1887

Chapter 20 : Vitamin Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Vitamin Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap20-2.gif

Abstract:

This chapter reviews current information on the nature and regulation of the genes involved in the synthesis of riboflavin, biotin, folic acid, thiamine, lipoic acid, and pantothenic acid in , and of cobalamin in . More is known about riboflavin (rib) genes in than in any other microorganism. It is possible that flavin mononucleotide (FMN) itself directly regulates riboflavin gene expression, since various nucleotides, including flavin mononucleotides and riboflavin, are reported to bind specifically to RNA aptamers. Folic acid derivatives, such as tetrahydrofolate, are required as coenzymes in numerous one-carbon-atom transfer reactions in and other organisms. The major folic acid biosynthetic operon, located at 7°, encodes nine genes, six of which are required for folate synthesis. Cobalamin (vitamin B) is the most structurally complex molecule of all the vitamins synthesized by bacteria. More than 30 biosynthetic genes are required for the biosynthesis of cobalamin. Much work remains to isolate and characterize the remaining cobalamin biosynthetic genes of ( and operons) and to understand how and why an obligate aerobe contains a operon that requires an anaerobic environment to function in .

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20

Key Concept Ranking

Gene Expression and Regulation
0.49959883
Transcription Start Site
0.48720792
Acetyl Coenzyme A
0.47395405
Lipoic Acid Synthesis
0.43917927
Lipoic Acid Synthase
0.42187744
0.49959883
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The riboflavin biosynthetic pathway of . The corresponding intermediates shown are those produced by and structure 1, GTP; structure 2, 2,5-diamino-6-(ribosylamino)-4 (3H)-pyrimidinone-5′ phosphate; structure 3, 5-amino-6-(ribosylamino)-2,4 (1H, 3H)-pyrimidinedione-5-phosphate; structure 4, 5-amino-6-(ribitylamino)-2,4 (lH, 3H)-pyrimidine-dione-5′-phosphate; structure 5, 5-amino-6-(ribitylamino)-2,4 (1H, 3H)-pynmidinedione; structure 6, ribulose-5′-phosphate; structure 7, 3,4-dihydroxy-2-butanone 4-phosphate; structure 8, 6,7-dimethyl-8-ribityllumazine; structure 9, riboflavin. Reprinted from Perkins et al. ( ) with permission.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of a possible termination/antitermination model for regulation of the rib operon. The top diagram shows the 5′ leader region, including the operator region, the riboflavin structural genes, start sites of transcription (↱) for promoters recognized by the vegetative form of RNA polymerase ( ), and inactivated and activated transcription termination sites (→ ←, ). Under riboflavin limitation, transcription of the riboflavin operon is derepressed, resulting in at least two polycistronic mRNA species, indicated by the thick arrows. The middle and bottom diagrams show premature transcription termination mediated by a hypothetical flavin-activated repressor (black oval) or an effector molecule, such as FMN, that stabilizes formation of a cloverleaf structure (♣) of the 5′ mRNA leader, resulting in formation of the terminator.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of a possible model for regulation of the operon. The top diagram shows the biotin operon, including the operator, the biotin structural genes, the start site of transcription from a promoter recognized by the vegetative form of RNA polymerase, and the transcription terminators. Under biotin limitation, transcription of the operon is derepressed, resulting in two mRNA transcripts, indicated by the thick arrows. The less abundant 7.2-kb transcript includes all seven genes in the operon, and the more abundant 5.1-kb transcript covers the first five genes ( ). Deletion of a rho-independent terminatorlike sequence located between and prevents accumulation of the 5.1-kb transcript and enhances accumulation of the ∼7-kb transcript ( ). Biotin and BirA regulate both transcripts. The bottom diagram shows a possible classical repressor/operator mechanism mediated by an AMP-biotin-activated repressor (BirA; black oval). Under biotin excess, the activated repressor binds to the operator region, preventing initiation of RNA synthesis. Symbols are described in the legend to Fig. 2 .

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The biotin biosynthetic pathways of and . The question marks indicate that the pathways for the synthesis of the intermediates pimeloyl coenzyme A in and pimelic acid in and are not known. The last reaction is catalyzed by the gene product; the potential sulfur donor and the additional proteins and cofactors listed are based on recent in vitro studies using BioB ( ). Adapted with permission ( ).

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Folic acid biosynthetic pathway. Adapted from Perkins and Pero ( ) and de Saizieu et al. ( ). Where known, the genes encoding the enzymes are indicated.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic representation of the folate operon and its transcripts. Transcription of the nine-gene folate operon initiates from a promoter upstream of . Northern blot experiments indicated that three transcripts originate from this promoter: a 2.1-kb transcript covering and a 5.9-kb transcript covering the first eight genes in the operon, and a 7.5-kb transcript including the entire nine-gene operon ( ). Putative transcription terminators can be found in the genome sequence just downstream of after and after . A second promoter, just upstream of directs transcription of a 1.5-kb RNA covering lysS. Modified from de Saizieu et al. ( ) with permission of the Society for General Microbiology.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Comparison of folate biosynthetic gene arrangements in and . Gene names are indicated below the arrows, and enzyme designations are given above. Adapted from Lacks et al. ( ) with permission.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

The thiamin biosynthetic pathways of and . Known and putative genes are listed in parentheses next to their gene counterparts. Formation of hydroxyethylthiazole phosphate (HET-P) utilizes either () or (). The asterisk denotes biosynthetic enzymes for which the crystal structure has been solved. The gene of has been cloned ( ), but its assignment to a coding region has not been reported.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap20
1. Achari, A.,, D. O. Somers,, J. N. Champness,, P. K. Bryant,, J. Rosemond,, and D. K. Stammers. 1997. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4: 490 497.
2. Azevedo, V.,, A. Sorokin,, D. Ehrlich,, and P. Serror. 1993. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol. Microbiol. 10: 397 405.
3. Babitzke, P.,, P. Gollnick,, and C. Yanofsky. 1992. The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, a regulator of tryptophan biosynthesis. J. Bacteriol. 174: 2059 2064.
4. Bacher, A.,, S. Eberhardt,, and G. Richter,. 1996. Biosynthesis of riboflavin, p. 657 664. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Celluhr and Molecuhr Biology. American Society for Microbiology, Washington, D.C..
5. Baigori, M.,, R. Grau, H. B. Morbidoni, and D. de Mendoza. 1991. Isolation and characterization of Bacillus subtilis mutants blocked in the synthesis of pantothenic acid. J. Bacteriol. 173: 4240 4242.
6. Battersby, A. R. 1994. How nature builds the pigments of life: the conquest of vitamin B 12. Science 264: 1551 1557.
7. Beck, R.,, E. Raux,, C. Thermes,, A. Rambach,, and M. Warren. 1997. CbiX: a novel metal-binding protein involved in sirohaem biosynthesis in Bacillus megaterium. Biochem. Soc. Trans. 25: 77S.
8. Begley, T. P. 1996. The biosynthesis and degradation of thiamin (vitamin Bl). Nat. Prod. Rep. 13: 177 185.
9. Begley, T. P.,, D. M. Downs,, S. E. Ealick,, F. W. McLafferty,, A. P. van Loon,, S. Taylor,, N. Campobasso,, H. J. Chiu,, C. Kinsland,, J. J. Reddick,, and J. Xi. 1999. Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 171: 293 300.
10. Begley, T. P.,, C. Kinsland,, S. Taylor,, M. Tandon,, R. Nicewonger,, M. Wu,, H.-J. Chiu,, N. Kelleher,, N. Campobasso,, and Y. Zhang. 1998. Cofactor biosynthesis: a mechanistic perspective. Top. Curr. Chem. 195: 93 142.
11. Begley, T. P.,, J. Xi,, C. Kinsland,, S. Taylor,, and E. McLafferty. 1999. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr. Opin. Chem. Biol. 3: 623 629.
12. Birch, O. M.,, M. Fuhrmann,, and N. M. Shaw. 1995. Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J. Biol. Chem. 270: 19158 19165.
13. Bognar, A. L.,, C. Osborne,, and B. Shane. 1987. Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by an upstream gene. J. Biol. Chem. 262: 12337 12342.
14. Bower, S.,, J. Perkins,, R. R. Yocum,, P. Serror,, A. Sorokin,, P. Rahaim,, C. L. Howitt,, N. Prasad,, S. D. Ehrlich,, and J. Pero. 1995. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J. Bacteriol. 177: 2572 2575.
15. Bower, S.,, J. B. Perkins,, R. R. Yocum,, C. L. Howitt,, P. Rahaim,, and J. Pero. 1996. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178: 4122 4130.
16. Bresler, S. E.,, E. I. Cherepenko,, T. P. Chernik,, V. L. Kalinin,, and D. A. Perumov. 1970. Investigation of the operon of riboflavin synthesis in Bacillus subtilis. I. Genetic mapping of the linkage group. Genetika 6: 116 124.
17. Bretzel, W.,, W. Schurter,, B. Ludwig,, E. Kupfer,, S. Doswald,, M. Pfister,, and A. P. G. M. van Loon. 1999. Commercial riboflavin production by recombinant Bacillus subtilis: down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechnol. 22: 19 26.
18. Brey, R. N.,, C. D. B. Banner,, and J. B. Wolf. 1986. Cloning of multiple genes involved with cobalamin (vitamin B 12) biosynthesis in Bacillus megaterium. J. Bacteriol. 167: 623 630.
19. Brown, G. M.,, and J. M. Williamson,. 1987. Biosynthesis of folic acid, riboflavin, thiamine, and pantothenic acid, p. 521 538. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low, Jr.,, B. Magasanik,, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium, vol. 1. American Society for Microbiology, Washington, D.C..
20. Bui, B. T. S.,, F. Escalettes,, G. Chottard,, D. Florentin,, and A. Marquet. 2000. Enzyme mediated sulfide production for the reconstitution of (2Fe-2S) clusters into apobiotin synthase of E. coli, sulfide transfer from cystein to biotin. Eur. J. Biochem. 267: 2688 2694
21. Bui, B. T. S.,, D. Florentin,, F. Fournier,, O. Ploux,, A. Mejean,, and A. Marquet. 1998. Biotin synthesis mechanism: on the origin of sulfur. FEBS Lett. 440: 226 230.
22. Bui, B. T. S.,, D. Florentin,, A. Marquet,, R. Benda,, and A. X. Trautwein. 1999. Mössbauer studies of Escherichia coli biotin synthase: evidence for reversible interconversion between [2F-2S] 2+ and [4F-4S] 2+ clusters. FEBS Lett. 459: 411 414.
23. Busby, R. W.,, J. P. M. Schelvis,, D. S. Yu,, G. T. Babcock,, and M. A. Marietta. 1999. Lipoic acid biosynthesis: LipA is an iron-sulfur protein. J. Am. Chem. Soc. 121: 4706 4707.
24. Carballido-Lopez, R.,, J. P. Rawlins,, and J. Errington. Unpublished results.
25. Chiu, H. J.,, J. J. Reddick,, T. P. Begley,, and S. E. Ealick. 1999. Crystal structure of thiamin phosphate synthase from Bacillus subtilis at 1.2 angstroms. Biochemistry 38: 6460 6470.
26. Compobasso, N.,, I. I. Mathews,, T. P. Begley,, and S. E. Ealick. 2000. Crystal structure of 4-methyl-5-β -hydroxyethylthiazole kinase from Bacillus subtilis at 1.5 A resolution. Biochemistry 39: 7868 7877.
27. Cronan, J. E., Jr. 1989. The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell 58: 427 429.
28. Debussche, L.,, D. Thibaut,, B. Cameron,, J. Crouzet,, and F. Blanche. 1993. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J. Bacteriol. 175: 7430 7440.
29. DeMoll, E., 1996. Biosynthesis of biotin and lipoic acid., p. 704 709. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
30. de Saizieu, A.,, P. Vankan,, and A. P. van Loon. 1995. Enzymatic characterization of Bacillus subtilis GTP cyclohydrolase. I. Evidence for a chemical dephosphorylation of dihydroneopterin triphosphate. Biochem. J. 306: 371 377.
31. de Saizieu, A.,, P. Vankan,, C. Vockler,, and A. P. G. M. van Loon. 1997. The trp RNA-binding attenuation protein (TRAP) regulates the steady-state levels of transcripts of the Bacillus subtilis folate operon. Microbiology 143: 979 989.
32. De Voss, J. J.,, and J. E. Stok. 1997. Purification and characterisation of P450-BioI. FASEB J. 11: A812.
33. Du, H.,, R. Tarpey,, and P. Babitzke. 1997. The trp RNA-binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J. Bacteriol. 179: 2582 2586.
34. Duin, E. C.,, M. E. Lafferty,, B. R. Crouse,, R. M. Allen,, I. Sanyal,, D. H. Flint,, and M. K. Johnson. 1997. [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36: 11811 11820.
35. Eichler, K.,, S. Taylor,, C. Vockler,, Y. Zhang,, V. Delague,, T. Begley,, and A. P. G. M. van Loon. Unpublished results.
36. Eichler, K.,, C. Vockler,, R. Carballido-Lopez,, and A. P. G. M. van Loon. 1997. I nvestigation of the biotechnological potential of folic acid biosynthesis in Bacillus subtilis, p. 46. Abstr. 9th International Conference on Bacilli, Lausanne, Switzerland.
37. Eisenberg, M. A., 1987. Biosynthesis of biotin and lipoic acid, p. 544 550. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low, Jr.,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington, D.C..
38. Florentin, D.,, B. T. S. Bui,, A. Marquet,, T. Ohshiro,, and Y. Izumi. 1994. On the mechanism of biotin synthetase of Bacillus sphaericus. C. R. Acad. Sci. Paris 317: 485 488.
39. Fujio, T.,, M. Hayashi,, A. Ilda,, T. Nishi,, and T. Hagihara. 1990. Process for producing thaimine phosphate. European Patent Application EP 0417953.
40. Fujisawa, A.,, T. Abe,, I. Ohsawa,, K. Kamogawa,, and Y. Izumi. 1993. Bioconversion of dethiobiotin to biotin by a cell-free system of a bioYB transformant of Bacillus sphaericus. FEMS Microbiol. Lett. 110: 1 4.
41. Gelfand, M. S.,, A. A. Mironov,, J. Jomantas,, Y. I. Kozlov,, and D. A. Perumov. 1999. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15: 439 442.
42. Gibson, K. J.,, D. A. Pelletier,, and S. I. M. Turner. 1999. Transfer of sulfur to biotin from biotin synthase (BioB protein). Biochem. Biophys. Res. Commun. 254: 632 635.
43. Gloeckler, R.,, I. Ohsawa,, D. Speck,, C. Ledoux,, S. Bernard,, M. Zinsius,, D. Villeval,, T. Kisou,, K. Kamogawa, and Y. Lemoine. 1990. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene 87: 63 70.
44. Green, A. J.,, S. L. Rivers,, M. Cheesman,, G. A. Reid,, L. Quaroni,, I. D. G. Macdonald,, S. K. Chapman,, and A. W. Munro. Expression, purification and characterisation of cytochrome P450 BioI: a novel P450 involved in biotin synthesis in Bacillus subtilis. J. Biol. Inorg. Chem., in press.
45. Green, J. M.,, B. P. Nichols,, and R. G. Matthews,. 1996. Folate biosynthesis, reduction, and polyglutamylation, p. 665 673. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
46. Guianvarc’h, D.,, D. Florentin,, B. T. S. Bui,, F. Nunri,, and A. Marquet. 1997. Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as the source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun. 236: 402 406.
47. Hampele, I. C.,, A. D’Arcy,, G. E. Dale,, D. Kostrewa,, J. Nielsen,, C. Oefner,, M. G. Page,, H. J. Schonfeld,, D. Stuber,, and R. L. Then. 1997. Structure and function of the dihydropteroate synthase from Staphyhcoccus aureus. J. Mol. Biol. 268: 21 30.
48. Harker, M.,, and P. M. Bramley. 1999. Expression of prokaryotic l-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448: 115 119.
49. Hennig, M.,, A. D’Arcy,, I. C. Hampele,, M. G. P. Page,, C. Oefner,, and G. E. Dale. 1998. Crystal structure and reaction mechanism of 7,8-dihydroneopterin aldolase from Staphylococcus aureus. Nat. Struct. Biol. 5: 357 362.
50. Hohmann, H. Unpublished results.
51. Hiimbelin, M.,, V. Griesser,, T. Keller,, W. Schuter,, M. Haiker,, H.-P. Hohmann,, H. Ritz,, G. Richter,, A. Bacher,, and A. P. G. M. van Loon. 1999. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of a Bacillus subtilis strain used for riboflavin production. J. Ind. Microbiol. Biotechnol. 22: 1 7.
52. Ifuku, O.,, N. Koga,, S. Haze,, J. Kishimoto,, and Y. Wachi. 1994. Flavodoxin is required for conversion of dethiobiotin to biotin in Escherchia coli. Eur. J. Biochem. 224: 173 178.
53. Iwakura, M.,, and T. Tanaka. 1992. Dihyrofolate reductase from Bacillus subtilis and its artificial derivatives—expression, purification, and characterization. J. Biochem. 111: 638 642.
54. Izumi, Y.,, Y. Kano,, K. Inagaski,, N. Kawase,, Y. Tani,, and H. Yamada. 1981. Characterization of biotin biosynthetic enzymes of Bacillus sphaericus: a desthiobiotin producing bacterium. Agric. Biol. Chem. 45: 1983 1989.
55. Jackowski, S., 1996. Biosynthesis of pantothenic acid and coenzyme A, p. 687 694. In F. C. Neidhardt,, R. Curtess III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Kambampati, R.,, and C. T. Lauhon. 1999. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38: 16561 16568.
57. Kawasaki, T.,, and Y. Nose. 1969. Thiamine regulatory mutants in Escherichia coli. J. Biochem. 65: 417 425.
58. Kawasaki, T.,, H. Sanemori,, Y. Egi,, S. Yoshida,, and K. Yamada. 1976. Biochemical studies on pyrithiamine-resistant mutants of Escherichia coli. J. Biochem. 79: 1035 1042.
59. Kil, Y. V.,, V. N. Mironov,, I. Y. Gorishin,, R. A. Kreneva,, and D. A. Perumov. 1992. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol. Gen. Genet. 233: 483 486.
60. Kiyasu, T.,, A. Asakura,, Y. Nagahashi,, and T. Hoshino. 2000. Contribution of cystein desulfurase (NifS protein) to the biotin synthase reaction of Escherichia coli. J. Bacteriol. 182: 2879 2885.
61. Kreneva, R. A.,, and D. A. Perumov. 1990. Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol. Gen. Genet. 222: 467 469.
62. Kunst, F.,, N. Ogasawara,, H. Yoskikawa,, and A. Danchin. 1997. Probable lipoic acid synthetase. Direct submission GenBank accession no. 032129.
63. Kurth, R.,, J. Paust,, and W. Hahnlein. 1996. Riboflavin, p. 521 530. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed, vol. A27. VCH Verlagsgesellschaft, Weinheim, Germany.
64. Lacks, S. A.,, B. Greenberg,, and P. Lopez. 1995. A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Streptococcus pneumoniae. J. Bacteriol. 177: 66 74.
65. Lauhon, C. T.,, and R. Kambampati. 2000. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J. Biol. Chem. 275: 20096 20103.
66. Lauhon, C. T.,, and J. W. Szostak. 1995. RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117: 1246 1257.
67. Lee, C. Y.,, and E. A. Meighen. 1992. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem. Biophys. Res. Commun. 186: 690 697.
68. Lee, C. Y.,, D. J. O’Kane,, and E. A. Meighen. 1994. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J. Bacteriol. 176: 2100 2104.
69. Lee, H.,, V. M. Reyes,, and J. Kraut. 1996. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4. Biochemistry 35: 7012 7020.
70. Lemoine, Y.,, A. Wach,, and J. M. Jeltsch. 1996. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19: 645 647.
71. Llorente, B.,, C. Fairhead,, and B. Dujon. 1999. Genetic redundancy and gene fusion in the genome of the baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol. Microbiol. 32: 1140 1152.
72. Lopez, P.,, and S. A. Lacks. 1993. A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyl-dihydropterin pyrophosphokinase activities. J. Bacteriol. 175: 2214 2220.
73. Mack, M.,, A. P. G. M. van Loon,, and H.-P. Hohmann. 1998. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the favokinase/flavin adenine dinucleotide synthetase encoded by ribC. J. Bacteriol. 180: 950 955.
74. Margolis, P. S.,, A. Driks,, and R. Losick. 1993. Spoliation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175: 528 540.
75. Marini, P.,, S. J. Li,, D. Gardiol,, J. J. E. Cronan,, and D. de Mendoza. 1995. The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis. J. Bacteriol. 177: 7003 7006.
76. Marquet, A.,, B. T. S. Bui,, and D. Florentin. 2001. Biosynthesis of biotin and lipoic acid. Vitam. Horm. 61: 51 101
77. Mejean, A.,, B. T. S. Bui,, D. Florentin,, O. Ploux,, Y. Izumi,, and A. Marquet. 1995. Highly purified biotin synthase can transform dethiobiotin into biotin in the absence of any other protein, in the presence of photoreduced deazaflavin. Biochem. Biophys. Res. Commun. 217: 1231 1237.
78. Miranda-Ríos, J.,, C. Morera,, H. Taboada,, A. Dávalos,, S. Encarnación,, J. Mora,, and M. Soberon. 1997. Expression of thiamin biosynthetic genes ( thiCOGE) and production of symbiotic terminal oxidase cbb 3 in Rhizobium etli. J. Bacteriol. 179: 6887 6893.
79. Mironov, V. N.,, D. A. Perumov,, A. S. Kraev,, A. I. Stepanov,, and K. G. Skryabin. 1990. Unusual structure in the regulation region of the Bacillus subtilis riboflavin biosynthesis operon. Molekulyamaya Biohgiya 24: 256 261.
80. Moine, G.,, and H.-P. Hohmann. 1996. Vitamin Bl (Thiamin), p. 506 521. In Ullmann’s Encychpedia of Industrial Chemistry, 5th ed, vol. A27. VCH Verlagsgesellschaft, Weinheim, Germany.
81. Morozov, G. I.,, P. M. Rabinovich,, S. V. Bandrin,, and A. I. Stepanov. 1984 . Organization of Bacillus subtilis riboflavin operon. Mol. Genet. Mikrobiol. Virusol. 7: 42 46.
82. Mueller, E. G.,, and P. M. Palenchar. 1999. Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. Protein Sci. 8: 2424 2427.
83. Nar, H.,, R. Huber,, W. Meining,, A. Bracher,, M. Fischer,, C. Hosl,, H. Ritz,, C. Schmid,, W. S., and A. Bacher. 1996. Structure and mechanism of GTP cyclohydrolase I of Escherichia coli. Biochem. Soc. Trans. 24: 37S.
84. Nicewonger, R.,, C. A. Costello,, and T. P. Begley. 1996. Mechanistic studies on thiaminase I. 3. Stereochemistry of the thiaminase I and the bisulfite-catalyzed degradation of chiral monodeuterothiamin. J. Org. Chem. 61: 4172 4174.
85. Nishiya, Y.,, and T. Imanaka. 1998. Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett. 438: 263 266.
86. Ollagnier-de Choudens, S.,, and M. Fontecave. 1999. The lipoate synthase from Escherichia coli is an iron-sulfur protein. FEBS Lett. 453: 25 28.
87. Ollagnier-De Choudens, S.,, Y. Sanakis,, K. S. Hewitson,, P. Roach,, J. E. Baldwin,, E. Munck,, and M. Fontecave. 2000. Iron-sulfur center of biotin synthase and lipoate synthase. Biochemistry 39: 4165 4173.
88. Osmani, A. H.,, G. S. May,, and S. A. Osmani. 1999. The extremely conserved pyroA gene of Aspergillus nidufons is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J. Biol. Chem. 274: 23565 23569.
89. O’Toole, G. A.,, M. R. Rondon,, J. R. Trzebiatowski,, S. J. Suh,, and J. C. Escalante-Semerena,. 1996. Biosynthesis and utilization of adenosyl-cobalamin (coenzyme B 12), p. 710 720. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
90. Ouzounis, C. A.,, and N. C. Kyrpides. 1997. ThiD-TenA: a gene pair fusion in Eukarotes. J. Mol. Evol. 45: 708 711.
91. Pai, C. H. 1975. Genetics of biotin biosynthesis in Bacillus subtilis. J. Bacteriol. 121: 1 8.
92. Pang, A. S.-H.,, S. Nathoo,, and S.-L. Wong. 1991. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J. Bacteriol. 173: 46 54.
93. Perkins, J. Personal communication.
94. Perkins, J. B.,, S. Bower,, C. L. Howitt,, R. R. Yocum,, and J. Pero. 1996. Identification and characterization of transcripts from the biotin biosynthetic operon of Bacillus subtilis. J. Bacteriol. 178: 6361 6365.
95. Perkins, J. B.,, and J. G. Pero,. 1993. Biosynthesis of riboflavin, biotin, folic acid and cobalamin, p. 319 334. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
96. Perkins, J. B.,, J. G. Pero,, and A. Sloma. 1998. Riboflavin overproducing strains of bacteria. U.S. patent 5,837,528.
97. Perkins, J. B.,, A. Sloma,, T. Hermann,, K. Theriault,, E. Zachgo,, T. Erdenberger,, N. Hannett,, N. P. Chatterjee,, V. Williams II,, G. A. Rufo, Jr.,, R. Hatch,, and J. Pero. 1999. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22: 8 18.
98. Ploux, O.,, P. Soularue,, A. Marquet,, R. Gloeckler,, and Y. Lemoine. 1992. Investigations of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthetase, and uptake of pimelate. Biochem. J. 287: 685 690.
99. Raux, E.,, A. Lanois,, A. Rambach,, M. J. Warren,, and C. Thermes. 1998. Cobalamin (vitamin B 12) biosynthesis: functional characterization of the Bacillus megaterium cbi genes required to convert uroporphyrinogen III into cobyrinic acid a,c-diamide. Biochem. J. 335: 167 173.
100. Raux, E.,, A. Lanois,, M. J. Warren,, A. Rambach,, and C. Thermes. 1998. Cobalamin (vitamin B 12) biosynthesis: identification and characterization of the Bacillus megaterium cobI operon. Biochem. J. 335: 159 166.
101. Raux, E.,, H. L. Schubert,, J. M. Roper,, K. S. Wilson,, and M. J. Warren. 1999. Vitamin B 12: insights into biosynthesis’s mount improbable. Bioorg. Chem. 27: 100 118.
102. Reddick, J. J.,, C. Kinsland,, R. Nicewonger,, T. Christian,, D. M. Downs,, M. E. Winkler,, and T. P. Begley. 1998. Overexpression, purification, and characterization of two pyrimidine kinases involved in the biosynthesis of thiamin: 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase. Tetrahedron 54: 15983 15991.
103. Richter, G.,, M. Fischer,, C. Krieger,, S. Eberhardt,, H. Lüttgen,, I. Gerstenschläger,, and A. Bacher. 1997. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J. Bacteriol. 179: 2022 2028.
104. Richter, G.,, H. Ritz,, G. Katzenmeier,, R. Volk,, A. Kohnle,, F. Lottspeich,, D. Allendorf,, and A. Bacher. 1993. Biosynthesis of riboflavin: cloning, sequencing, and mapping, and expression of the gene coding for GTP cyclohydrolase II of Escherichia coli. J. Bacteriol. 175: 4045 4051.
105. Richter, G.,, R. Volk,, C. Krieger,, H.-W. Lahm,, U. Röthlisberger,, and A. Bacher. 1992. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate of Escherichia coli. J. Bacteriol. 174: 4050 4056.
106. Roth, J. R.,, J. G. Lawrence,, M. Rubenfield,, S. Kieffer-Higgins,, and G. M. Church. 1993. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol. 175: 3303 3316.
107. Ryals, J.,, R.-Y. Hsu,, M. N. Lipsett,, and H. Bremer. 1982. J. Bacteriol. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. 151: 899 904.
108. Sanyal, I.,, G. Cohen,, and D. H. Flint. 1995. Biotin synthase: purification, characterization as a [2Fe-2S] cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry 33: 3625 3631.
109. Sanyal, I.,, K. Gibson,, and D. Flint. 1996. Escherichia coli biotin synthase: an investigation into the factors required for its activity and its sulfur donor. Arch. Biochem. Biophys. 326: 48 56.
110. Sauer, U.,, D. C. Cameron,, and J. E. Bailey. 1998. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol. Bioeng. 59: 227 238.
111. Sauer, U.,, V. Hatzimanikatis,, J. E. Bailey,, M. Hochuli,, T. Szyperski,, and K. Wuthrich. 1997. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15: 448 452.
112. Schubert, H. L.,, K. S. Wilson,, E. Raux,, S. C. Woodcock,, and M. J. Warren. 1998. The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. Nat. Struct. Biol. 5: 585 593.
113. Shaw, N. M.,, O. M. Birch,, A. Tinschert,, V. Venetz,, R. Dietrich,, and L. Savoy. 1998. Biotin synthase from Escherichia coli: isolation of an enzyme-generated intermediate and stoichiometry of S-adenosylmethionine use. Biochem. J. 330: 1079 1085.
114. Skovran, E.,, and D. M. Downs. 2000. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar typhimurium: implications for thiamine synthesis. J. Bacteriol. 182: 3896 3903.
115. Slock, J.,, D. P. Stahly,, C.-Y. Han,, E. W. Six,, and I. P. Crawford. 1990. An apparent Bacillus subtilis folic acid biosynthetic operon containg pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 172: 7211 7226.
116. Solovieva, I. M.,, R. A. Kreneva,, D. J. Leak,, and D. A. Perumov. 1999. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 145: 67 73.
117. Solovieva, I. M.,, R. A. Kreneva,, B. M. Polanuer,, I. I. Kozlov,, and D. A. Perumov. 1998. Cloning and biochemical identification of the ribR gene in Bacillus subtilis. Genetika. 34: 839 842.
118. Stamford, N. P.,, J. Crouzet,, B. Cameron,, A. I. Alanine,, A. R. Pitt,, A. A. Yeliseev,, and A. R. Battersby. 1996. Biosynthesis of vitamin B 12: the preparative multi-enzyme synthesis of precorrin-3A and 20-methylsirohydrochlorin (a 2,7,20-trimethylisobacteriochlorin). Biochem. J. 313: 335 342.
119. Stammers, D. K.,, A. Achari,, D. O. Somers,, P. K. Bryant,, J. Rosemond,, D. L. Scott,, and J. N. Champ-ness. 1999. 2.0 A X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. FEBS Lett. 456: 49 53.
120. Stoner, G. L.,, and M. A. Eisenberg. 1975. Biosynthesis of 7,8-diaminopelargonic acid from 7-keto-8-aminopelar-gonic acid and S-adenosyl-L-methionine. J. Biol. Chem. 250: 4037 4043.
121. Taylor, S. V.,, N. L. Kelleher,, C. Kinsland,, H.-J. Chiu,, C. A. Costello,, A. D. Blackstrom,, F. W. Mclafferty,, and T. P. Begley. 1998. Thiamin biosynthesis in Escherichia coli. J. Biol. Chem. 273: 16555 16560.
122. Toburen-Bots, I.,, and H. Hagedorn. 1977. Studies on the thiamine transport system in Bacillus cereus. Arch. Microbiol. 13: 23 31.
123. Ugulava, N. B.,, B. R. Gibney,, and J. T. Jarrett. 2000. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2FE-2S] to [4Fe-4S] clusters. Biochemistry 39: 5206 5214.
124. Van Arsdell, S.,, R. R. Yocum,, J. B. Perkins,, and J. G. Pero. 1999. Overcoming DAPA amintotransferase bottlenecks in biotin vitamers. European Patent Application EP 0892066.
125. Webb, E.,, K. Claas,, and D. Downs. 1998. thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J. Biol. Chem. 273: 8946 8950.
126. Webb, E.,, K. Claas,, and D. M. Downs. 1997. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J. Bacteriol. 179: 4399 4402.
127. Webb, E.,, F. Febres,, and D. Downs. 1996. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J. Bacteriol. 178: 2533 2538.
128. White, R. L.,, and I. D. Spenser,. 1996. Biosynthesis of thiamin, p. 680 686. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
129. Wolf, J. B.,, and R. N. Brey. 1986. Isolation and genetic characterizations of Bacillus megaterium cobalamin biosynthesis-deficient mutants. J. Bacteriol. 166: 51 58.
130. Worst, D. J.,, M. M. Gerrits,, C. M. Vandenbroucke-Grauls,, and J. G. Kuster. 1998. Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquistion. J. Bacteriol. 180: 1473 1479.
131. Yang, M.,, A. D. Saizieu,, A. P. G. M. van Loon,, and P. Golinick. 1995. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attentuation protein (TRAP). J. Bacteriol. 177: 4272 4278.
132. Zhang, Y.,, and T. P. Begley. 1997. Cloning, sequencing, and regulation of thiA, a thiamin biosynthesis gene from Bacillus subtilis. Gene 198: 73 82.
133. Zhang, Y.,, S. V. Taylor,, H. J. Chiu,, and T. P. Begley. 1997. Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. J. Bacteriol. 179: 3030 3035.

Tables

Generic image for table
TABLE 1

Riboflavin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and National Center for Biotechnology Information (NCB1) (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 2

Biotin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov)websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 3

Folic acid biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 4

Thiamin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error