1887

Chapter 28 : Anaerobiosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Anaerobiosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap28-2.gif

Abstract:

This chapter on anaerobiosis talks about that can respond to changes in oxygen availability and redox state by changing metabolic direction in favor of anaerobiosis. During anaerobiosis, degradation of arginine occurs via the arginine deiminase pathway rather than the aerobic arginase pathway. Many genes required for antibiotic production are induced by anaerobiosis. Unlike , which is slightly repressed by anaerobiosis, expression of is highly induced by anaerobiosis. All of the ResDE-dependent genes tested show higher expression during anaerobiosis than during aerobiosis. Nitrate respiration of makes sense from an ecological standpoint because soil, a natural habitat for , contains numerous anaerobic microenvironments, especially when water content is high, and also contains an abundant source of nitrate and nitrite. Studies of anaerobiosis offer great promise for potential applications in the biomedical and biotechnology fields. Knowledge of anaerobic metabolism is useful for the fermentation industry to plan strategies for improved product yield and metabolic engineering by redirection of metabolic flows. Anaerobiosis of microorganisms in soil plays a key role in ecosystem homeostasis and affects atmospheric composition through the formation of trace gases.

Citation: Nakano M, Zuber P. 2002. Anaerobiosis, p 393-404. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch28

Key Concept Ranking

Two-Component Signal Transduction Systems
0.49164116
Transcription Start Site
0.45044374
0.49164116
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Fermentation pathways of . The fermentation end products are shown in bold. Genes known to code for the enzymes involved in fermentation are shown in parentheses. Abbreviations: ACK, acetate kinase; ADH, alcohol dehydrogenase; ALDC, α-acetolactate decarboxylase; ALDH, aldehyde dehydrogenase; ALS, α-acetolactate synthase; AR, acetoin reductase; LDH, L-lactate dehydrogenase; PTA, phosphotransacetylase; CoA, coenzyme A.

Citation: Nakano M, Zuber P. 2002. Anaerobiosis, p 393-404. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Regulatory pathways for redox-dependent gene expression in . Genes in boldface represent regulatory genes. Genes dependent on ResDE, FNR, and YwiD (ArfM) are shown in the boxes, although in some cases it is unknown whether these regulators are directly involved in the expression of the target genes. YwfI protein level is not significantly affected by a mutation ( ). Details are described in the text.

Citation: Nakano M, Zuber P. 2002. Anaerobiosis, p 393-404. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap28
1. Albertini, A. M.,, T. Caramori,, F. Scoffone,, C. Scotti,, and A. Galizzi. 1995. Sequence around the 159 degree region of the Bacillus subtilis genome: the pksX locus spans 33.6 kb. Microbiology 141: 299 309.
2. Antelmann, H.,, S. Engelmann,, R. Schmid,, and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 6571 6578.
3. Antelmann, H.,, S. Engelmann,, R. Schmid,, A. Sorokin,, A. Lapidus,, and M. Hecker. 1997. Expression of a stress-and starvation-induced dpslpexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J. Bacteriol. 179: 7251 7256.
4. Azarkina, N.,, S. Siletsky,, V. Borisov,, C. von Wachenfeldt,, L. Hederstedt,, and A. A. Konstantinov. 1999. A cytochrome bb'-type quinol oxidase in Bacillus subtilis strain 168. J. Biol. Chem. 274: 32810 32817.
5. Babasaki, K.,, T. Takao,, Y. Shimonishi,, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem. 98: 585 603.
6. Bauer, C. E.,, S. Elsen,, and T. H. Bird. 1999. Mechanisms for redox control of gene expression. Annu. Rev. Microbiol. 53: 495 523.
7. Blasco, F.,, J.-P. D. Santos,, A. Magalon,, C. Frixon,, B. Guigliarelli,, C.-L. Santini,, and G. Giordano. 1998. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol. Microbiol. 28: 435 447.
8. Bock, A.,, and G. Sawers,. 1996. Fermentation, p. 262 282. In F. C. Neidhardt,, R. Curtis III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella, vol. I. ASM Press, Washington, D.C.
9. Boone, D. R.,, Y. Liu,, Z. J. Zhao,, D. L. Balkwill,, G. R. Drake,, T. O. Stevens,, and H. C. Aldrich. 1995. Bacillus infemus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45: 441 448.
10. Broman, K.,, N. Lauwers,, V. Stalon,, and J.-M. Wiame. 1978. Oxygen and nitrate utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. J. Bacteriol. 135: 920 927.
11. Buggy, J.,, and C. E. Bauer. 1995. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsufotus. J. Bacteriol. 177: 6958 6965.
12. Chen, L.,, and J. D. Helmann. 1995. Bacillus subtilis MrgA in a Dps (PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol. Microbiol. 18: 295 300.
13. Cole, J. 1996. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136: 1 11.
14. Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H 2, CO, CH 4, OCS, N 2O, and NO). Microbiol. Rev. 60: 609 640.
15. Cramm, R.,, R. A. Siddiqui,, and B. Friedrich. 1994. Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J. Biol. Chem. 269: 7349 7354.
16. Crawford, M. J.,, and D. E. Goldberg. 1998. Role for Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem. 273: 12543 12547.
17. Cronan, J., Jr.,, and D. LaPorte,. 1996. Tricarboxylic acid cycle and glyoxylate bypass, p. 206 216. In F. C. Neidhardt,, R. Curtis III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella, vol. 1. ASM Press, Washington, D.C.
18. Cruz Ramos, H.,, L. Boursier,, I. Moszer,, F. Kunst,, A. Danchin,, and P. Glaser. 1995. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J. 14: 5984 5994.
19. Cruz Ramos, H.,, T. Hoffmann,, M. Marino,, H. Nedjari,, E. Presecan-Siedel,, O. Dressen,, P. Glaser,, and D. Jahn. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182: 3072 3080.
20. Cunningham, L.,, M. J. Gruer,, and J. R. Guest. 1997. Transcriptional regulation of the aconitase genes ( acnA and acnB) of Escherichia coli. Microbiology 143: 3795 3805.
21. Diels, L.,, M. De Smet,, L. Hooyberghs,, and P. Corbisier. 1999. Heavy metals bioremediation of soil. Mol. Biotechnol. 12: 149 158.
22. Drzewiecki, K.,, C. Eymann,, G. Mittenhuber,, and M. Hecker. 1998. The yvyD gene of Bacillus subtilis is under dual control of σ B and σ H. J. Bacteriol. 180: 6674 6680.
23. Ebbole, D. J.,, and H. Zalkin. 1987. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262: 8274 8287.
24. Fabret, C.,, V. A. Feher,, and J. A. Hoch. 1999. Two-corn ponent signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181: 1975 1983.
25. Fotheringham, I. 2000. Engineering biosynthetic pathways: new routes to chiral amino acids. Curr. Opin. Chem. Biol. 4: 120 124.
26. Fouet, A.,, S. Jin,, G. Raffel,, and A. L. Sonenshein. 1990. Multiple regulatory sites in the Bacillus subtilis citB promoter region. J. Bacteriol. 172: 5408 5415.
27. Fouet, A.,, and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the ritB promoter of Bacillus subtilis. J. Bacteriol. 172: 835 844.
28. Gardner, P. R.,, A. M. Gardner,, L. A. Martin,, and A. L. Salzman. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 10378 10383.
29. Gennis, R. B.,, and V. Stewart,. 1996. Respiration, p. 217 261. In F. C. Neidhardt,, R. Curtis III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella, vol. I. ASM Press, Washington, D.C.
30. Georgellis, D.,, O. Kwon,, and E. C. C. Lin. 1999. Amplification of signaling activity of the Arc two-component system of Escherichia coli by anaerobic metabolites. J. Biol. Chem. 274: 35950 35954.
31. Georgellis, F.,, A. S. Lynch,, and E. C. C. Lin. 1997. In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J. Bacteriol. 179: 5429 5435.
32. Glaser, P.,, A. Danchin,, F. Kunst,, P. Zuber, and M. M. Nakano. 1995. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J. Bacteriol. 177: 1112 1115.
33. Gostick, D. O.,, J. Green,, A. S. Irvine,, M. J. Gasson,, and J. R. Guest. 1998. A novel regulatory switch mediated by the FNR-like protein of Lactobacillus casei. Microbiology 144: 705 717.
34. Gostick, D. O.,, H. G. Griffin,, C. A. Shearman,, C. Scott,, J. Green,, M. J. Gasson,, and J. R. Guest. 1999. Two operons that encode FNR-like proteins in Lactococcus lactis. Mol. Microbiol. 31: 1523 1535.
35. Gruer, M. J.,, A. J. Bradbury,, and J. R. Guest. 1997. Construction and properties of aconitase mutants of Escherichia coli. Microbiology 143: 1837 1846.
36. Hansson, M.,, and L. Hederstedt. 1992. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J. Bacteriol. 174: 8081 8093.
37. Hausladen, A.,, A. J. Gow,, and J. S. Stamler. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 14100 14105.
38. Hemila, H.,, A. Palva,, L. Paulin,, S. Arvidson,, and I. Palva. 1990. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J. Bacteriol. 172: 5052 5063.
39. Hippler, B.,, G. Homuth,, T. Hoffman,, C. Hungerer,, W. Schumann,, and D. Jahn. 1997. Characterization of Bacillus subtilis hemN. J. Bacteriol. 179: 7181 7185.
40. Hoffmann, T.,, N. Frankenberg,, M. Marino,, and D. Jahn. 1998. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J. Bacteriol. 180: 186 189.
41. Hoffmann, T.,, B. Troup,, A. Szabo,, C. Hungerer,, and D. Jahn. 1995. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett. 131: 219 225.
42. Højberg, O.,, U. Schnider,, H. V. Winteler,, J. Sørensen,, and D. Haas. 1999. Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65: 4085 4093.
43. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase ( glpK) and glycerol-3-phosphate dehydrogenase ( glpD). J. Gen. Microbiol. 136: 2367 2375.
44. Homuth, G.,, U. Mader,, M. Marino,, D. Jahn,, and M. Hecker. Unpublished results.
45. Homuth, G.,, A. Rompf,, W. Schumann,, and D. Jahn. 1999. Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol. 181: 5922 5929.
46. Hou, S.,, R. W. Larsen,, D. Boudko,, C. W. Riley,, E. Karatan,, M. Zimmer,, G. W. Ordal,, and M. Alan. 2000. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403: 540 544
47. Hu, Y.,, P. D. Butcher,, J. A. Mangan,, M.-A. Rajandream,, and A. R. M. Coates. 1999. Regulation of hmp gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative and oxidative stress. J. Bacteriol. 181: 3486 3493.
48. Hugenholtz, J.,, and M. Kleerebezem. 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol. 10: 492 497.
49. Hulett, F. M. 1996. The signal-transduction network for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 933 939.
50. Ishige, K.,, S. Nagasawa,, S. Tokishita,, and T. Mizuno. 1994. A novel device of bacterial signal transducers. EMBO J. 13: 5195 5202.
51. luchi, S. 1993. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J. Biol. Chem. 268: 23972 23980.
52. luchi, S.,, and E. C. C. Lin. 1988. arcA ( dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. USA 85: 1888 1892.
53. Jourlin-Castelli, C.,, N. Mani,, M. M. Nakano,, and A. L. Sonenshein. 2000. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol. 295: 865 878.
54. Keasling, J. D. 1999. Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol. 17: 452 460.
55. Khoroshilova, N.,, C. Popescu,, E. Munck,, H. Beinert,, and P. J. Kiley. 1997. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O 2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl. Acad. Sci. USA 94: 6087 6092.
56. Kiley, P. J.,, and H. Beinert. 1999. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 22: 341 352.
57. Kim, S. O.,, Y. Orii,, D. Lloyd,, M. N. Hughes,, and R. K. Poole. 1999. Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Lett. 445: 389 394.
58. Klinger, A.,, J. Schirawski,, P. Glaser,, and G. Unden. 1998. The fnr gene of Bacillus licheniformis and the cysteine ligands of the C-terminal FeS cluster. J. Bacteriol. 180: 3483 3485.
59. Kwon, O.,, M. E. S. Hudspeth,, and R. Meganathan. 1996. Anaerobic biosynthesis of enterobactin in Escherichia coli: regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin K 2) biosynthesis. J. Bacteriol. 178: 3252 3259.
60. LaCelle, M.,, M. Kumano,, K. Kurita,, K. Yamane,, P. Zuber,, and M. M. Nakano. 1996. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J. Bacteriol. 178: 3803 3808.
61. Lazazzera, B. A.,, D. M. Bates,, and P. J. Kiley. 1993. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 7: 1993 2005.
62. Liu, X.,, and H. W. Taber. 1998. Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster. J. Bacteriol. 180: 6154 6163.
63. Lovley, D. R.,, and J. D. Coates. 1997. Bioremediation of metal contamination. Curr. Opin. Biotechnology 8: 285 289.
64. Lovley, D. R.,, and J. D. Coates. 2000. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3: 252 256.
65. Lynch, A. S.,, and E. C. C. Lin,. 1996. Responses to molecular oxygen, p. 1526 1538. In F. C. Neidhardt,, R. Curtis III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella, vol. I. ASM Press, Washington, D.C.
66. Maghnouj, A.,, T. F. de Sousa Cabral,, V. Stalon,, and C. Vander Wauven. 1998. The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR. J. Bacteriol. 180: 6468 6475.
67. Maklashina, E.,, D. A. Berthold,, and G. Cecchini. 1998. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 180: 5989 5996.
68. Marino, M.,, T. Hoffmann,, R. Schmid,, H. Mobitz,, and D. Jahn. 2000. Changes in protein synthesis during the adaptation of Bacillus subtilis to anaerobic growth conditions. Microbiology 146: 97 105.
69. Mat-Jan, F.,, K. Y. Alam,, and D. P. Clark. 1989. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J. Bacteriol. 171: 342 348.
70. Matsushika, A.,, and T. Mizuno. 1998. A dual-signaling mechanism mediated by the ArcB hybrid sensor kinase containing the histidine-containing phosphotransfer domain in Escherichia coli. J. Bacteriol. 180: 3973 3977.
71. May, S. W. 1999. Applications of oxidoreductases. Curr. Opin. Biotechnol. 10: 370 375.
72. Membrillo-Hernandez, J.,, M. D. Coopamah,, M. F. Anjum,, T. M. Stevanin,, A. Kelly,, M. N. Hughes,, and R. K. Poole. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274: 748 754.
73. Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by Clostridia. Adv. Microb. Physiol. 39: 31 130.
74. Moreno-Vivian, C.,, P. Cabello,, M. Martinez-Luque,, R. Blasco,, and F. Castillo. 1999. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181: 6573 6584.
75. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa 3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171: 4967 4978.
76. Nakano, M. M. Unpublished results.
77. Nakano, M. M.,, Y. P. Dailly,, P. Zuber,, and D. P. Clark. 1997. Characterization of anaerobic fermentative growth in Bacillus subtilis: identification of fermentation end products and genes required for the growth. J. Bacteriol. 179: 6749 6755.
78. Nakano, M. M.,, T. Hoffmann,, Y. Zhu,, and D. Jahn. 1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrAandResDE. J. Bacteriol. 180: 5344 5350.
79. Nakano, M. M.,, and F. M. Hulett. 1997. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157: 1 7.
80. Nakano, M. M.,, F. Yang,, P. Hardin,, and P. Zuber. 1995. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J . Bacteriol. 177: 573 579.
81. Nakano, M. M.,, G. Zheng,, and P. Zuber. 2000. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182: 3274 3277.
82. Nakano, M. M.,, Y. Zhu,, K. Haga,, H. Yoshikawa,, A. L. Sonenshein,, and P. Zuber. 1999. A mutation in the 3-phosphoglycerate kinase gene bypasses the requirement of ResE kinase for anaerobic growth in Bacillus subtilis. J. Bacteriol. 181: 7087 7097.
83. Nakano, M. M.,, Y. Zhu,, M. LaCelle,, X. Zhang,, and F. M. Hulett. 2000. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol. 37: 1198 1207.
84. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” ( Bacillus subtilis). Annu. Rev. Microbiol. 52: 165 190.
85. Nakano, M. M.,, P. Zuber,, P. Glaser,, A. Danchin,, and F. M. Hulett. 1996. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J. Bacteriol. 178: 3796 3802.
86. Nakano, M. M.,, P. Zuber,, and A. L. Sonenshein. 1998. Anaerobic regulation of Bacillus subtilis Krebs cycle genes. J. Bacteriol. 180: 3304 3311.
87. Neubauer, H.,, I. Pantel,, and F. Gotz. 1999. Molecular characterization of the nitrite-reducing systems of Staphylococcus carnosus. J. Bacteriol. 181: 1481 1488.
88. O'Gara, J. P.,, J. M. Eraso,, and S. Kaplan. 1998. A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 180: 4044 4050.
89. Ogawa, K.,, E. Akagawa,, K. Yamane,, Z.-W. Sun,, M. LaCelle,, P. Zuber,, and M. M. Nakano. 1995. The nosB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtitis. J. Bacteriol. 177: 1409 1413.
90. Oh, J.-I.,, and S. Kaplan. 1999. The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38: 2688 2696.
91. Oh, J. I.,, and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBO J. 19: 4237 4247.
92. Paik, S. H.,, A. Chakicherla,, and J. N. Hansen. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273: 23134 23142.
93. Park, S.-J.,, J. McCabe,, J. Turna,, and R. P. Gunsalus. 1994. Regulation of the citrate synthase ( gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J. Bacteriol. 176: 5086 5092.
94. Paul, E. A.,, and F. E. Clark. 1989. Soil Microbiology and Biochemistry. Academic Press, San Diego, Calif.
95. Poole, R. K.,, and M. N. Hughes. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36: 775 783.
96. Popescu, C. V.,, D. M. Bates,, H. Beinert,, E. Munck,, and P. J. Kiley. 1998. Mossbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc Natl. Acad. Sci. USA 95: 13431 13435.
97. Priest, F. G., 1993. Systematics and ecology of Bacillus, p. 3 16. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
98. Quinn, C. L.,, B. T. Stephenson,, and R. L. Switzer. 1991. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 266: 9113 9127.
99. Rajagopalan, K. V. 1997. Biosynthesis and processing of the molybdenum cofactors. Biochem. Soc. Trans. 25: 757 761.
100. Renna, M. C.,, N. Najimudin,, L. R. Winik,, and S. A. Zahler. 1993. Regulation of the Bacillus subtilis alsS, alsD, and ahR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175: 3863 3875.
101. Richardson, D. J. 2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146: 551 571.
102. Roe, B. Unpublished results.
103. Rowland, B. M.,, T. H. Grossman,, M. S. Osburne,, and H. W. Taber. 1996. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 178: 119 123.
104. Santana, M.,, F. Kunst,, M. F. Hullo,, G. Rapoport,, A. Danchin,, and P. Glaser. 1992. Molecular cloning, sequencing, and physiological characterization of the qpx operon from Bacillus subtilis encoding the aa 3-600 quinol oxidase. J. Biol. Chem. 267: 10225 10231.
105. Sawers, G. 1999. The aerobic/anaerobic interface. Curr. Opin. Microbiol. 2: 181 187.
106. Schirawski, J.,, T. Hankeln,, and G. Unden. 1998. Expression of the succinate dehydrogenase genes ( sdhCAB) from the facultatively anaerobic Paenibacillus macerans during aerobic growth. Arch. Microbiol. 170: 304 308.
107. Schirawski, J.,, and G. Unden. 1995. Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate. Arch. Miaobiol. 163: 148 154.
108. Schneider, R.,, and K. Hantke. 1993. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol. Microbiol. 8: 111 121.
109. Schumann, W. 1999. FtsH—a single-chain charonin? FEMS Microbiol. Rev. 23: 1 11.
110. Scotti, C.,, M. Piatti,, A. Cuzzoni,, P. Perani,, A. Tognoni,, G. Grandi,, A. Galizzi,, and A. M. Albertini. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130: 65 71.
111. Semenza, G. L. 1999. Perspectives on oxygen sensing. Cell 98: 281 284.
112. Shariati, P.,, W. J. Mitchell,, A. Boyd,, and F. G. Priest. 1995. Anaerobic metabolism in Bacillus licheniformis NCIB 6346. Microbiology 141: 1117 1124.
113. Sorokin, A.,, E. Zumstein,, V. Azevedo,, S. D. Ehrlich,, and P. Serror. 1993. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10: 385 395.
114. Speck, E. L.,, and E. Freese. 1973. Control of metabolite secretion in Bacillus subtilis. J. Gen. Microbiol. 78: 261 275.
115. Stewart, V. 1993. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol. Microbiol. 9: 425 434.
116. Strauch, M. A.,, G. B. Spiegelman,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 1615 1621.
117. Sun, D.,, and P. Setlow. 1991. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J. Bacteriol. 173: 3831 3845.
118. Sun, G.,, S. M. Birkey,, and F. M. Hulett. 1996. Three two-component signal-transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 942 948.
119. Sun, G.,, E. Sharkova,, R. Chesnut,, S. Birkey,, M. F. Duggan,, A. Sorokin,, P. Pujic,, S. D. Ehrlich,, and F. M. Hulett. 1996. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178: 1374 1385.
120. Switzer Blum, J.,, A. Burns Bindi,, J. Buzzelli,, J. F. Stolz,, and R. S. Oremland. 1998. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyan-ions of selenium and arsenite. Arch. Microbiol. 171: 19 30.
121. Taylor, B. L.,, and I. B. Zhulin. 1998. In search of higher energy: metabolism-dependent behaviour in bacteria . Mol. Microbiol. 28: 683 690.
122. Taylor, B. L.,, I. B. Zhulin,, and M. S. Johnson. 1999. Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol. 53: 103 128.
123. Throne-Hoist, M.,, and L. Hederstedt. 2000. The Bacillus subtilis ctaB paralogue, yjdK, can complement the heme A synthesis deficiency of a CtaB-deficient mutant. FEMS Microbiol. Lett. 183: 247 251.
124. Tobisch, S.,, D. Zuhlke,, J. Bernhardt,, J. Stulke,, and M. Hecker. 1999. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J. Bacteriol. 181: 6996 7004.
125. Tsuzuki, M.,, K. Ishige,, and T. Mizuno. 1995. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol. Microbiol. 18: 953 962.
126. Unden, G.,, and J. Schirawski. 1997. The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol. Microbiol. 25: 205 210.
127. Vollack, K.-U.,, E. Harting,, H. Korner,, and W. G. Zumft. 1999. Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol. Microbiol. 31: 1681 1694.
128. Weber, I.,, C. Fritz,, S. Ruttkowski,, A. Kreft,, and F.-C. Bange. 2000. Anaerobic nitrate reductase ( narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol. Microbiol. 35: 1017 1025.
129. Williams, S. B.,, and V. Stewart. 1999. Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Mol. Microbiol. 33: 1093 1102.
130. Willner, I.,, and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. Engl. 39: 1180 1218.
131. Wimpenny, J. W. T.,, and J. P. Coombs. 1983. Penetration of oxygen into bacterial colonies. J. Gen. Microbiol. 129: 1239 1242.
132. Winstedt, L.,, K. Yoshida,, Y. Fujita,, and C. von Wachenfeldt. 1998. Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J. Bacteriol. 180: 6571 6580.
133. Wong, L. S.,, M. S. Johnson,, I. B. Zhulin,, and B. L. Taylor. 1995. Role of methylation in aerotaxis in Bacillus subtilis. J. Bacteriol. 177: 3985 3991.
134. Wray, L. V., Jr.,, A. E. Ferson,, K. Rohrer,, and S. H. Fisher. 1996. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 8841 8845.
135. Wu, Q.,, G. D. Storrier,, F. Pariente,, Y. Wang,, J. P. Shapleigh,, and H. D. Abruna. 1997. A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an electropolymerized film of a pyrrole-derived bipyridinium. Anal. Chem. 69: 4856 4863.
136. Ye, R. W. Unpublished results.
137. Ye, R. W.,, W. Tao,, L. Bedzyk,, T. Young,, M. Chen,, and L. Li. 2000. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 182: 4458 4465.
138. Young, M.,, and S. T. Cole,. 1993. Clostridium, p. 35 63. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D. C.
139. Yu, J.,, L. Herderstedt,, and P. J. Piggot. 1995. The cytochrome be complex (menaquinonexytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J. Bacteriol. 177: 6751 6760.
140. Zhang, X.,, and F. M. Hulett. 2000. ResD signal transduction regulator of aerobic respiration in Bacillus subtilis; cta promoter regulation. Mol. Microbiol. 37: 1208 1219.
141. Zheng, G.,, R. Hehn,, and P. Zuber. 2000. Mutational analysis of sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol. 182: 3266 3273.
142. Zheng, G.,, L. Z. Yan,, J. C. Vederas,, and P. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346 7355.

Tables

Generic image for table
TABLE 1

Genes induced or repressed by oxygen limitation

The results of this table are mainly based on DNA micro- and macroarray experiments by Ye et al. ( ) and Homuth et al. ( ).

The expression of genes in aerobic and anaerobic cultures was compared either by fermentative growth or by growth in the presence of nitrate or nitrite. +, induced by anaerobiosis. —, repressed by anaerobiosis; 0, no change.

The result obtained by Ye et al. ( ).

The result obtained by Homuth et al. ( ).

PdhD protein level is higher under anaerobiosis ( ).

The result obtained by Ye ( ).

Expression of the gene is either slightly induced ( ) or repressed ( ) under anaerobic fermentative growth.

Genes whose products have no similarity to known proteins.

Citation: Nakano M, Zuber P. 2002. Anaerobiosis, p 393-404. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error