder,, C. L. Jahn,,and G. Herrick. 1994. A proposed superfamily of transposase-related genes: new members in transposon-like elements of ciliated protozoa and a common "D35E" motif. Proc. Natl. Acad. Sci. USA 91: 942 946.
27. Eisen, J. A.,, M.-I. Benito,,and W. Walbot. 1994. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 22: 2634 2636.
28. Elick, T. A.,, C. A. Bauser,, and M. J. Fraser. 1996. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98: 33 41.
29. Engels, W. R.,, D. M. Johnson-Schlitz,, W. B. Eggleston,,and J. Sved. 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515 525.
30. Esposito, T.,, F. Gianfrancesco,, A. Ciccodicola,, L. Montanini,, S. Mumm,, M. D’Urso,,and A. Forabosco. 1999. A novel pseudoautosomal human gene encodes a putative protein similar to Ac-like transposases. Hum. Mol. Genet. 8: 61 67.
31. Fayet, O.,, P. Ramond,, P. Poland,, M. F. Pre`re,,and M. Chandler. 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4: 1771 1777.
32. Feschotte, C.,,and C. Mouches. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17: 730 737.
33. Garcia-Ferna`ndez, J.,, J. R. Bayascas-Ramírez,, G. Marfany,, A. M. Muñoz-Mármol,, A. Casali,, J. Baguñà,,and E. Saló . 1995. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthes): evidence for a transphyla horizontal transfer. Mol. Biol. Evol. 12: 421 431.
34. Gierl, A. 1996. The En/Spm transposable element of maize. Curr. Top. Microbiol. Immunol. 1996: 145 159.
35. Glayzer, D. C.,, I. N. Roberts,, D. B. Archer,,and R. P. Oliver. 1995. The isolation of Ant1, a transposable element from Aspergillus niger. Mol. Gen. Genet. 249: 432 438.
36. Gomez-Gomez, E.,, N. Anaya,, M. I. Roncero,,and C. Hera. 1999. Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum. Fungal Genet. Biol. 27: 67 76.
37. Grappin, P.,, C. Audeon,, M. C. Chupeau,,and M. A. Grandbastien. 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386 397.
38. Grossman, G. L.,, A. J. Cornel,, C. S. Rafferty,, H. M. Robertson,, and F. H. Collins. 1999. Tsessebe, Topi, and Tiang: three distinct Tc1-like transposable elements in the malaria vector, Anopheles gambiae. Genetica 105: 69 80.
39. Gu, X.,,and W.-H. Li. 1995. The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. J. Mol. Evol. 40: 464 473.
40. Habu, Y.,, Y. Hisatomi,,and S. Iida. 1998. Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory. Plant J. 16: 371 376.
41. Halverson, D.,, M. Baum,, J. Stryker,, J. Carbon,,and L. Clarke. 1997. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J. Cell Biol. 136: 487 500.
42. Handler, A. M.,,and S. P. Gomez. 1996. The hobo transposable element excises and has related elements in tephritid species. Genetics 143: 1339 1347.
43. Handler, A. M.,, and S. P. Gomez. 1997. A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac. Gene 185: 133 135.
44. Handler, A. M.,,and S. D. McCombs. 2000. The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol. Biol. 9: 605 612.
45. Haring, E.,, S. Hagemann,,and W. Pinsker. 2000. Ancient and recent horizontal invasion of drosophilids by P elements. J. Mol. Evol. 51: 577 586.
46. Hartings, H.,, C. Spilmont,, N. Lazzaroni,, V. Rossi,, F. Salamini,, R. D. Thompson,,and M. Motto. 1991. Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Mol. Gen. Genet. 227: 91 96.
47. Hartl, D. L.,, A. R. Lohe,,and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31: 337 358.
48. Hehl, R.,, W. K. Nacken,, A. Krause,, H. Saedler,, and H. Sommer. 1991. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 16: 369 371.
49. Henikoff, A.,,and J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915 10919.
50. Hershberger, R. J.,, C. A. Warren,,and V. Walbot. 1991. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc. Natl. Acad. Sci. USA 88: 10198 10202.
51. Hua-Van, A.,, F. Héricourt,, P. Capy,, M.-J. Daboussi,,and T. Langin. 1998. Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum. Mol. Gen. Genet. 259: 354 362.
52. Hudson, D. F.,, K. J. Fowler,, E. Earle,, R. Saffery,, P. Kalitsis,, H. Torwell,, J. Hill,, N. G. Wreford,, D. M. de Kretzer,, M. R. Cancilla,, E. Howman,, L. Hii,, S. M. Cutts,, D. V. Irvine,,and K. H. Choo. 1998. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weight. J. Cell Biol. 141: 309 319.
53. Izsvák, Z.,, Z. Ivics,,and R. H. Plasterk. 2000. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302: 93 102.
54. Jarvik, T.,,and K. G. Lark. 1998. Characterization of Soymar1, a mariner element in soybean. Genetics 149: 1569 1574.
55. Jeanmougin, F.,, J. D. Thompson,, M. Gouy,, D. G. Higgins,, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403 405.
56. Jehle, J. A.,, A. Nickel,, J. M. Vlak,,and H. Backhaus. 1998. Horizontal escape of the novel Tc1-like lepidopteran transpo son TCp3.2 into Cydia pomonella granulovirus. J. Mol. Evol. 46: 215 224.
57. Jurka, J. 2000. Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet. 16: 418 420.
58. Jurka, J.,,and V. V. Kapitonov. 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239 248.
59. Kapitonov, V. V.,,and J. Jurka. 1999. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107: 27 37.
60. Kempken, F.,,and U. Kück. 1996. restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol. Cell. Biol. 16: 6563 6572.
61. Kempken, F.,, and U. Kück. 1998. Transposons in filamentous fungi—facts and perspectives. BioEssays 20: 652 659.
62. Kipling, D.,,and P. E. Wharburton. 1997. Centromeres, CENP-B and Tigger too. Trends Genet. 13: 141 145.
63. Kishima, Y.,, S. Yamashita,, C. Martin,,and T. Mikami. 1999. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol. Biol. 39: 299 308.
64. Klobutcher, L. A.,,and G. Herrick. 1997. Developmental genome reorganization in ciliated protozoa: the transposon link. Prog. Nucleic Acid Res. Mol. Biol. 56: 1 62.
65. Koga, A.,, A. Shimada,, A. Shima,, M. Sakaizumi,, H. Tachida,, and H. Hori. 2000. Evidence for recent invasion of the medaka fish genome by the Tol2 transposable element. Genetics 155: 273 281.
66. Lam, W. L.,, P. Seo,, K. Robison,, S. Virk,,and W. Gilbert. 1996. Discovery of amphibian Tc1-like transposon families. J. Mol. Biol. 257: 359 366.
67. Lam, W. L.,, T.-S. Lee,,and W. Gilbert. 1997. Active transposition in zebrafish. Proc. Natl. Acad. Sci. USA 93: 10870 10875.
68. Lampe, D. J.,, K. K. O. Walden,,and H. M. Robertson. 2001. Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol. Biol. Evol. 18: 954 961.
69. Le, Q. H.,, S. Wright,, Z. Yu,,and T. Bureau. 2000. Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 7376 7381.
70. Lee, J. K.,, J. A. Huberman,, and J. Hurwitz. 1997. Purification and characterization of a CENP-B homologue protein that binds to the centromeric K-type repeat DNA of Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 94: 8427 8432.
71. Lee, S. H.,, J. B. Clark,,and M. G. Kidwell. 1999. A P elementhomologous sequence in the house fly, Musca domestica. Insect Mol. Biol. 8: 491 500.
72. Lin, X., et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761 768.
73. Liu, D.,,and N. M. Crawford. 1998. Characterization of the putative transposase mRNA of Tag1, which is ubiquitously expressed in Arabidopsis and can be induced by Agrobacterium- mediated transformation with dTag1 DNA. Genetics 149: 693 701.
74. Lohe, A. R.,, E. N. Moriyama,, D.-A. Lidholm,,and D. L. Hartl. 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62 72.
75. MacRae, A. F.,, G. A. Huttley,, and M. T. Clegg. 1994. Molecular evolutionary characterization of an Activator ( Ac)-like transposable element sequence from pearl millet ( Pennisetum glaucum) (Poaceae). Genetica 92: 77 89.
76. Mao, L.,, T. C. Wood,, Y. Yu,, M. A. Budiman,, J. Tomkins,, S. Woo,, M. Sasinowski,, G. Presting,, D. Frisch,, S. Goff,, R. A. Dean,,and R. A. Wing. 2000. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res. 10: 982 990.
77. Maurer, P.,, A. Réjasse,, P. Capy,, T. Langin,,and G. Riba. 1997. Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol. Gen. Genet. 256: 195 202.
78. Merriman, P. J.,, C. D. Grimes,, J. Ambroziak,, D. A. Hackett,, P. Skinner,,and M. J. Simmons. 1995. S elements: a family of Tc1-like transposons in the genome of Drosophila melanogaster. Genetics 141: 1425 1438.
79. Miller, W. J.,, J. F. McDonald,, D. Nouaud,,and D. Anxolabé- he`re. 1999. Molecular domestication—more than a sporadic episode in evolution. Genetica 107: 197 207.
80. Morgan, G. T. 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254: 1 5.
81. Morita, R.,, E. Miyazaki,, C. Y. Fong,, X. N. Chen,, J. R. Korenberg,, A. V. Delgado-Escueta,,and K. Yamakawa. 1998. JH8, a gene highly homologous to the mouse jerky gene, maps to the region for childhood absence epilepsy on 8q24. Biochem. Biophys. Res. Communun. 248: 307 314.
82. Okuda, M.,, K. Ikeda,, F. Namiki,, K. Nishi,,and T. Tsuge. 1998. Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum. Mol. Gen. Genet. 258: 599 607.
83. Perkins, H. D.,,and A. J. Howells. 1992. Genomic sequences with homology to the P element of Drosophila melanogaster occur in the blowfly Lucilia cuprina. Proc. Natl. Acad. Sci. USA 89: 10753 10757.
84. Petrov, D. A.,, E. R. Lozovskaya,,and D. L. Hartl. 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346 349.
85. Petrov, D. A.,, T. A. Sangster,, J. S. Johnston,, D. L. Hartl,,and K. L. Shaw. 2000. Evidence for DNA loss as a determinant of genome size. Science 287: 1060 1062.
86. Pinkerton, A. C.,, S. Whyard,, H. A. Mende,, C. J. Coates,, D. A. O’Brochta,,and P. W. Atkinson. 1999. The Queensland fruit fly, Bactrocera tryoni, contains multiple members of the hAT family of transposable elements. Insect Mol. Biol. 8: 423 434.
87. Plasterk, R. H.,, Z. Izsvák,,and Z. Ivics. 1999. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15: 326 332.
88. Rea, S.,, F. Eisenhaber,, D. O’Carroll,, B. D. Strahl,, Z.-W. Sun,, M. Schmid,, S. Opravil,, K. Mechtler,, C. P. Ponting,, C. D. Allis,, and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593 599.
89. Rhodes, P. R.,,and L. O. Vodkin. 1988. Organization of the Tgm family of transposable elements in soybean. Genetics 120: 597 604.
90. Robertson, H. M. 1993. The mariner transposable element is widespread in insects. Nature 362: 241 245.
91. Robertson, H. M. 1995. The Tc1-mariner superfamily of transposons in animals. J. Insect Physiol. 41: 99 105.
92. Robertson, H. M. 1996. Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252: 761 766.
93. Robertson, H. M. 1997. Multiple mariner transposons in flatworms and hydras are related to those of insects. J. Hered. 88: 195 201.
94. Robertson, H. M. 2000. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res. 10: 192 203.
95. Robertson, H. M.,,and M. L. Asplund. 1996. Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem. Mol. Biol. 26: 945 954.
96. Robertson, H. M.,,and D. J. Lampe. 1995. Recent horizontal transfer of a mariner element between Diptera and Neuroptera. Mol. Biol. Evol. 12: 850 862.
97. Robertson, H. M.,,and E. G. MacLeod. 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol. Biol. 2: 125 139.
98. Robertson, H. M.,,and R. Martos. 1997. Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 205: 219 228.
99. Robertson, H. M.,, F. N. Soto-Adames,, K. K. O. Walden,, R. M. P. Avancini,,and D. J. Lampe,. 1998>. The mariner transposons of animals: horizontally jumping genes, p. 268 284. In M. Syvanen, and C. Kado (ed.), Horizontal Gene Transfer. Chapman & Hall, London, United Kingdom.
100. Robertson, H. M.,,and K. L. Zumpano. 1997. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205: 203 217.
101. Sedensky, M. M.,, S. J. Hudson.,B. Everson, and P. G. Morgan. 1994. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 22: 1719 1723.
102. Silva, J. C.,,and M. G. Kidwell. 2000. Horizontal transfer and selection in the evolution of P elements. Mol. Biol. Evol. 17: 1542 1557.
103. Smit, A. F. A. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657 663.
104. Smit, A. F. A.,,and A. D. Riggs. 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443 1448.
105. Snowden, K. C.,, and C. A. Napoli. 1998. Psl: a novel Spmlike transposable element from Petunia hybrida. Plant J. 14: 43 54.
106. Strimmer, K.,, and A. von Haeseler. 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13: 964 969.
107. Swofford, D. L. 1998. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods, version 4. Sinauer Press, New York, N.Y.
108.. Takahashi, Y.,, F. Hirose,, A. Matsukage,, and M. Yamaguchi. 1999. Identification of three conserved regions in the DREF transcription factors from Drosophila melanogaster and Drosophila virilis. Nucleic Acids Res. 27: 510 516.
109. Tarchini, R.,, P. Biddle,, R. Wineland,, S. Tingey,,and A. Rafalski. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12: 381 391.
110. Toth, M.,, J. Grimsby,, G. Buzsaki,,and G. P. Donovan. 1995. Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nature Genet. 11: 71 75.
111. Tudor, M.,, M. Lobocka,, M. Goodell,, J. Pettitt,, and K. O’Hare. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232: 126 134.
112. Wang, H. H.,, M. J. Fraser,, and L. C. Cary. 1989. Transposon mutagenesis of baculoviruses: analysis of TFP3 lepidopteran transposon insertions at the FP locus of nuclear polyhedrosis viruses. Gene 81: 97 108.
113. Warren, W. D.,, P. W. Atkinson,, and D. A. O’Brochta. 1994. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 ( hAT) element family. Genet. Res. 64: 87 97.
114. Witherspoon, D. J. 2000. Natural selection on transposable elements of eukaryotes. Ph.D. thesis. University of Utah, Salt Lake City.
115. Witherspoon, D. J. 1999. Selective constraints on P-element evolution. Mol. Biol. Evol. 16: 472 478.
116. Witherspoon, D. J.,, T. G. Doak,, K. R. Williams,, A. Seegmiller,, J. Seger,,and G. Herrick. 1997. Selection on the protein- coding genes of the TBE1 family of transposable elements in the ciliates Oxytricha fallax and O. trifallax. Mol. Biol. Evol. 14: 696 706.
117. Yu, Z.,, S. I. Wright,,and T. E. Bureau. 2000. Mutator-like elements in Arabidopsis thaliana: structure, diversity and evolution. Genetics 156: 2019 2031.
118. Zeng, Z.,, H. Kyaw,, K. R. Gakenheimer,, M. Augustus,, P. Fan,, X. Zhang,, K. Su,, K. C. Carter,,and Y. Li. 1997. Cloning, mapping, and tissue distribution of a human homologue of the mouse jerky gene product. Biochem. Biophys. Res. Commun. 236: 389 395.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error