Chapter 9 : Innate Immunity to Parasitic Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Innate Immunity to Parasitic Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap09-2.gif


Traditionally, the control of parasitic infections was thought to be the exclusive domain of the acquired immune system. However, during the past decade it has been recognized that innate immunity can shape the outcome of the host-parasite encounter. Perhaps the simplest forms of innate immunity are represented by the presence of preexisting, soluble factors that can recognize and destroy invading parasites. Importantly, whereas complement-sensitive epimastigotes fail to express gp160, epimastigotes transfected with gp160 are resistant to complement-mediated lysis. Although innate immunity plays an important role in resistance to acute parasitic infections, the adaptive response is required to provide long-term protective immunity. Understanding the cellular and molecular basis of the mechanisms that underlie innate immunity to parasitic diseases may also provide important information for the rational design of immunotherapies or vaccines. At present there is a paucity of vaccines which protect against parasitic diseases, and understanding how innate immunity initiates the development of long-lived, protective responses to these parasites may provide new approaches to vaccination. Perhaps the best example of how understanding the mechanisms of innate immunity to infection can influence the development of new approaches to deal with parasitic infections is provided by IL-12.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Complement system. The activation of the complement system through either the classical, lectin, or alternative pathways converges on the deposition of C3b on the parasite surface. In the absence of host (or parasite) regulatory proteins, this cascade proceeds to the assembly of the MAC, the opsonization of parasites, and the release of chemotactic peptides. Developmental stages of protozoan parasites found in insects are highly susceptible to lysis via the alternative pathway of complement activation, whereas the stages specific for the mammalian hosts have developed a variety of strategies to evade this mechanism of host resistance. Ag, antigen; Ab antibody.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Mechanism of TLF killing of TLF binds to high-affinity receptors on the surface of and is endocytosed and targeted to the lysosome. At low lysosomal pH and in the presence of high intracellular concentrations of hydrogen peroxide, TLF facilitates the release of Fe from iron stores. Fe ions react with HO via the Fenton reaction to form hydroxyl radicals. Hydroxyl radicals produced in this reaction attack polyunsaturated fatty acids (LH), causing lipid free-radical formation The lipid free radical forms a lipid (L). peroxyl radical (LOO) in the presence of O, which peroxidates adjacent lipids, creating a chain reaction. The lipid hydroperoxides (LOOH) formed are unstable, resulting in a wide variety of products that can cause membrane breakdown and release of lysosomal contents. This model was supplied by Joseph Bishop and Steve Hajduk from the University of Alabama at Birmingham.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Regulation of innate cell-mediated immunity to parasites. Infection with various parasites can stimulate the production of proinflammatory cytokines from several sources including neutrophils (PMN), macrophages (Mø), and dendritic cells (DC). IL-12, in combination with other cofactors, plays an important role in stimulating NK-cell production of IFN-γ, which mediates antiparasitic activity and may contribute to the development of Th1-type responses. IL-10 and TGF- are inhibitors of this innate mechanism of immunity, either acting directly on accessory cell populations or NK cells to inhibit the production of proinflammatory cytokines or antagonizing the effector mechanisms required to control parasite replication.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Activation of splenic dendritic cells by products. The mobilization and activation of dendritic cells are likely to be key steps in the initiation of cell-mediated responses to intracellular pathogens. This figure demonstrates the response of splenic dendritic cells to a soluble extract of tachyzoites (STAg) 6 h after intravenous injection. In the left-hand panels, spleen cells were stained with the DC cell surface marker CD11c, while the right-hand panels show serial sections from the same spleens stained with an anti-IL-12 p40 monoclonal antibody. As can be seen, the products induce a massive mobilization of dendritic cells into the T-cell areas of the spleen, and many of these dendritic cells produce IL-12, a cytokine crucial for the induction of IFN-γ dependent resistance to the parasite.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Afonso, L. C. C.,, T. M. Scharton,, L. Q. Vieira,, M. Wysocka,, G. Trinchieri,, and P. Scott. 1994. The adjuvant effect of interleukin- 12 in a vaccine against Leishmania major. Science 263: 235 237.
2. Aliberti, J.,, C. Reis e Sousa,, M. Schito,, S. Hieny,, T. Wells,, G. B. Huffnagle,, and A. Sher. 2000. CCR5 provides a signal for microbial induced production of IL-12 by CD8α + dendritic cells. Nat. Immunol. 1: 83 87.
3. Aliberti, J. C.,, M. A. G. Cardoso,, G. A. Martins,, R. T. Gazzinelli,, L. Q. Vieira,, and J. S. Silva. 1996. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes. Infect. Immun. 64: 1961 1967.
4. Alizadeh, H.,, and K. D. Murrell. 1984. The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/wv mice. J. Parasitol. 70: 767 773.
5. Almeida, I. C.,, M. M. Camargo,, D. O. Procopio,, L. S. Silva,, A. Mehlert,, L. R. Travassos,, R. T. Gazzinelli,, and M. A. J. Ferguson. 2000. Highly purified glycosylphosphatidylinositolsfrom Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19: 101 110.
6. Andrews, N. W.,, C. K. Abrams,, S. L. Slatin,, and G. Griffiths. 1990. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane poreforming activity at low pH. Cell 61: 1277 1287.
7. Asea, A.,, S. K. Kraeft,, E. A. Kurt-Jones,, M. A. Stevenson,, L. B. Chen,, R. W. Finberg,, G. C. Koo,, and S. K. Calderwood. 2000. HSP70 stimulates cytokine production through a CD14- dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6: 435 442.
8. Babu, S.,, P. Porte,, T. R. Klei,, L. D. Shultz,, and T. V. Rajan. 1998. Host NK cells are required for the growth of the human filarial parasite Brugia malayi in mice. J. Immunol. 161: 1428 1432.
9. Belkaid, Y.,, B. Butcher,, and D. L. Sacks. 1998. Analysis of cytokine production by inflammatory mouse macrophages at the single cell level: selective impairment of IL-12 induction in Leishmania-infected cells. Eur. J. Immunol. 28: 1389 1400.
10. Bidri, M.,, I. Vouldoukis,, M. D. Mossalayi,, P. Debre,, J. J. Guillosson,, D. Mazier,, and M. Arock. 1997. Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol. 19: 475 483.
11. Blackwell, J. M.,, R. A. Ezekowitz,, M. B. Roberts,, J. Y. Channon,, R. B. Sim,, and S. Gordon. 1985. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J. Exp. Med. 162: 324 331.
12. Bliss, S. K.,, A. J. Marshall,, Y. Zhang,, and E. Y. Denkers. 1999. Human polymorphonuclear leukocytes produce IL-12, TNF-α, and the chemokines macrophage-inflammatory protein-1α and -1β in response to Toxoplasma gondii antigens. J. Immunol. 162: 7369 7375.
13. Braga, L. L.,, H. Ninomiya,, J. J. McCoy,, S. Eacker,, T. Wiedmer,, C. Pham,, S. Wood,, P. J. Sims,, and W. A. Petri, Jr. 1992. Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J. Clin. Investig. 90: 1131 1137.
14. Brown, D. R.,, D. J. Fowell,, D. B. Corry,, T. A. Wynn,, N. H. Moskowitz,, A. W. Cheever,, R. M. Locksley,, and S. L. Reiner. 1996. β2-Microglobulin-dependent NK1.1 + T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184: 1295 1304.
15. Butterworth, A. E. 1984. Cell-mediated damage to helminths. Adv. Parasitol. 23: 143 235.
16. Caamaño, J.,, J. Alexander,, L. Craig,, R. Bravo,, and C. A. Hunter. 1999. The NF-κB family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J. Immunol. 163: 4453 4461.
17. Cai, G.,, R. Kastelein,, and C. A. Hunter. 2000a. Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii. Infect. Immun. 68: 6932 6938.
18. Cai, G.,, T. Radzanowski,, E. Villegas,, R. Kastelein,, and C. A. Hunter. 2000b. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J. Immunol. 165: 2619 2627.
19. Camargo, M. M.,, I. C. Almeida,, M. E. S. Pereira,, M. A. J. Ferguson,, L. R. Travassos,, and R. T. Gazzinelli. 1997. Glycosylphosphatidylinositol- anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines in macrophages. J. Immunol. 158: 5890 5901.
20. Cardillo, F.,, J. C. Voltarelli,, S. G. Reed,, and J. S. Silva. 1996. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect. Immun. 64: 128 134.
21. Carrera, L.,, R. T. Gazzinelli,, R. Badolato,, S. Hieny,, W. Muller,, R. Kuhn,, and D. Sacks. 1996. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J. Exp. Med. 183: 515 526.
22. Catterall, J. R.,, C. M. Black,, J. P. Leventhal,, N. W. Rizk,, J. S. Wachtel,, and J. S. Remington. 1987. Nonoxidative microbicidal activity in normal human alveolar and peritoneal macrophages. Infect. Immun. 55: 1635 1640.
23. Catto, B. A.,, F. A. Lewis,, and E. A. Ottesen. 1980. Cercariainduced histamine release: a factor in the pathogenesis of schistosome dermatitis? Am. J. Trop. Med. Hyg. 29: 886 889.
24. Cho, B. K.,, D. Palliser,, E. Guillen,, J. Wisniewski,, R. A. Young,, J. Chen,, and H. N. Eisen. 2000. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12: 263 272.
25. De Greef, C.,, and R. Hamers. 1994. The serum resistanceassociated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol. 68: 277 284.
26. Descoteaux, A.,, S. J. Turco,, D. L. Sacks,, and G. Matlashewski. 1991. Leishmania donovani lipophosphoglycan selectively inhibits signal transduction in macrophages. J. Immunol. 146: 2747 2753.
27. Diaz, A.,, A. Ferreira,, and R. B. Sim. 1997. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J. Immunol. 158: 3779 3786.
28. Elloso, M. M.,, H. C. van der Heyde,, J. A. vande Waa,, D. D. Manning,, and W. P. Weidanz. 1994. Inhibition of Plasmodium falciparum in vitro by human γδ T cells. J. Immunol. 153: 1187 1194.
29. Else, K. J.,, and F. D. Finkelman. 1998. Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol. 28: 1145 1158.
30. Feng, G. J.,, H. S. Goodridge,, M. M. Harnett,, X. Q. Wei,, A. V. Nikolaev,, A. P. Higson,, and F. Y. Liew. 1999. Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharidemediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J. Immunol. 163: 6403 6412.
31. Ferrante, A.,, and A. C. Allison. 1983. Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunol. 5: 491 498.
32. Ferrick, D. A.,, M. D. Schrenzel,, T. Mulvania,, B. Hsieh,, W. G. Ferlin,, and H. Lepper. 1995. Differential production of interferon- g and interleukin-4 in response to Th1- and Th2- stimulating pathogens by γδ T cells in vivo. Nature 373: 255 257.
33. Fishelson, Z. 1995. Novel mechanisms of immune evasion by Schistosoma mansoni. Mem. Inst. Oswaldo Cruz 90: 289 292.
34. Frosch, S.,, D. Kuntzlin,, and B. Fleischer. 1997. Infection with Trypanosoma cruzi selectively upregulates B7-2 molecules on macrophages and enhances their costimulatory activity. Infect. Immun. 65: 971 977.
35. Gazzinelli, R. T.,, S. Hieny,, T. A. Wynn,, S. Wolf,, and A. Sher. 1993. Interleukin 12 is required for the T-lymphocyteindependent induction of interferon γ by an intracellular parasite and induces resistance in T-cell deficient hosts. Proc. Natl. Acad. Sci. USA 90: 6115 6119.
36. Gazzinelli, R. T.,, I. P. Oswald,, S. Hieny,, S. L. James,, and A. Sher. 1992. The microbicidal activity of interferon-γ-treated macrophages against Trypanosoma cruzi involves an L-argininedependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-β. Eur. J. Immunol. 22: 2501 2506.
37. Gazzinelli, R. T.,, M. Wysocka,, S. Hayashi,, E. Y. Denkers,, S. Hieny,, P. Caspar,, G. Trinchieri,, and A. Sher. 1994. Parasiteinduced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol. 153: 2533 2543.
38. Goerlich, R.,, G. Hacker,, K. Pfeffer,, K. Heeg,, and H. Wagner. 1991. Plasmodium falciparum merozoites primarily stimulate the Vγ 9 subset of human γ /δ T cells. Eur. J. Immunol. 21: 2613 2616.
39. Gorak, P. M. A.,, C. R. Engwerda,, and P. M. Kaye. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28: 687 695.
40. Green, P. J.,, T. Feizi,, M. S. Stoll,, S. Thiel,, A. Prescott,, and M. J. McConville. 1994. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan- binding protein. Mol. Biochem. Parasitol. 66: 319 328.
41. Gurunathan, S.,, C. Prussin,, D. L. Sacks,, and R. A. Seder. 1998. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Med. 4: 1409 1415.
42. Gutierrez-Kobeh, L.,, N. Cabrera,, and R. Perez-Montfort. 1997. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica. J. Parasitol. 83: 234 241.
43. Hager, K. M.,, and S. L. Hajduk. 1997. Mechanism of resistance of African trypanosomes to cytotoxic human HDL. Nature 385: 823 826.
44. Hajduk, S. L.,, D. R. Moore,, J. Vasudevacharya,, H. Siqueira,, A. F. Torri,, E. M. Tytler,, and J. D. Esko. 1989. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J. Biol. Chem. 264: 5210 5217.
45. Hauser, W. E.,, S. D. Sharma,, and J. S. Remington. 1983. Augmentation of NK cell activity by soluble and particulate fractions of Toxoplasma gondii. J. Immunol. 131: 458 463.
46. Himmelrich, H.,, C. Parra-Lopez,, F. Tacchini-Cottier,, J. A. Louis,, and P. Launois. 1998. The IL-4 rapidly produced in BALB/ c mice after infection with Leishmania major down-regulates IL- 12 receptor β2-chain expression on CD4 + T cells resulting in a state of unresponsiveness to IL-12. J. Immunol. 161: 6156 6163.
47. Hisaeda, H.,, H. Nagasawa,, K. Maeda,, Y. Maekawa,, H. Ishikawa,, Y. Ito,, R. A. Good,, and K. Himeno. 1995. γδ T cells play an important role in hsp65 expression and in acquiring protective immune responses against infection with Toxoplasma gondii. J. Immunol. 154: 244 251.
48. Hisaeda, H.,, T. Sakai,, H. Ishikaw,, Y. Maekawa,, K. Yasutomo,, R. A. Good,, and K. Himeno. 1997. Heat shock protein 65 induced by γδ T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. J. Immunol. 159: 2375 2381.
49. Hoshino, T.,, R. H. Wiltrout,, and H. A. Young. 1999. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J. Immunol. 162: 5070 5077.
50. Hunter, C. A.,, L. Bermudez,, H. Beernink,, W. Waegell,, and J. S. Remington. 1995a. Transforming growth factor-β inhibits interleukin- 12-induced production of interferon-γ by natural killer cells: a role for transforming growth factor-β in the regulation of T-cell independent resistance to Toxoplasma gondii. Eur. J. Immunol. 25: 994 1000.
51. Hunter, C. A.,, R. Chizzonite,, and J. S. Remington. 1995b. Interleukin 1β is required for the ability of IL-12 to induce production of IFN-γ by NK cells: a role for IL-1β in the T cell independent mechanism of resistance against intracellular pathogens. J. Immunol. 155: 4347 4354.
52. Hunter, C. A.,, L. Ellis-Neyer,, K. Gabriel,, M. Kennedy,, P. Linsley,, and J. S. Remington. 1997. The role of the CD28/B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J. Immunol. 158: 2285 2293.
53. Ilg, T. 2000. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J. 19: 1953 1962.
54. Jack, R. M.,, and P. A. Ward. 1980. Babesia rodhaini interactions with complement: relationship to parasitic entry into red cells. J. Immunol. 124: 1566 1573.
55. Joiner, K. A.,, W. D. daSilva,, M. T. Rimoldi,, C. H. Hammer,, A. Sher,, and T. L. Kipnis. 1988. Biochemical characterization of a factor produced by trypomastigotes of Trypanosoma cruzi that accelerates the decay of complement C3 convertases. J. Biol. Chem. 263: 11327 11335.
56. Joiner, K. A.,, S. A. Fuhrman,, H. M. Miettinen,, L. H. Kasper,, and I. Mellman. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641 646.
57. Jones, D.,, M. M. Elloso,, L. Showe,, D. Williams,, G. Trinchieri,, and P. Scott. 1998. Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. Infect. Immun. 66: 3818 3824.
58. Kasper, L. H.,, T. Matsuura,, S. Fonseka,, J. Arruda,, J. Y. Channon,, and I. A. Khan. 1996. Induction of γδ T cells during acute murine infection with Toxoplasma gondii. J. Immunol. 157: 5521 5527.
59. Kaye, P. M.,, and G. J. Bancroft. 1992. Leishmania donovani infection in scid mice: lack of tissue response and in vivo macrophage activation correlates with failure to trigger natural killer cell-derived gamma interferon production in vitro. Infect. Immun. 60: 4335 4342.
60. Kaye, P. M.,, N. J. Rogers,, A. J. Curry,, and J. C. Scott. 1994. Deficient expression of co-stimulatory molecules on Leishmaniainfected macrophages. Eur. J. Immunol. 24: 2850 2854.
61. Khan, I. A.,, J. A. MacLean,, F. S. Lee,, L. Casciotti,, E. DeHaan,, J. D. Schwartzman,, and A. D. Luster. 2000. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12: 483 494.
62. Kopacz, J.,, and N. Kumar. 1999. Murine gd T lymphocytes elicited during Plasmodium yoelii infection respond to Plasmodium heat shock proteins. Infect. Immun. 67: 57 63.
63. Kweider, M.,, J. L. Lemesre,, F. Santoro,, J. P. Kusnierz,, M. Sadigursky,, and A. Capron. 1989. Development of metacyclic L eishmania promastigotes is associated with the increasing expression of GP65, the major surface antigen. Parasite Immunol. 11: 197 209.
64. Launois, P.,, I. Maillard,, S. Pingel,, K. G. Swihart,, I. Xenarios,, H. Acha-Orbea,, H. Diggelmann,, R. M. Locksley,, H. R. MacDonald,, and J. A. Louis. 1997. IL-4 rapidly produced by Vβ4 Vα8 CD4 + T cells instructs Th2 development and susceptibility to Leishmania major in BALB/ c mice. Immunity 6: 541 549.
65. Lopez-Osuna, M.,, J. Arellano,, and R. R. Kretschmer. 1992. The destruction of virulent Entamoeba histolytica by activated human eosinophils. Parasite Immunol. 14: 579 586.
66. Magez, S.,, M. Geuskens,, A. Beschin,, H. del Favero,, H. Verschueren,, R. Lucas,, E. Pays,, and P. de Baetselier. 1997. Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J. Cell Biol. 137: 715 727.
67. Magez, S.,, B. Stijlemans,, M. Radwanska,, E. Pays,, M. A. Ferguson,, and P. De Baetselier. 1998. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J. Immunol. 160: 1949 1956.
68. Marone, G.,, V. Casolaro,, V. Patella,, G. Florio,, and M. Triggiani. 1997. Molecular and cellular biology of mast cells and basophils. Int. Arch. Allergy Immunol. 114: 207 217.
69. Matthews, D. J.,, C. L. Emson,, G. J. McKenzie,, H. E. Jolin,, J. M. Blackwell,, and A. N. McKenzie. 2000. IL-13 is a susceptibility factor for Leishmania major infection. J. Immunol. 164: 1458 1462.
70. Matzinger, P. 1998. An innate sense of danger. Semin. Immunol. 10: 399 415.
71. McDonald, V.,, R. Deer,, S. Uni,, M. Iseki,, and G. J. Bancroft. 1992. Immune responses to Cryptosporidium muris and Cryposporidium parvum in adult immunocompromised (nude and SCID) mice. Infect. Immun. 60: 3325 3331.
72. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394 397.
73. Mohan, K.,, P. Moulin,, and M. M. Stevenson. 1997. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J. Immunol. 159: 4990 4998.
74. Molano, A.,, S. H. Park,, Y. H. Chiu,, S. Nosseir,, A. Bendelac,, and M. Tsuji. 2000. The IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J. Immunol. 164: 5005 5009.
75. Moore, K. W.,, A. O’Garra,, R. de Waal Malefyt,, P. Vieira,, and T. R. Mossman. 1993. Interleukin 10. Annu. Rev. Immunol. 11: 165 190.
76. Mosser, D. M.,, and A. Brittingham. 1997. Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115: S9 S23.
77. Mosser, D. M.,, and P. J. Edelson. 1984. Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J. Immunol. 132: 1501 1505.
78. Mosser, D. M.,, and P. J. Edelson. 1985. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol. 135: 2785 2789.
79. Mosser, D. M.,, and P. J. Edelson. 1987. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 327: 329 331.
80. Noben-Trauth, N.,, W. E. Paul,, and D. L. Sacks. 1999. IL-4- and IL-4 receptor-deficient BALB/ c mice reveal differences in susceptibility to Leishmania major parasite substrains. J. Immunol. 162: 6132 6140.
81. Norris, K. A. 1998. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun. 66: 2460 2465.
82. Norris, K. A.,, B. Bradt,, N. R. Cooper,, and M. So. 1991. Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor. J. Immunol. 147: 2240 2247.
83. Norris, K. A.,, and J. E. Schrimpf. 1994. Biochemical analysis of the membrane and soluble forms of the complement regulatory protein of Trypanosoma cruzi. Infect. Immun. 62: 236 243.
84. Ohkusu, K.,, T. Yoshimoto,, K. Takeda,, T. Ogura,, S. Kashiwamura,, Y. Iwakura,, S. Akira,, H. Okamura,, and K. Nakanishi. 2000. Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect. Immun. 68: 2449 2456.
85. Okamura, H.,, H. Tsutsui,, T. Komatsu,, M. Yutsudo,, A. Hakura,, T. Tanimoto,, K. Torigoe,, T. Okura,, Y. Nukuda,, K. Hattori,, K. Akita,, M. Namba,, F. Tanabe,, K. Konishi,, S. Fukuda,, and M. Kurimoto. 1995. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378: 88 91.
86. Paciorkowski, N.,, P. Porte,, L. D. Shultz,, and T. V. Rajan. 2000. B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J. Exp. Med. 191: 731 736.
87. Pearce, E. J.,, B. F. Hall,, and A. Sher. 1990. Host-specific evasion of the alternative complement pathway by schistosomes correlates with the presence of a phospholipase C-sensitive surface molecule resembling human decay accelerating factor. J. Immunol. 144: 2751 2756.
88. Peck, C. A.,, M. D. Carpenter,, and A. A. Mahmoud. 1983. Speciesrelated innate resistance to Schistosoma mansoni. Role of mononuclear phagocytes in schistosomula killing in vitro. J. Clin. Investig. 71: 66 72.
89. Pernis, A.,, S. Gupta,, K. J. Gollob,, E. Garfein,, R. L. Coffman,, C. Schindler,, and P. Rothman. 1995. Lack of interferon γ receptor β chain and the prevention of interferon γ signalling in T H1 cells. Science 269: 245 247.
90. Plaut, M.,, J. H. Pierce,, C. J. Watson,, J. Hanley-Hyde,, R. P. Nordan,, and W. E. Paul. 1989. Mast cell lines produce lymphokines in response to cross-linkage of FcϵRI or to calcium ionophores. Nature 339: 64 67.
91. Proudfoot, L.,, C. A. O’Donnell,, and F. Y. Liew. 1995. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur. J. Immunol. 25: 745 750.
92. Puentes, S. M.,, R. P. Da Silva,, D. L. Sacks,, C. H. Hammer,, and K. A. Joiner. 1990. Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. J. Immunol. 145: 4311 4316.
93. Raper, J.,, R. Fung,, J. Ghiso,, V. Nussenzweig,, and S. Tomlinson. 1999. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 67: 1910 1916.
94. Reed, S. L.,, J. A. Ember,, D. S. Herdman,, R. G. DiScipio,, T. E. Hugli,, and I. Gigli. 1995. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J. Immunol. 155: 266 274.
95. Reiner, S. L.,, and R. A. Seder. 1999. Dealing from the evolutionary pawnshop: how lymphocytes make decisions. Immunity 11: 1 10.
96. Reiner, S. L.,, S. Zheng,, Z. E. Wang,, L. Stowring,, and R. M. Locksley. 1994. Leishmania promastigotes evade interleukin 12 induction by macrophages and stimulate a broad range of cytokines from CD4 + T cells during initiation of infection. J. Exp. Med. 179: 447 456.
97. Reis e Sousa, B. C.,, S. Hieny,, T. Scharton-Kersten,, D. Jankovic,, H. Charset,, R. N. Germain,, and A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186: 1819 1829.
98. Rifkin, M. R. 1978. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc. Natl. Acad. Sci. USA 75: 3450 3454.
99. Rimoldi, M. T.,, A. Sher,, S. Heiny,, A. Lituchy,, C. H. Hammer,, and K. Joiner. 1988. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases. Proc. Natl. Acad. Sci. USA 85: 193 197.
100. Rosat, J.-P.,, F. Conceicao-Silva,, G. A. Waanders,, F. Beermann,, A. Wilson,, M. J. Owen,, A. C. Hayday,, S. Huang,, M. Aguet,, H. R. MacDonald,, and J. A. Louis. 1995. Expansion of γδ + T cells in BALB/ c mice infected with Leishmania major is dependent upon Th2-type CD4 + T cells. Infect. Immun. 63: 3000 3004.
101. Roussilhon, C.,, M. Agrapart,, J. J. Ballet,, and A. Bensussan. 1990. T lymphocytes bearing the γδ T cell receptor in patients with acute Plasmodium falciparum malaria. J. Infect. Dis. 162: 283 285.
102. Sabin, E. A.,, M. A. Kopf,, and E. J. Pearce. 1996. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J. Exp. Med. 184: 1871 1878.
103. Saraiva, E. M.,, P. F. Pimenta,, T. N. Brodin,, E. Rowton,, G. B. Modi,, and D. L. Sacks. 1995. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major in Phlebotomus papatasi. Parasitology 111: 275 287.
104. Sayles, P. C.,, and L. L. Johnson. 1996. Exacerbation of toxoplasmosis in neutrophil-depleted mice. Nat. Immun. 15: 249 258.
105. Scalise, F.,, R. Gerli,, G. Castellucci,, F. Spinozzi,, G. M. Fabietti,, S. Crupi,, L. Sensi,, R. Britta,, R. Vaccaro,, and A. Bertotto. 1992. Lymphocytes bearing the γδ T-cell receptor in acute toxoplasmosis. Immunology 76: 668 670.
106. Scharton, T. M.,, and P. Scott. 1993. Natural killer cells are a source of interferon γ that drives differentiation of CD4 + T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178: 567 577.
107. Scharton-Kersten, T.,, C. Contursi,, A. Masumi,, A. Sher,, and K. Ozato. 1997. Interferon consensus sequence binding proteindeficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J. Exp. Med. 186: 1523 1534.
108. Schofield, L.,, and F. Hackett. 1993. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177: 145 153.
109. Schofield, L.,, M. J. McConville,, D. Hansen,, A. S. Campbell,, B. Fraser-Reid,, M. J. Grusby,, and S. D. Tachado. 1999. CD1drestricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283: 225 229.
110. Sedegah, M.,, F. Finkelman,, and S. L. Hoffman. 1994. Interleukin 12 induction of interferon γ-dependent protection against malaria. Proc. Natl. Acad. Sci. USA 91: 10700 10702.
111. Seder, R. A.,, W. E. Paul,, A. M. Dvorak,, S. J. Sharkis,, A. Kagey- Sobotka,, Y. Niv,, F. D. Finkelman,, S. A. Barbieri,, S. J. Galli,, and M. Plaut. 1991. Mouse splenic and bone marrow cell populations that express high- affinity Fce receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl. Acad. Sci. USA 88: 2835 2839.
112. Seydel, K. B.,, S. J. Smith,, and S. L. Stanley, Jr. 2000. Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect. Immun. 68: 400 402.
113. Sharma, S. D.,, J. Verhoef,, and J. S. Remington. 1986. Enhancement of human natural killer cell activity by subcellular components of Toxoplasma gondii. Cell. Immunol. 86: 317 326.
114. Sher, A.,, I. P. Oswald,, S. Hieny,, and R. Gazzinelli. 1993. Toxoplasma gondii induces a T-independent IFN-γ response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-α. J. Immunol. 150: 3982 3989.
115. Sibley, L. D.,, E. Weidner,, and J. L. Krahenbuhl. 1985. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315: 416 419.
116. Smith, A. B.,, J. D. Esko,, and S. L. Hajduk. 1995. Killing of trypanosomes by the human haptoglobin-related protein. Science 268: 284 286.
117. Spath, G. F.,, L. Epstein,, B. Leader,, S. M. Singer,, H. A. Avila,, S. J. Turco,, and S. M. Beverley. 2000. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA 97: 9258 9263.
118. Subauste, C. S.,, J. Y. Chung,, D. Do,, A. H. Koniaris,, C. A. Hunter,, J. G. Montoya,, S. Porcelli,, and J. S. Remington. 1995. Preferential activation and expansion of human peripheral blood γδ T cells in response to Toxoplasma gondii in vitro and their cytokine production and cytotoxic activity against T. gondiiinfected cells. J. Clin. Investig. 96: 610 619.
119. Svetic, A.,, K. B. Madden,, X. D. Zhou,, P. Lu,, I. M. Katona,, F. D. Finkelman,, J. F. Urban, Jr.,, and W. C. Gause. 1993. A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2-associated cytokines and IL-3. J. Immunol. 150: 3434 3441.
120. Sypek, J. P.,, C. L. Chung,, S. E. H. Mayor,, J. M. Subramanyam,, S. J. Goldman,, D. S. Sieburth,, S. F. Wolf,, and R. G. Schaub. 1993. Resolution of cutaneous leishmaniasis: Interleukin 12 initiates a protective T helper type I immune response. J. Exp. Med. 177: 1797 1802.
121. Tachado, S. D.,, R. Mazhari-Tabrizi,, and L. Schofield. 1999. Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol. 21: 609 617.
122. Takamoto, M.,, Y. Kusama,, K. Takatsu,, H. Nariuchi,, and K. Sugane. 1995. Occurrence of interleukin-5 production by CD4 CD8 (double-negative) T cells in lungs of both normal and congenitally athymic nude mice infected with Toxocara canis. Immunology 85: 285 291.
123. Tomlinson, S.,, and J. Raper. 1998. Natural immunity to trypanosomes. Parasitol. Today 14: 354 359.
124. Tsuji, M.,, P. Mombaerts,, L. Lefrancois,, R. S. Nussenzweig,, F. Zavala,, and S. Tonegawa. 1994. γδ T cells contribute to immunity against the liver stages of malaria in αβ T cell deficient mice. Proc. Natl. Acad. Sci. USA 91: 345 349.
125. Urban, J. F.,, R. Fayer,, S.-J. Chen,, W. C. Gause,, M. K. Gately,, and F. D. Finkelman. 1996. IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J. Immunol. 156: 263 268.
126. Urban, J. F.,, N. Noben-Trauth,, D. D. Donaldson,, K. B. Madden,, S. C. Morris,, M. Collins,, and F. D. Finkelman. 1998. IL-13, IL- 4Rα, and STAT6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8: 255 264.
127. Velupillai, P.,, and D. A. Harn. 1994. Oligosaccharide-specific induction of interleukin 10 production by B220 + cells from schistosome- infected mice: a mechanism for regulation of CD4 + T-cell subsets. Proc. Natl. Acad. Sci. USA 91: 18 22.
128. von Stebut, E.,, Y. Belkaid,, T. Jakob,, D. L. Sacks,, and M. C. Udey. 1998. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived den dritic cells: implications for the initiation of anti- Leishmania immunity. J. Exp. Med. 188: 1547 1552.
129. Wakil, A. E.,, Z. E. Wang,, J. C. Ryan,, D. J. Fowell,, and R. M. Locksley. 1998. Interferon γ derived from CD4 + T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188: 1651 1656.
130. Walker, C.,, J. Checkel,, S. Cammisuli,, P. J. Leibson,, and G. J. Gleich. 1998. IL-5 production by NK cells contributes to eosinophil infiltration in a mouse model of allergic inflammation. J. Immunol. 161: 1962 1969.
131. Warren, H. S.,, B. F. Kinnear,, J. H. Phillips,, and L. Lanier. 1995. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J. Immunol. 154: 5144 5152.
132. Wei, X. Q.,, B. P. Leung,, W. Niedbala,, D. Piedrafita,, G. F. Feng,, M. Sweet,, L. Dobbie,, A. J. Smith,, and F. Y. Liew. 1999. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163: 2821 2828.
133. Wynn, T. A.,, A. W. Cheever,, D. Jankovic,, R. W. Poindexter,, P. Caspar,, F. A. Lewis,, and A. Sher. 1995. An IL-12 based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376: 594 596.
134. Xong, H. V.,, L. Van hamme,, M. Chamekh,, C. E. Chimfwembe,, J. Van Den Abbeele,, A. Pays,, N. Van Meirvenne,, R. Hamers,, P. De Baetselier,, and E. Pays. 1998. A VSG expression siteassociated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95: 839 846.
135. Yoshimoto, T.,, and W. E. Paul. 1994. CD4 +, NK1.1 + T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179: 1285 1295.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error