1887

Chapter 34 : Sporulation Genes and Intercompartmental Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sporulation Genes and Intercompartmental Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap34-2.gif

Abstract:

This chapter discusses RNA polymerase sigma factors such as σ, σ, σ, and σ, their regulation, their activities, and the interrelationship between the sigma factors and morphological changes characteristic of spore formation. The DNA-binding protein SpoOA is the master regulator for entry into sporulation. A member of the response regulator family of transcription factors, SpoOA orchestrates changes in gene transcription during the transition from growth to sporulation. Several well-characterized sporulation genes are known to be under the direct control of σ and σ. The σ factor is synthesized in the forespore at the engulfment stage of sporulation. High-level transcription of is delayed compared with that of other genes known to be transcribed by σ-containing RNA polymerase, and is unique among this group, in that it requires σ activity; transcription also requires the prior σ-directed transcription of . The gene is a composite coding sequence that is generated in the mother-cell chromosome from two partial coding sequences by a DNA rearrangement that excises the element. BofC is an inhibitor of SpoIVB, and apparently in the absence of BofC the little SpoIVB that is produced under σ control is active and hence able to activate pro-σ processing. The processing of pro-σ in the mother cell is dependent upon σ-directed transcription in the forespore.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Three principal stages of sporulation. At the predivisional stage, the developing cell has entered sporulation and is completing chromosome duplication but has not yet undergone asymmetric division. In the postdivisional stage, there has been an unequal division into a small cell, the forespore (or prespore), and a large cell, the mother cell. The forespore and mother cell each receive a chromosome during the postdivisional stage, and each remains in contact with the extracellular medium. Finally, in the postengulfment stage, the forespore is wholly engulfed as a free protoplast within the mother cell.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Principal targets of Spo0A∼P in the establishment of compartment-specific gene expression. The transcription factor Spo0A∼P is responsible for directing the transcription of genes involved in establishing compartment-specific transcription under the control of σF (the operon and the spoIIE gene) and σΕ (the operon) and of an unknown gene or genes involved in switching the site of Z-ring formation to sites near the cell poles.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cyclic pathway governing the activation of σF. The figure shows the relationship between σF and the regulatory proteins SpoIIAA (AA), SpoIIAB (AB), and SpoIIE (E). SpoIIAA exists in two states, phosphorylated (AA-P) and unphosphorylated (AA). Likewise, SpoIIAB exists in two forms, an ATP-containing form [(ATP)AB] and an ADP-containing form [(ADP)AB]. The activation of σF is depicted as a cycle in which SpoIIAA becomes phosphorylated by reaction with the ATP-containing complex of SpoIIAB and σF [(ΑΤΡ)ΑΒ·σF] and dephosphorylated by the action of the SpoIIE phosphatase. SpoIIAA is also capable of becoming trapped in an inactive complex [(ADP)AB-AA] with the ADP-containing form of SpoIIAB [(ADP)AB]. Evidence indicates the existence of an additional, unknown regulatory step (not shown in the figure, but see text for details) acting after the dephosphorylation of SpoIIAA-P that is required for the activation of σF.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The σF factor escapes from SpoIIAB in the forespore. The σF factor is held in an inactive complex with SpoIIAB (ΑΒ·σF) in the predivisional cell and in the mother-cell chamber following division. The σF factor escapes from SpoIIAB in the forespore in a process that is accompanied by the dephosphorylation of SpoIIAA-P (AA-P) and the binding of AB to the unphosphorylated form of SpoIIAA (AA) to form the SpoIIAB-SpoIIAA complex (AB-AA). For simplicity, the presence of ATP or ADP in the SpoIIAB complexes is not shown. Also, for simplicity, SpoIIAA is only shown in its phos-phorylated state in the predivisional cell, although, as explained in the text, some dephosphorylation of SpoIIAA-P probably commences prior to asymmetric division. Dephosphorylation of SpoIIAA-P is catalyzed by the phosphatase SpoIIE (E), which localizes in bipolar Ε-rings in the predivisional cell and in the septum following division. It is not definitively known whether SpoIIE is localized on one (the forespore) or both faces of the polar septum, and the figure is not intended to favor one or the other possibility.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Intercompartmental signal transduction pathways governing the proteolytic activation of pro-σE and pro-σκ. In the pro-σE pathway, σF turns on the synthesis of the signaling protein SpoIIR, which is secreted into the space between the two cellular compartments where it directly or indirectly activates SpoIIGA (GA), an integral membrane protein that is responsible for converting pro-σE to mature σΕ. In the pro-σK pathway, σG turns on the synthesis of the signaling protein SpoIVB, which is believed to be secreted into the space between the two cellular compartments where it reverses the inhibition of the pro-σK processing enzyme SpoIVFB (IVFB) by the inhibitory proteins SpoIVFA (IVFA) and BofA. SpoIVFB, SpoIVFA, and BofA are integral membrane proteins. A fundamental difference between the pathways is that SpoIIGA is inactive in its default state and needs to be activated by SpoIIR, whereas SpoIVFB is active in its default state and is held inactive by SpoIVFA and BofA.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Crisscross regulation. The activities of the four compartment-specific sigma factors are linked in a crisscross fashion by intercompartmental signaling. Events (arrow) under the control of the transcription factors Spo0A∼P and σΗ lead to the activation of σF in the forespore. Next, an intercellular signal transduction pathway (horizontal arrow) under the control of σΕ causes the appearance of σΕ in the mother cell by proteolytic processing of the proprotein precursor pro-σE (not shown). The σΕ factor, in turn, acting by an unknown intercellular pathway (diagonal arrow), triggers the appearance σG in the forespore compartment after engulfment. Finally, an intercellular signal transduction pathway (horizontal arrow) under the control of σG causes the appearance of σκ in the mother cell by proteolytic processing of the proprotein precursor pro-σK (not shown).

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap34
1. Abe, A.,, H. Koide,, T. Kohno,, and K. Watabe. 1995. A Bacillus subtilis spore coat polypeptide gene, cotS. Microbiology 141: 1433 1442.
2. Abhayawardhane, Y.,, and G. C. Stewart. 1995. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol. 177: 765 773.
3. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173: 3846 3854.
4. Adler, E.,, A. Donella-Deana,, F. Arigoni,, L. A. Pinna,, and P. Stragier. 1997. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases. Mol. Microbiol. 23: 57 62.
5. Akrigg, A.,, and J. Mandelstam. 1978. Extracellular manganese stimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis. Biochem.J. 172: 63 67.
6. Alper, S.,, L. Duncan,, and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195 205.
7. Amaya, E. I.,, and P. J. Piggot. Unpublished results.
8. Anagnostopoulos, C.,, P. J. Piggot,, and J. A. Hoch,. 1993. The genetic map of Bacillus subtilis , p. 425 461. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
9. Antoniewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172: 86 93.
10. Arigoni, F.,, A.-M. Guerout-Fleury,, I. Barak,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31: 1407 1415.
11. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270: 637 640.
12. Aronson, A. I.,, H.-Y. Song,, and N. Bourne. 1988. Gene structure and piecuisor processing of a novel Bacillus subtilis spore coat protein. Mol. Microbiol. 3: 437 444.
13. Atrih, A.,, P. Zollner,, G. Allmaier,, and S. J. Foster. 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J. Bacteriol. 178: 6173 6183.
14. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by σ F, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180: 2057 2062.
15. Bagyan, I.,, J. Hobot,, and S. Cutting. 1996. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178: 4500 4507.
16. Bagyan, I.,, B. Setlow,, and P. Setlow. 1998. New small, acid-soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and regulation and function of two of these genes. J. Bacteriol. 180: 6704 6712.
17. Bai, U.,, M. Lewandowski,, E. Dubnau,, and I. Smith. 1990. Temporal regulation of the Bacillus subtilis early sporulation gene spo0F. J. Bacteriol. 172: 5432 5439.
18. Bai, U.,, I. Mandic-Mulec,, and I. Smith. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction . Genes Dev. 7: 139 148.
19. Balassa, G.,, P. Milhaud,, E. Raulet,, M. T. Silva,, and J. C. F. Sousa. 1979. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J. Gen. Microbiol. 110: 365 379.
20. Barak, I.,, J. Behari,, G. Olmedo,, P. Guzmán,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19: 1047 1060.
21. Barak, I.,, and P. Youngman. 1996. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178: 4984 4989.
21a.. Bath, J.,, L. J. Wu,, J. Errington,, and J. C. Wang. 2000. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290: 995 997.
22. Bauer, T.,, S. Little,, A. G. Stover,, and A. Driks. 1999. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 181: 7043 7051.
23. Beall, B.,, A. Driks,, R. Losick,, and C. P. Moran, Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol. 175: 1705 1716.
24. Beall, B.,, M. Lowe,, and J. Lutkenhaus. 1988. Cloning and characterization of Bacillus subtilis homologs of Escherichia coii cell division genes ftsZ and ftsA. J. Bacteriol. 170: 4855 4864.
25. Beall, B.,, and J. Lutkenhaus. 1989. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and tempetature sensitivity. J. Bacteriol. 171: 6821 6834.
26. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5: 447 455.
27. Beall, B.,, and J. Lutkenhaus. 1992. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174: 2398 2403.
28. Beall, B.,, and C. P. Moran, Jr. 1994. Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J. Bacteriol. 176: 2003 2012.
29. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli gene, ftsK. J. Bacteriol. 177: 6211 6222.
30. Behravan, J.,, H. Chirakkal,, A. Masson,, and A. Moir. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J. Bacteriol. 182: 1987 1994.
31. Biaudet, V.,, F. Samson,, C. Anagnostopoulos,, S. D. Ehrlich,, and P. Bessieres. 1996. Computerized genetic map of Bacillus subtilis. Microbiology 142: 2669 2729.
32. Boland, F. M.,, A. Atrih,, H. Chirakkal,, S. J. Foster,, and A. Moir. 2000. Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146: 57 64.
33. Bourne, N.,, P. C. Fitz-James,, and A. 1. Aronson. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173: 6618 6625.
34. Bouvier, J.,, P. Stragier,, C. Bonamy,, and J. Szulmajster. 1984. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc. Natl. Acad. Sci. USA 81: 7102 7106.
35. Bramucci, M. Personal communication.
36. Britton, R. A.,, and A. D. Grossman. 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181: 5860 5864.
37. Britton, R. A.,, B. S. Powell,, S. Dasgupta,, Q. Sun,, W. Margolin,, J. R. Lupski,, and D. L. Court. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coit. Mol. Microbiol. 27: 739 750.
38. Bryan, E. M.,, B. W. Beall,, and C. P. Moran, Jr. 1996. A σ E-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J. Bacteriol. 178: 4778 4786.
39. Buchanan, C. E.,, and A. Gustafson. 1992. Mutagenesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 5430 5435.
40. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 1717 1725.
41. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
42. Cabrera-Hernandez, A.,, J.-L. Sanchez-Salas,, M. Paid-hungat,, and P. Setlow. 1999. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232: 1 10.
43. Cabrera-Hernandez, A.,, and P. Setlow. 2000. Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 248: 169 181.
44. Campbell, E. A.,, and S. A. Darst. 2000. The anti-σ factor SpoIIAB forms a 2:1 complex with σ F, contacting multiple conserved regions of the σ factor . J. Mol. Biol. 300: 17 28.
45. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179: 7420 7425.
46. Cervin, M. A.,, and G. B. Spiegelman. 1999. The Spo0A sof mutations reveal regions of the tegulatory domain that interact with a sensor kinase and RNA polymerase. Mol. Microbiol. 31: 597 607.
47. Cervin, M. A.,, G. B. Spiegelman,, B. Raether,, K. Ohlsen,, M. Perego,, and J. A. Hoch. 1998. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol. Microbiol. 29: 85 95.
48. Chapman, J. W.,, and P. J. Piggot. 1987. Analysis of the inhibition of sporulation of Bacillus subtilis caused by increasing the number of copies of the spo0F gene. J. Gen. Microbiol. 133: 2079 2088.
49. Charnock, S. J.,, and G. J. Davies. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38: 6380 6385.
50. Chary, V. K.,, and P. J. Piggot. Unpublished observations.
51. Chibazakura, T.,, F. Kawamura,, and H. Takahashi. 1991. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promotet switching at the initiation of sporulation. J. Bacteriol. 173: 2625 2632.
52. Connors, M. J.,, J. M. Mason,, and P. Setlow. 1986. Cloning and nucleotide sequence of genes fot three small acid-soluble proteins of Bacillus subtilis spores. J. Bacteriol. 166: 417 425.
53. Connors, M. J.,, and P. Setlow. 1985. Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J. Bacteriol. 161: 333 339.
54. Coote, J. G. 1972. Genetic analysis of oligosporogenous mutants. J. Gen. Microbiol. 71: 17 27.
55. Coppolecchia, R.,, H. DeGrazia,, and C. P. Moran, Jr. 1991. Deletion of s poIIAB blocks endospore formation in Bacillus subtilis at an early stage. J. Bacteriol. 173: 6678 6685.
56. Corfe, B. M.,, A. Moir,, D. Popham,, and P. Setlow. 1994. Analysis of the expression and regulation of the gerB spore germination operon of Bacillus subtilis 168. Microbiology 140: 3079 3083.
57. Craig, J. E.,, M. J. Ford,, D. C. Blaydon,, and A. L. Sonenshein. 1997. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-depen-dent gene exptession. J. Bacteriol. 179: 7351 7359.
58. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel,, and R. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σ K processing in Bacillus subtilis. Genes Dev. 5: 456 466.
59. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132: 3013 3024.
60. Cutting, S.,, V. Oke,, A. Driks,, R. Losick,, S. Lu,, and L. Kroos. 1990. A forespore checkpoint for mother cell gene expression during development in B. subriiis. Cell 62: 239 250.
61. Cutting, S.,, S. Panzer,, and R. Losick. 1989. Regulatory studies on the promoter for a gene governing synthesis and assembly of the spore coat in Bacillus subtilis. J. Mol. Biol. 207: 393 404.
62. Cutting, S.,, S. Roels,, and R. Losick. 1991. Sporulation operon spoIVF and the characterization of mutations that uncouple mother cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221: 1237 1256.
63. Cutting, S.,, L. Zheng,, and R. Losick. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J. Bacteriol. 173: 2915 2919.
64. Dancer, B.,, and J. Mandelstam. 1981. Complementation of sporulation mutations in fused protoplasts of Bacillus subtilis. J. Gen. Microbiol. 123: 17 26.
65. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle,, and J. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209 220.
66. Daniel, R. A.,, and J. Errington. 1993. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J. Mol. Biol. 232: 468 483.
67. Dartois, V.,, T. Djavakhishvili,, and J. A. Hoch. 1996. Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol. 178: 1178 1186.
68. Dartois, V.,, T. Djavakhishvili,, and J. A. Hoch. 1997. KapB is a lipoprotein required for KinB signal transduction and activation of the phosphorelay to sporulation in Bacillus subtilis. Mol. Microbiol. 26: 1097 1108.
69.>[Reference deleted.].
70. Decatur, A.,, and R. Losick. 1996. Identification of additional genes under the control of the transcription factor σ F of Bacillus subtilis. J. Bacteriol. 178: 5039 5041.
71. Decatur, A.,, M. T. McMurry,, B. N. Kunkel,, and R. Losick. 1997. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame. J. Bacteriol. 179: 1324 1328.
72. Deits, T. Personal communication.
73. De La Vega, F. M.,, J. M. Galindo,, I. G. Old,, and G. Guarneros. 1996. Microbial genes homologous to the peptidyl-tRN A hydrolase-encoding gene of Escherichia coli. Gene 169: 97 100.
73a.. De Lencastre, H.,, and P. J. Piggot. 1979. Identification of different sites of expression for spo loci by transformation of Bacillus subtilis. J. Gen. Microbiol. 114: 377 389.
74. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, M. A. Najafi,, J. Errington,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor σ F of Bacillus subtilis. Genes Dev. 8: 2653 2663.
75. Donovan, W.,, L. Zheng,, K. Sandman,, and R. Losick. 1987. Genes encoding spore coat polypeptides from Bacillus subtilis. J. Mol. Biol. 196: 1 10.
76. Driks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor σ E in Bacilus subtilis. Proc. Natl. Acad. Sci. USA 88: 9934 9938.
77. Driks, A.,, S. Roels,, B. Beall,, C. P. Moran, Jr.,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of 8:234-244.
78. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270: 641 644.
79. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type specific transcription factor σ F from its anti-sigma factor SpoIIAB. J. Mol. Biol. 260: 147 164.
80. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ factor that binds to and inhibits transcription by regulatory protein σ F from Bacillus subtilis. Proc. Natl. Acad.. Sci. USA 90: 2325 2329.
81. Dunn, G.,, and J. Mandelstam. 1977. Cell polarity in Bacillus subtilis: effect of growth conditions on spore positions in sister cells. J. Gen. Microbiol. 103: 201 205.
82. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905 915.
83. Errington, J. Personal communication.
84. Errington, J. 1993. Sporulation in Bacillus subtilis: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57: 1 33.
85. Errington, J.,, L. Appleby,, R. A. Daniel,, H. Goodfellow,, S. R. Partridge,, and M. Yudkin. 1992. Structure and expression of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for σ G activity at an intermediate stage of sporulation. J. Gen. Microbiol. 138: 2609 2618.
86. Errington, J.,, P. Fort,, and J. Mandelstam. 1985. Duplicated sporulation genes in bacteria: implication fot simple developmental systems. FEBS Lett. 188: 184 188.
87. Errington, J.,, and J. Mandelstam. 1984. Genetic and phenotypic characterization of a cluster of mutations in the spoVA locus of Bacillus subtilis. J. Gen. Microbiol. 130: 2115 2121.
88. Errington, J.,, and J. Mandelstam. 1986. Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of the sporulation operon spoVA in spo mutants of Bacillus subtilis. J. Gen. Microbiol. 132: 2977 2985.
89. Errington, J.,, S. Rong,, M. S. Rosenkrantz,, and A. L. Sonenshein. 1988. Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spoIIIC. J. Bacteriol. 170: 1162 1167.
90. Errington, J.,, L. Wooten,, J. C. Dunkerley,, and D. Foulger. 1989. Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene. Mol. Microbiol. 3: 1053 1060.
91. Fajardo-Cavazos, P.,, and W. L. Nicholson. 2000. The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. J. Bacteriol. 182: 555 560.
92. Fajardo-Cavazos, P.,, C. Salazar,, and W. L. Nicholson. 1993. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spi) gene, which is involved in tepair of UV radiation-induced DNA damage during spore germination. J. Bacteriol. 175: 1735 1744.
93. Fan, N.,, S. Cutting,, and R. Losick. 1992. Characterization of the Bacillus subtilis sporulation gene spoVK. J. Bacteriol. 174: 1053 1054.
94. Farquhar, R.,, and M. D. Yudkin. 1988. Phenotypic and genetic characterization of mutations in the spoiVC locus of Bacillus subtilis. J. Gen. Microbiol. 134: 9 17.
95. Fawcett, P.,, P. Eichenberger,, R. Losick,, and P. Youngman. 2000. The transcriptional profile of early to middle sporulation in Bocillus subtilis. Proc. Nad. Acad. Sci. USA 97: 8063 8068.
96. Fawcett, P.,, A. Melnikov,, and P. Youngman. 1998. The Bacillus SpoIIGA protein is targeted to sites of spore septum formation in a SpoIIE-independent manner. Mol. Microbiol. 28: 931 943.
97. Feavers, I. M.,, J. Foulkes,, B. Setlow,, D. Sun,, W. Nicholson,, P. Setlow,, and A. Moir. 1990. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol. Microbiol. 4: 275 282.
98. Feavers, I. M.,, J. S. Miles,, and A. Moir. 1985. The nucleotide sequence of a spore germination gene ( gerA) of Bacillus subtilis 168. Gene 38: 95 102.
99. Feng, P.,, and A. I. Aronson. 1986. Characterization of a Bacillus subtilis germination mutant with pleiotropic alterations in spore coat structure. Curr. Microbiol. 13: 221 226.
100. Ferrari, F. A.,, K. Trach,, and J. A. Hoch. 1985. Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. J. Bacteriol. 161: 556 562.
101. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spo0A locus and its deduced product. Proc. Nati. Acad. Sci. USA 82: 2647 2651.
102. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33: 1015 1026.
103. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10: 794 803.
104. Fort, P.,, and J. Errington. 1985. Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. J. Gen. Microbiol. 131: 1091 1105.
105. Fort, P.,, and P. J. Piggot. 1984. Nucleotide sequence of the sporulation locus spoIIA in Bacillus subtilis. J. Gen. Microbiol. 130: 2147 2153.
106. Foulger, D.,, and J. Errington. 1989. The role of the sporulation gene spoIIIE in the regulation of prespore-spe-cific gene expression in Bacillus subtilis. Mol. Microbiol. 3: 1247 1255.
107. Foulger, D.,, and J. Errington. 1991. Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Mol. Microbiol. 5: 1363 1373.
108. Francesconi, S. C.,, T. J. MacAlister,, B. Setlow, and P. Setlow. 1988. Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. Bacteriol. 170: 5963 5967.
109. Frandsen, N.,, I. Barak,, C. Karmazyn-Campelli,, and P. Stragier. 1999. Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis. Genes Dev. 13: 394 399.
110. Frandsen, N.,, and P. Stragier. 1995. Identification and characterization of the Bacillus spoIIP locus. J. Bacteriol. 177: 716 722.
111. Gaur, N. K.,, K. Cabane,, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170: 1046 1053.
112. Gaur, N. K.,, E. Dubnau,, and I. Smith. 1986. Characterization of a cloned Bacillus subtilis gene which inhibits sporulation in multiple copies. J. Bacteriol. 170: 860 869.
113. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes fot a DNA-binding protein. J. Bacteriol. 173: 678 686.
114. Gholamhoseinian, A.,, and P. J. Piggot. 1989. Timing of spoII gene expression relative to septum formation duting sporulation of Bacilus subtilis. J. Bacteriol. 171: 5747 5749.
115. Gholamhoseinian, A.,, Z. Shen,, J.-J. Wu,, and P. Piggot. 1992. Regulation of transcription of the cell division gene ftsA during sporulation of Bacillus subtilis. J. Bacteriol. 174: 4647 4656.
116. Glaser, P.,, F. Kunst,, M. Arnaud,, M.-P. Coudart,, W. Gonzales,, M.-F. Hullo,, M. Ionescu,, B. Lubochinsky,, L. Marcelino,, I. Moszer,, E. Presecan,, M. Santana,, E. Schneider,, J. Schweizer,, A. Vertes,, G. Rapoport,, and A. Danchin. 1993. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10: 371 384.
117. Glaser, P.,, M. E. Sharpe,, B. Raether,, M. Perego,, K. Ohlsen,, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11: 1160 1168.
118. Gomez, M.,, and S. M. Cutting. 1996. Expression of the Bacillus subtilis spoIVB gene is under dual σ FG control. Microbiohgy 142: 3453 3457.
119. Gomez, M.,, and S. M. Cutting. 1997. bojC encodes a putative forespore regulator of the Bacillus subtilis σ K checkpoint. Microbiology 143: 157 170.
120. Gomez, M.,, S. Cutting,, and P. Stragier. 1995. Transcription of spoIVB is the only role of σ G that is essential for pro-σ K processing during spore formation in Bacillus subtilis. J. Bacteriol. 177: 4825 4827.
121. Gonzy-Treboul, G.,, C. Karmazyn-Campelli,, and P. Stragier. 1992. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. J. Mol. Biol. 224: 967 979.
122. Green, B. D.,, G. Olmedo,, and P. Youngman. 1991. A genetic analysis of Spo0A structure and function. Res. Microbiol. 142: 825 830.
123. Green, D. H.,, and S. M. Cutting. 2000. Membrane topology of the Bacillus subtilis pro-σ K processing complex. J. Bacteriol. 182: 278 285.
124. Grossman, A.> Personal communication.
125. Guespin-Michel, J. F. 1971. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis. Genetic studies of polymyxin-resistant partial revertants. Mol. Gen. Genet. 112: 243 254.
126. Guzmán, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol. 170: 1598 1609.
127. Hackett, R. H.,, and P. Setlow. 1987. Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein γ of Bacillus subtilis. J. Bacteriol. 169: 1985 1992.
128. Halberg, R.,, and L. Kroos. 1992. Fate of the SpoIIID switch protein during Bacillus subtilis spotulation depends on the mother cell sigma factor σ K. J. Mol. Biol. 228: 840 849.
129. Halberg, R.,, and L. Kroos. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243: 425 436.
130. Han, W.-D.,, S. Kawamoto,, Y. Hosoya,, M. Fujita,, Y. Sadaie,, K. Suzuki,, Y. Ohashi,, F. Kawamura,, and K. Ochi. 1998. A novel sporulation-control gene (spo0M) of Bacillus subtilis with σ H-regulated promoter. Gene 217: 31 40.
130a.. Haraldsen, J.,, and A. L. Sonenshein. Personal communication.
131. Harry, E.,, K. Pogliano,, and R. Losick. 1995. Cell-specific gene expression in B. subtilis. J. Bacteriol. 177: 3386 3393.
132. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σ H in Bacillus subtilis. Mol. Microbiol. 5: 477 488.
133. Henriques, A. O. Personal communication.
134. Henriques, A. O.,, B. W. Beall,, and C. P. Moran, Jr. 1997. CotM of Bacillus subtilis, a member of the α-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179: 1887 1897.
135. Henriques, A. O.,, B. W. Beall,, K. Roland,, and C. P. Moran, Jr. 1995. Characterization of cotJ, a σ E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J. Bacteriol. 177: 3394 3406.
136. Henriques, A. O.,, E. M. Bryan,, B. W. Beall,, and C. P. Moran, Jr. 1997. csel5, cse60, and csk22 are new members of the mother-cell-specific sporulation regulons of Bacillus subtilis. J. Bacteriol. 179: 389 398.
137. Henriques, A. O.,, P. Glaser,, P. J. Piggot,, and C. P. Moran, Jr. 1998. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28: 235 247.
138. Henriques, A. O.,, H. de Lencastre,, and P. J. Piggot. 1992. A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. Biochimie 74: 735 748.
139. Henriques, A. O.,, L. R. Melson,, and C. P. Moran, Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180: 2285 2291.
140. Hitchins, A. D.,, and R. A. Slepecky. 1969. Bacterial sporulation as a modified procaryotic cell division. Nature 223: 804 807.
141. Hoch, J. A., 1993. spo0 genes, the phosphorelay, and the initiation of sporulation, p. 747 755. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Posirwe Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
142. Hoch, J. A.,, K. Trach,, F. Kawamura,, and H. Saito. 1985. Identification of the transcriptional suppressor sof1 as an alteration in the spo0A protein . J. Bacteriol. 161: 552 555.
143. Hofmeister, A. Personal communication.
144. Hofmeister, A. 1998. Activation of the proprotein transcription factor pro-σ E is associated with its progression through three patterns of subcellular localization during sporulation in Bacillus subtilis. J. Bacteriol. 180: 2426 2433.
145. Hofmeister, A. E. M.,, A. Londono-Vallejo,, E. Harry,, P. Stragier,, and R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental ttanscription factor in B. subtilis. Cell 83: 219 226.
146. Hranueli, D.,, P. J. Piggot,, and J. Mandelstam. 1974. Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. J. Bacteriol. 119: 684 690.
147. Hudspeth, D. S. S.,, and P. S. Vary. 1992. spoVG sequence of Bacillus megaterium and Bacillus subtilis. Biochim. Biophys. Acta 1130: 229 231.
148. Hullo, M.-F.,, I. Martin-Verstraete,, I. Moszer,, and A. Danchin. 1999. CotA of Bacillus subtilis is a copper-dependent laccase, abstr. P55. Abstr. 10th International Conference on Bacilli, Baveno, Italy.
149. Ichikawa, H.,, R. Halberg,, and L. Kroos. 1999. Negative regulation by the Bacillus subtilis GerE protein. J. Biol. Chem. 274: 8322 8327.
150. Ichikawa, H.,, and L. Kroos. 2000. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J. Biol. Chem. 275: 13849 13855.
151. Igo, M.,, M. Lampe,, and R. Losick,. 1988. Structure and regulation of a Bacillus subtilis gene that is transcribed by the E-σ B form of RNA polymerase holoenzyme, p. 151 156. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego, Calif..
152. Ikeda, M.,, T. Sato,, M. Wachi,, H. K. Jung,, F. Ishino,, Y. Kobayashi,, and M. Matsuhashi. 1989. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171: 6375 6378.
153. Illing, N.,, and J. Errington. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σ E and σ F in prespore engulfment. J. Bacteriol. 173: 3159 3169.
154. Illing, N.,, and J. Errington. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σ E form of RNA polymerase. Mol. Microbiol. 5: 1927 1940.
155. Inaoka, T.,, Y. Matsumura, and T. Tsuchido. 1998. Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J. Bacteriol. 180: 3697 3703.
156. Ireton, K.,, and A. D. Grossman. 1992. Interactions among mutations that cause altered timing of gene expression during sporulation in Bacillus subtilis. J. Bacteriol. 174: 3185 3195.
157. Ireton, K.,, N. W. Gunther IV,, and A. D. Grossman. 1994. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176: 5320 5329.
158. Ireton, K.,, D. Z. Rudner,, K. J. Siranosian,, and A. D. Grossman. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcriptional factor. Genes Dev. 7: 283 294.
159. Ishikawa, S.,, K. Yamane,, and J. Sekiguchi. 1998. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlj) which affects germination of Bacillus subtilis spores. J. Bacteriol. 180: 1375 1380.
160. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na + and in pH homeostasis. J. Bacteriol. 181: 2394 2402.
161. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171: 4121 4129.
162. James, W.,, and J. Mandelstam. 1985. spoVIC, a new sporulation locus in Bacillus subtilis affecting spore coats, germination and the rate of sporulation. J. Gen. Microbiol. 131: 2409 2419.
163. Jenkinson, H. F. 1981. Germination and resistance defects in spores of a Bacillus subtilis mutant lacking a coat polypeptide. J. Gen. Microbiol. 127: 81 91.
164. Jenkinson, H. F. 1983. Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J. Gen. Microbiol. 129: 1945 1958.
164a.. Jiang, M.,, W. Shao,, M. Perego,, and J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38: 535 542.
165. Jiang, M.,, R. Grau,, and M. Perego. 2000. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J. Bacteriol. 182: 303 310.
166. Jiang, M.,, Y.-L. Tzeng,, V. A. Feher,, M. Perego,, and J. A. Hoch. 1999. Alanine mutants of the Spo0F response regulator modifying specificity for sensor kinases in sporulation initiation. Mol. Microbiol. 33: 389 395.
167. Jin, S.,, P. A. Levin,, K. Matsuno,, A. D. Grossman,, and A. L. Sonenshein. 1997. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J. Bacteriol. 179: 4725 4732.
168. Jonas, R. M.,, E. A. Weaver,, T. J. Kenney,, C. P. Moran, Jr.,, and W. G. Haldenwang. 1988. The Bacillus subtilis spoIIG operon encodes both σ E and a gene necessary for σ E activation. J. Bacteriol. 170: 507 511.
169. Joris, B.,, G. Dive,, A. Henriques,, P. J. Piggot,, and J. M. Ghuysen. 1990. The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol. Microbiol. 4: 513 517.
170. Ju, J.,, and W. G. Haldenwang. 1999. The “pro” sequence of the sporulation-specific σ transcription factor σ E directs it to the mother cell side of the sporulation septum. J. Bacteriol. 181: 6171 6175.
171. Ju, J.,, T. Luo,, and W. G. Haldenwang. 1997. Bacillus subtilis pro-σ E fusion protein localizes to the forespore septum and fails to be processed when synthesized in the forespore. J. Bacteriol. 179: 4888 4893.
172. Ju, J.,, T. Luo,, and W. G. Haldenwang. 1998. Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J. Bacteriol. 180: 1673 1681.
173. Ju, J.,, T. Mitchell,, H. Peters III,, and W. G. Haldenwang. 1999. Sigma factor displacement from RNA polymerase during Bacillus subtilis sporulation. J. Bacteriol. 181: 4969 4977.
174. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 domain of sigma factors. Mol. Microbiol. 5: 987 997.
175. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266: 13411 13417.
176. Karmazyn-Campelli, C.,, C. Bonamy,, B. Savelli,, and P. Stragier. 1989. Tandem genes encoding σ-factors for consecutive steps of development in Bacillus subtilis. Genes Dev. 3: 150 157.
177. Karmazyn-Campelli, C.,, L. Fluss,, T. Leighton,, and P. Stragier. 1992. The spoIIN279(ts) mutation affects the FtsA protein of Bacillus subtilis. Biochimie 74: 689 694.
178. Karow, M. L.,, P. Glaser,, and P. J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of σ E to the transcriptional activity of σ F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92: 2012 2016.
179. Karow, M. L.,, and P. J. Piggot. Unpublished observations.
180. Karow, M. L.,, and P. J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore fotmation. Gene 163: 69 74.
181. Karow, M. L.,, E. J. Rogers,, P. S. Lovett,, and P. J. Piggot. 1998. Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J. Bacteriol. 180: 4166 4170.
182. Kawamura, F.,, L. Wang,, and R. H. Doi. 1985. Catabolite-resistant sporulation (crsA) mutations in the Bacillus subtilis RNA polymerase σ 43 gene (rpoD) can suppress and be suppressed by mutations in spo0 genes . Proc. Natl. Acad. Sci. USA 82: 8124 8128.
183. Kellner, E. M.,, A. Decatur,, and C. P. Moran, Jr. 1996. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21: 913 924.
184. Kemp, E. H.,, R. L. Sammons,, A. Moir,, D. Sun,, and P. Setlow. 1991. Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis. J. Bacteriol. 173: 4646 4652.
185. Kenney, T. J.,, and C. P. Moran, Jr. 1987. Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J. Bacteriol. 169: 3329 3339.
186. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. Moran, Jr. 1989. Genetic evidence that RNA polymerase associated with σ A uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109 9113.
187. Khvorova, A.,, V. K. Chary,, D. W. Hilbert,, and P. J. Piggot. 2000. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J. Bacteriol. 182: 4425 4429.
188. Khvorova, A.,, L. Zhang,, M. L. Higgins,, and P. J. Piggot. 1998. The spoIIE locus is involved in the Spo0A-de-pendent switch in the location of FtsZ rings in Bacillus subtilis. J. Bacteriol. 180: 1256 1260.
189. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of σ F during sporulation in Bacillus subtilis. Genes Dev. 13: 1156 1167.
190. Kirchman, P. A.,, H. DeGrazia,, E. M. Kellner,, and C. P. Moran, Jr. 1993. Forespore-specific disappearance of the sigma-factor antagonist SpoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol. Microbiol. 8: 663 671.
191. Kobayashi, K.,, K. Shoji,, T. Shimizu,, K. Nakano,, T. Sato,, and Y. Kobayashi. 1994. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J. Bacteriol. 177: 176 182.
192. Kobayashi, Y. Personal communication.
193. Kodama, T.,, H. Takamatsu,, K. Asai,, K. Kobyashi,, N. Ogasawara,, and K. Watabe. 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J. Bacteriol. 181: 4584 4591.
194. Koide, S.,, M. Perego,, and J. A. Hoch. 1999. ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J. Bacteriol. 181: 4114 4117.
195. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176: 7155 7160.
196. Kong, L.,, and D. A. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein intetaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 5793 5797.
197. Kosono, S.,, Y. Ohashi,, F. Kawamura,, M. Kitada,, and T. Kudo. 2000. Function of a principal Na +/H + antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182: 898 904.
198. Kovacs, H.,, D. Comfort,, M. Lord,, I. D. Campbell,, and M. D. Yudkin. 1998. Solution structute of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor σ F of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 95: 5067 5071.
199. Kroos, L.,, B. Kunkel,, and R. Losick. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243: 526 529.
200. Kriiger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176: 3360 3367.
201. Kudoh, J.,, T. Ikeuchi,, and K. Kurahashi. 1985. Nucleotide sequences of the sporulation gene spo0A and its mutant genes of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82: 2665 2668.
202. Kunkel, B.,, L. Kroos,, H. Poth,, P. Youngman,, and R. Losick. 1989. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. GenesDev. 3: 1735 1744.
203. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor σ K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene . Genes Dev. 4: 525 535.
204. Kunkel, B.,, K. Sandman,, S. Panzer,, P. Youngman,, and R. Losick. 1988. The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression. J. Bacteriol. 170: 3513 3522.
205. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
206. Kuroda, A.,, Y. Asami,, and J. Sekiguchi. 1993. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J. Bacteriol. 175: 6260 6268.
207. Kuroda, A.,, M. H. Rashid,, and J. Sekiguchi. 1992. Molecular cloning and sequencing of the upstteam region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J. Gen. Microbiol. 138: 1067 1076.
208. LaBell, T. L.,, J. E. Trempy,, and W. G. Haldenwang. 1987. Sporulation-specific σ factor σ 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc. Natl. Acad. Sci. USA 84: 1784 1788.
209. Lampel, K. A.,, B. Uratani,, G. R. Chaudhry,, R. F. Ramaley,, and S. Rudikoff. 1986. Characterization of the de-velopmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166: 238 243.
210. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis lyt-RABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949 1961.
211. Lazazzera, B. A.,, I. G. Kurster,, R. S. McQuade,, and A. D. Grossman. 1999. An autoregulatory circuit affecting peptide signalling in Bacillus subtilis. J. Bacteriol. 181: 5193 5200.
212. Leatherbarrow, A. J. H.,, M. A. Yazid,, J. P. Curson,, and A. Moir. 1998. The gerC locus of Bacillus subtilis, required for menaquinone biosynthesis, is concerned only indirectly with spore germination. Microbiology 144: 2125 2130.
213. Lecamwasam, M.,, and A. L. Sonenshein. Personal communication.
214. LeDeaux, J. R.,, and A. D. Grossman. 1994. Isolation and chatacterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol. 177: 166 175.
215. LeDeaux, J. R.,, N. Yu,, and A. D. Grossman. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177: 861 863.
217. Levin, P. A.,, N. Fan,, E. Ricca,, A. Driks,, R. Losick,, and S. Cutting. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9: 761 771.
218. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176: 1451 1459.
219. Levin, P. A.,, and R. Losick. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10: 478 488.
220. Levin, P. A.,, R. Losick,, P. Stragier,, and F. Arigoni. 1997. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Microbiol. 25: 839 846.
221. Lewandoski, M.,, E. Dubnau,, and I. Smith. 1986. Transcriptional regulation of the spo0F gene of Bacillus subtilis. J. Bacteriol. 168: 870 877.
222. Lewis, P. J.,, and J. Errington. 1996. Use of gteen fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142: 733 740.
223. Lewis, R. J.,, J. A. Brannigan,, W. A. Offen,, I. Smith,, and A. J. Wilkinson. 1998. An evolutionary link between spotulation and prophage induction in the structute of a repressor: anti-repressor complex. J. Mol. Biol. 283: 907 912.
224. Lin, D. C.-H.,, P. A. Levin,, and A. D. Grossman. 1997. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 94: 4721 4726.
225. Liu, J.,, W. M. Cosby,, and P. Zuber. 1999. Role of Lon and GlpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol. Microbiol. 33: 415 428.
226. Londofio-Vallejo, J.-A.,, C. Frehel,, and P. Stragier. 1997. spoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24: 29 39.
227. Londofio-Vallejo, J.-A.,, and P. Stragier. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9: 503 508.
228. Lopez-Diaz, I.,, S. Clarke,, and J. Mandelstam. 1986. spoIID operon of Bacillus subtilis: cloning and sequence. J. Gen. Microbiol. 132: 341 354.
229. Loshon, C. A.,, P. Kraus,, B. Setlow,, and P. Setlow. 1997. Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J. Bacteriol. 179: 272 275.
230. Losick, R.,, and A. Driks. Unpublished observations.
231. Losick, R.,, and P. Stragier. 1992. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355: 601 604.
232. Losick, R.,, P. Youngman,, and P. J. Piggot. 1986. Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 20: 625 669.
233. Louie, P.,, A. Lee,, K. Stansmore,, R. Grant,, C. Ginther,, and T. Leighton. 1992. Roles of rpoD, spoIIF, spoII], spoIIN, and sin in regulation of Bacillus subtilis stage II sporulation-specific transcription. J. Bacteriol. 174: 3570 3576.
234. Lu, S.,, R. Halberg,, and L. Kroos. 1990. Processing of the mother-cell σ factor, σ K, may depend on events occurring in the forespore during Bacillus subtilis development. Proc. Natl. Acad. Sci. USA 87: 9722 9726.
235. Lucet, I.,, R. Borris,, and M. D. Yudkin. 1999. Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis. J. Bacteriol. 181: 3242 3245.
236. Lucet, I.,, A. Feucht,, M. D. Yudkin,, and J. Errington. 2000. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19: 1467 1475.
237. Magnin T.,, M. Lord,, and M. D. Yudkin. 1997. Contribution of partner switching and SpoIIAA cycling to regulation of σ F activity in sporulating Bacillus subtilis. J. Bacteriol. 179: 3922 3927.
238. Mandic-Mulec, I.,, L. Doukhan, and 1. Smith. 1995. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177: 4619 4627.
239. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage specific repressor of cellular differentiation. J. Bacteriol. 174: 3561 3569.
240. Margolis, P.,, A. Driks,, and R. Losick. 1991. Establishment of cell type by compattmentalized activation of a transcription factor. Science 254: 562 565.
241. Margolis, P.,, A. Driks,, and R. Losick. 1993. Sporulation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175: 528 540.
242. Marston, A. L.,, and J. Errington. 1999. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4: 673 682.
243. Marston, A. L., H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe,, and J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12: 3419 3430.
244. Mason, J. M.,, P. Fajardo-Cavazos,, and P. Setlow. 1988. Levels of mRNAs which code for small, acid-soluble spore proteins and their locZ gene fusions in sporulating cells of Bacillus subtilis. Nucleic Acids Res. 16: 6567 6582.
245. Mason, J. M.,, R. H. Hackett,, and P. Setlow. 1988. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. J. Bacteriol. 170: 239 244.
246. Mason, J. M.,, and P. Setlow. 1986. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J. Bacteriol. 167: 174 178.
247. Mason, J. M.,, and P. Setlow. 1987. Different small, acid-soluble proteins of the α/β type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores. J. Bacteriol. 169: 3633 3637.
248. Masuda, E. S.,, H. Anaguchi,, T. Sato,, M. Takeuchi,, and Y. Kobayashi. 1990. Nucleotide sequence of the sporulation gene SpoIIGA from Bacillus subtilis. Nucleic Acids Res. 18: 657.
249. Masuda, E. S.,, H. Anaguchi,, K. Yamada,, and Y. Kobayashi. 1988. Two developmental genes encoding sigma factor homologs are arranged in tandem in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85: 7637 7641.
250. Matsuno, K.,, and A. L. Sonenshein. 1999. Role of SpoVG in asymmetric septation in Bacillus subtilis. J. Bacteriol. 181: 3392 3401.
251. Mekjian, K. R.,, E. M. Bryan,, B. W. Beall,, and C. P. Moran, Jr. 1999. Regulation of hexuronate utilization in Bactiius subtilis. J. Bacteriol. 181: 426 433.
252. Min, K.-T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. σ F, the first compartment-specific sgr; factor of Bacillus subtilis is regulated by an anti-σ factor that is also a protein kinase. Cell 74: 735 742.
253. Minkovsky, N.,, V. K. Chary,, and P. J. Piggot. Unpublished results.
254. Mizuno, M.,, S. Masuda,, K.-I. Takemaru,, S. Hosono,, T. Sato,, M. Takeuchi,, and Y. Kobayashi. 1996. Systematic sequencing of the 283 kb 210°-232° region of the Bacillus subtilis genome containing the skin element and many sporulation genes. Microbiology 142: 3103 3111.
255. Moir, A.,, E. Laffert,, and D. A. Smith. 1979. Genetic analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J. Gen. Microbiol. 111: 165 180.
256. Moir, A.,, and D. Smith. 1990. The genetics of bacterial spore germination . Annu. Rev. Microbiol. 44: 531 553.
257. Moldover, B.,, P. J. Piggot,, and M. D. Yudkin. 1991. Identification of the promoter and the transcriptional start site of the spoVA operon of Bacillus subtilis and Bacillus licheniformis. J. Gen. Microbiol. 137: 527 531.
258. Moran, C. Personal communication.
259. Moriyama, R.,, H. Fukuoka,, S. Miyata,, S. Kudoh,, A. Hattori,, S. Kozuka,, Y. Yasuda,, K. Tochikubo,, and S. Makino. 1999. Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J. Bacteriol. 181: 2373 2378.
260. Moriyama, R.,, A. Hattori,, S. Miyata,, S. Kudoh,, and S. Makino. 1996. A gene ( sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J. Bacteriol. 178: 6059 6063.