1887

Chapter 4 : Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap04-2.gif

Abstract:

Gross peptidoglycan structure and mechanisms of synthesis are conserved across all bacteria with differences arising in the amino acid composition of peptide side chains, the presence and composition of peptide cross bridges involved in cross-linking, lengths of glycan strands, and levels of acetylation and deacetylation of the glycan strands. Synthesis of precursor molecules utilized for polymerization of peptidoglycan strands takes place within the cell cytoplasm. Analysis of peptidoglycan synthesis in developing spores indicates that the germ cell wall is the first spore peptidoglycan synthesized and that its structure is stable through the remainder of spore development. The majority of the spore peptidoglycan, the cortex, appears to take place from the mother cell side of the inter-membrane space, being laid down in successive layers around the germ cell wall. Observations that cell wall autolysis is enhanced by ionophores or uncouplers have led to proposals that autolysins may be controlled by the proton motive force. Surface layers (S-layers) have been demonstrated to affect attachment of extracellular amylase to , phage attachment to , protection from predatory bacteria in , and virulence of . Assignment of capsule synthesis function to Cps14E genes must be made with caution, as some of these gene products also have significant similarity to proteins involved in anionic polymer synthesis or implicated in spore surface protein glycosylation. Recent studies have begun to elucidate important details of the chemical complexity of the cell wall and how it is synthesized, modified, and hydrolyzed.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4

Key Concept Ranking

Cell Wall Components
0.66355807
Outer Membrane Proteins
0.48928767
Cell Wall Biosynthesis
0.44834104
Amino Acid Addition
0.43108785
0.66355807
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gram-positive cell envelope architecture. Envelope layers of , including cytoplasmic membrane (m), peptidoglycan (p), S-layer (s), and capsule (c). Image reprinted from the ( ) with permission of the publisher.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Peptidoglycan subunit structures, (a) Disaccharide pentapeptide subunit of the peptidoglycan of Disaccharide subunit containing a muramic δ-lactam residue of spore cortex. GlcNAc, -acetylglucosamine; MurNAc, -acetylmuramic acid.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic structure of mature Β. peptidoglycan. Structures from vegetative cell walls (a) and spore cortex (b). An example of each type of bond attacked by glucosaminidase ( ), muramidase/lytic transglycosylase ( ), amidase ( ), and endopeptidase ( ) is indicated by arrows on each structure. Terminal groups and other features of the mature structure that are (or appear to be) due to autolysin action are shown in boldface type. L-Ala, L-alanine; D-Glu, D-glutamic acid; Apm, meso-diaminopimelic acid; δ, muramic δ-lactam. Reproduced with permission from Smith et al. ( ).

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Peptidoglycan precursor synthesis. Genes inferred to be involved in each process are indicated in boldface type. If more than one gene is listed, they may have redundant functions or it is unknown which gene is required. NAG, -acetylglucosamine; NAM, N-acetylmuramic acid; Lipid-P, undecaprenol phosphate; α-KG, α-ketoglutarate.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Life cycle of Processes that require autolysin activity are labeled in boldface type, and known autolysins involved are indicated in parentheses. (A) Vegetative growth. Broken arrows link steps not absolutely dependent on the previous step. (B) Sporulation. Events during sporulation are linked by solid arrows because they occur in a precise, genetically controlled order. Roman numerals refer to the stages of sporulation ( ). Reproduced with permission from Smith et al. ( ).

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Structure of representative anionic polymers of (a) The major glycerol teichoic acid of strain 168 (I) ( ). The strain W23 repeating unit is also shown (II). (b) Structure of the repeating unit of the minor teichoic acid of strain 168 ( ). (c) Teichuronic acid of strain W23 ( ). (d) Lipoteichoic acid ( ).

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Metabolic pathway and putative role of components in the synthesis of glycerol teichoic acid.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Metabolic pathway and putative role of components in the synthesis of teichuronic acid ( ).

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap4
1. Archibald, A. R.,, J. J. Armstrong,, J. Baddiley,, and J. B. Hay. 1961. Teichoic acids and the structure of bacterial cell walls. Nature 191: 570 572.
2. Archibald, A. R.,, I. C. Hancock,, and C. R. Harwood,. 1993. Cell wall structure, synthesis, and turnover, p. 381 410. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, D.C.
3. Ashiuchi, M.,, K. Soda,, and H. Misono. 1999. Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. Biosci. Biotechnol. Biochem. 63: 792 798.
4. Ashiuchi, M.,, K. Soda,, and H. Misono. 1999. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of polygamma-glutamate produced by Escherichia coli clone cells. Biochem. Biophys. Res. Commun. 263: 6 12.
5. Asoh, S.,, H. Matsuzawa,, F. Ishino,, J. L. Strominger,, M. Matsuhashi,, and T. Ohta. 1986. Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence of penicillin-binding protein 2 of Escherichia coli K12. Eur. J. Biochem. 160: 231 238.
6. Atrih, A.,, G. Bacher,, G. Allmaier,, M. P. Williamson,, and S. J. Foster. 1999. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J. Bacteriol. 181: 3956 3966.
7. Atrih, A.,, G. Bacher,, R. Korner,, G. Allmaier,, and S. J. Foster. 1999. Structural analysis of Bacillus megaterium KM spore peptidoglycan and its dynamics during germination. Microbiobgy 145: 1033 1041.
8. Atrih, A.,, P. Zollner,, G. Allmaier,, and S. J. Foster. 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J. Bacteriol. 178: 6173 6183.
9. Atrih, A.,, P. Zollner,, G. Allmaier,, M. P. Williamson,, and S. J. Foster. 1998. Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J. Bacteriol. 180: 4603 4612.
10. Awram, P.,, and J. Smit. 1998. The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus . J. Bacteriol. 180: 3062 3069.
11. Baba, T.,, and O. Schneewind. 1998. Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J. 17: 4639 4646.
12. Bahl, H.,, H. Scholz,, N. Bayan,, M. Chami,, G. Leblon,, T. Gulik-Krzywicki,, E. Shechter,, A. Fouet,, S. Mesnage,, E. Tosi-Couture,, P. Gounon,, M. Mock,, E. Conway de Macario,, A. J. Macario,, L. A. Fernandez-Herrero,, G. Olabarria,, J. Berenguer,, M. J. Blaser,, B. Kuen,, W. Lubitz,, M. Sara,, P. H. Pouwels,, C. P. Kolen,, H. J. Boot,, and S. Resch. 1997. Molecular biology of S-layers. FEMS Microbiol. Rev. 20: 47 98.
13. Baquero, M. R.,, M. Bouzon,, J. C. Quintela,, J. A. Ayala,, and F. Moreno. 1996. dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J. Bacteriol. 178: 7106 7111
14. Becker, A.,, K. Niehaus,, and A. Puhler. 1995. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol. Microbiol. 16: 191 203.
15. Bhasin, N.,, A. Albus,, F. Michon,, P. J. Livolsi,, J. S. Park,, and J. C. Lee. 1998. Identification of a gene essential for O-acetylation of the Staphylococcus aureus type 5 capsular polysaccharide. Mol. Microbiol. 27: 9 21.
16. Birrer, G. A.,, A. M. Cromwick,, and R. A. Gross. 1994. Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265 275.
17. Blackman, S. A. 1998. Ph.D. University of Sheffield.
17a. Blackman, S. A.,, and S. J. Foster. The role of autolysins during vegetative growth of Bacillus subtilis 168. Unpublished data.
18. Blackman, S. A.,, T. J. Smith,, and S. J. Foster. 1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144: 73 82.
19. Blattner, F. R.,, G. Plunkett 3rd,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453 1474.
20. Boland, F. M.,, A. Atrih,, H. Chirakkal,, S. J. Foster,, and A. Moir. 2000. Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146: 57 64.
21. Boot, H. J.,, C. P. Kolen,, and P. H. Pouwels. 1995. Identification, cloning, and nucleotide sequence of a silent Slayer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 177: 7222 7230.
22. Boot, H. J.,, C. P. Kolen,, and P. H. Pouwels. 1996. Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal s!f> segment. Mol. Microbiol. 21: 799 809.
23. Boot, H. J.,, C. P. Kolen,, J. M. van Noort,, and P. H. Pouwels. 1993. S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175: 6089 6096.
24. Broome-Smith, J. K.,, A. Edelman,, S. Yousif,, and B. G. Spratt. 1985. The nucleotide sequence of the ponA and ponB genes encoding penicillin-binding proteins 1A and IB of Escherichia coli K12. Eur. J. Biochem. 147: 437 446.
25. Broome-Smith, J. K.,, I. Ioannidis,, A. Edelman,, and B. G. Spratt. 1988. Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli. Nucleic Acids Res. 16: 1617.
26. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 1717 1725.
27. Cheung, H. Y.,, and E. Freese. 1985. Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J. Bacteriol. 161: 1222 1225.
28. Clarke, A. J. 1993. Extent of peptidoglycan O acetylation in the tribe Proteeae. J. Bacteriol. 175: 4550 4553.
29. Coyette, J.,, S. Somzé,, J. J. Briquet,, J. M. Ghuysen,, and R. Fontana,. 1983. Function of pencillin-binding protein 3 in. Streptococcus faecium, p. 523 530. In R. Hakenbeck,, J. V. Holtje,, and H. Labischinski (ed.), The Target of Penicillin. Walter de Gruyter & Co., Berlin, Germany.
30. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle,, and J. Errington. 1994 - The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209 220.
31. Daub, E.,, L. E. Zawadzke,, D. Botstein,, and C. T. Walsh. 1988. Isolation, cloning, and sequencing of the Salmonella typhimurium ddlA gene with purification and characterization of its product, D-alanine:D-alanine ligase (ADP forming). Biochemistry 27: 3701 3708.
32. de Chastellier, C.,, R. Hellio,, and A. Ryter. 1975. Study of cell wall growth in Bacillus megaterium by high-resolution autoradiography. J. Bacteriol. 123: 1184 96.
33. de Jonge, B. L.,, T. Sidow,, Y. S. Chang,, H. Labischinski,, B. Berger-Bachi,, D. A. Gage,, and A. Tomasz. 1993. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J. Bacteriol. 175: 2779 2782.
34. Denome, S. A.,, P. K. Elf,, T. A. Henderson,, D. E. Nelson,, and K. D. Young. 1999. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181: 3981 3993.
35. Di Berardino, M.,, A. Dijkstra,, D. Stuber,, W. Keck,, and M. Gubler. 1996. The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett. 392: 184 188.
36. Doi, R. H., 1989. Sporulation and germination, p. 169 215. In C. R. Harwood (ed.), Bacillus. Plenum Press, London, England.
37. Dowson, C. G.,, A. Hutchison,, and B. G. Spratt. 1989. Nucleotide sequence of the penicillin-binding protein 2B gene of Streptococcus pneumoniae strain R6. Nucleic Acids Res. 17: 7518.
38. Du, W.,, J. R. Brown,, D. R. Sylvester,, J. Huang,, A. F. Chalker,, C. Y. So,, D. J. Holmes,, D. J. Payne,, and N. G. Wallis. 2000. Two active forms of UDP-N-acetylglu-cosamine enolpyruvyl transferase in gram-positive bacteria. J. Bacteriol. 182: 4146 4152.
39. Duez, C.,, I. Thamm,, F. Sapunaric,, J. Coyette,, and J. M. Ghuysen. 1998. The division and cell wall gene cluster of Enterococcus hirae S185. DNA Sequence 9: 149 161.
40. Duncan, K.,, J. van Heijenoort,, and C. T. Walsh. 1990. Purification and characterization of the D-alanyl-D-ala-nine-adding enzyme from Escherichia coli. Biochemistry 29: 2379 2386.
41. el Kharroubi, A.,, P. Jacques,, G. Piras,, J. Van Beeumen,, J. Coyette,, and J. M. Ghuysen. 1991. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463 469.
42. Engelhardt, H.,, and J. Peters. 1998. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124: 276 302.
43. Estrela, A. I.,, H. M. Pooley,, H. de Lencastre,, and D. Karamata. 1991. Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J. Gen. Microbiol. 137: 943 950.
44. Etienne-Toumelin, I.,, J. C. Sirard,, E. Duflot,, M. Mock,, and A. Fouet. 1995. Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J. Bacteriol. 177: 614 620.
45. Fan, D. P.,, B. E. Beckman,, and H. L. Gardner-Eckstrom. 1975. Mode of cell wall synthesis in Gram-positive bacilli. J.Bacteriol. 123: 1157 1162.
46. Ferrari, E.,, D. J. Henner,, and M. Y. Yang. 1985. Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technofogy 3: 1003 1007.
47. Filipe, S. R.,, and A. Tomasz. 2000. Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc. Natl. Acad. Sci. USA 97: 4891 4896.
48. Fischer, W.,, P. Rosel,, and H. U. Koch. 1981. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J. Bacteriol. 146: 467 475.
49. Foster, S. J. 1991. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J. Gen. Microbiol. 137: 1987 1998.
50. Foster, S. J. 1993. Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol. Microbiol. 8: 299 310.
51. Fotheringham, I. G.,, S. A. Bledig,, and P. P. Taylor. 1998. Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180: 4319 4323.
52. Fouet, A.,, S. Mesnage,, E. Tosi-Couture,, P. Gounon,, and M. Mock. 1999. Bacillus anthracis surface: capsule and Slayer. J. Appl. Microbiol. 87: 251 255.
53. Gardner, J. M.,, and F. A. Troy. 1979. Chemistry and biosynthesis of the poly(gamma-D-glutamyl) capsule in Bacillus licheniformis. Activation, racemization, and polymerization of glutamic acid by a membranous polyglutamyl synthetase complex. J. Biol. Chem. 254: 6262 6269.
54. Ghuysen, J.-M. 1991. Serine β -lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37 67.
55. Gilchrist, A.,, J. A. Fisher,, and J. Smit. 1992. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can. J. Microbiol. 38: 193 202.
56. Goffin, C.,, C. Fraipont,, J. Ayala,, M. Terrak,, M. Nguyen-Disteche,, and J. M. Ghuysen. 1996. The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure. J. Bacteriol. 178: 5402 5409.
57. Goffin, C.,, and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079 1093.
58. Guzman, L. M.,, D. S. Weiss,, and J. Beckwith. 1997. Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J. Bacteriol. 179: 5094 5103.
59. Hakenbeck, R.,, A. Konig,, I. Kern,, M. van der Linden,, W. Keck,, D. Billot-Klein,, R. Legrand,, B. Schoot,, and L. Gutmann. 1998. Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level beta-lactam resistance from Streptococcus mitis to Streptococcuspneumoniae. J. Bacteriol. 180: 1831 1840.
60. Henderson, T. A.,, M. Templin,, and K. D. Young. 1995. Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J. Bacteriol. 177: 2074 2079.
61. Henderson, T. A.,, K. D. Young,, S. A. Denome,, and P. K. Elf. 1997. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179: 6112 6121.
62. Henriques, A. O.,, H. D. Lencastre,, and P. J. Piggot. 1992. A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. Biochimie 74: 735 748.
63. Henriques, A. O.,, and C. P. Moran, Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods Companion Methods Enzymol. 20: 95 110.
64. Henze, U.,, T. Sidow,, J. Wecke,, H. Labischinski,, and B. Berger-Bachi. 1993. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J. Bacteriol. 175: 1612 1620.
65. Henze, U. U.,, and B. Berger-Bachi. 1995. Staphylococcus aureus penicillin-binding protein 4 and intrinsic beta-lactam resistance. Antimicrob. Agents Chemother. 39: 2415 2422.
66. Herbold, D. R.,, and L. Glaser. 1975. Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J. Biol. Chem. 250: 1676 1682.
67. Holtje, J. V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181 203.
68. Hoskins, J.,, P. Matsushima,, D. L. Mullen,, J. Tang,, G. Zhao,, T. I. Meier,, T. I. Nicas,, and S. R. Jaskunas. 1999. Gene disruption studies of penicillin-binding proteins la, lb, and 2a in Streptococcus pneumoniae. J. Bacteriol. 181: 6552 6555.
69. Ikeda, M.,, T. Sato,, M. Wachi,, H. K. Jung,, F. Ishino,, Y. Kobayashi,, and M. Matsuhashi. 1989. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171: 6375 6378.
70. Ikeda, M.,, M. Wachi,, H. K. Jung,, F. Ishino,, and M. Matsuhashi. 1991. The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide transferase. J. Bacteriol. 173: 1021 1026.
71. Ikeda, M.,, M. Wachi,, H. K. Jung,, F. Ishino,, and M. Matsuhashi. 1990. Homology among MurC, MurD, MurE and MurF proteins in Escherichia co!i and that between E. coli MurG and a possible MurG protein in Bacillus subtilis. J. Gen. Appl. Microbiol. 36: 179 187.
72. Ishikawa, S.,, Y. Hara,, R. Ohnishi,, and J. Sekiguchi. 1998. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J. Bacteriol. 180: 2549 2555.
73. Ishikawa, S.,, K. Yamane,, and J. Sekiguchi. 1998. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlj) which affects germination of Bacillus subtilis spores. J. Bacteriol. 180: 1375 1380.
74. Iwasaki, H.,, A. Shimada,, and E. Ito. 1986. Comparative studies of lipoteichoic acids from several Bacillus strains. J. Bacteriol. 167: 508 516.
75. Jolliffe, L. K.,, R. J. Doyle,, and U. N. Streips. 1981. The energized membrane and cellular autolysis in Bacillus subtilis.C ell 25: 753 763.
76. Joris, B.,, G. Dive,, A. Henriques,, P. J. Piggot,, and J. M. Ghuysen. 1990. The life cycle proteins RodA of Echerichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol. Microbiol. 4: 513 517.
77. Kemper, M. A.,, M. M. Urrutia,, T. J. Beveridge,, A. L. Koch,, and R. J. Doyle. 1993. Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J. Bacteriol. 175: 5690 5696.
78. Koch, A. L. 1983. The surface stress theory of microbial morphogenesis. Adv. Microb. Physiol. 24: 301 366.
79. Koch, A. L.,, G. Kirchner,, R.J. Doyle,, and I. D. Burdett. 1985. How does a Bacillus split its septum right down the middle? Ann. Inst. Pasteur Microbiol. 136A: 91 98.
80. Kolkman, M. A.,, D. A. Morrison,, B. A. Van Der Zeijst,, and P. J. Nuijten. 1996. The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyl transferase gene cpsl4E. J. Bacteriol. 178: 3736 3741.
81. Kolkman, M. A.,, B. A. van der Zeijst,, and P. J. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272: 19502 19508.
82. Kolkman, M. A.,, W. Wakarchuk,, P. J. Nuijten,, and B. A. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26: 197 208.
83. Korat, B.,, H. Mottl,, and W. Keck. 1991. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the B gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol. 5: 675 684.
84. Krauss, J.,, and R. Hakenbeck. 1997. A mutation in the D,D-carboxypeptidase penicillin-binding protein 3 of Streptococcus pneumoniae contributes to cefotaxime resistance of the laboratory mutant C604. Antimicrob. Agents Chemother. 41: 936 942.
85. Kuen, B.,, A. Koch,, E. Asenbauer,, M. Sara,, and W. Lubitz. 1997. Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J. Bacteriol. 179: 1664 1670.
86. Kuen, B.,, U. B. Sleytr,, and W. Lubitz. 1994. Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene 145: 115 120.
87. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
88. Kuroda, A.,, and J. Sekiguchi. 1990. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J. Gen. Microbiol. 136: 2209 2216.
89. Kuroda, A.,, and J. Sekiguchi. 1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173: 7304 7312.
90. Kuroda, A.,, and J. Sekiguchi. 1993. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J. Bacteriol. 175: 6260 6268.
91. Laible, G.,, R. Hakenbeck,, M. A. Sicard,, B. Joris,, and J. M. Ghuysen. 1989. Nucleotide sequences of the pbpX genes encoding the penicillin-binding proteins 2x from Streptococcus pneumoniae R6 and a cefotaxime-resistant mutant, C506. Mol. Microbiol. 3: 1337 1348.
92. Lawrence, P. J.,, and J. L. Strominger. 1970. Biosynthesis of the peptidoglycan of bacterial cell walls. The reversible fixation of radioactive penicillin G to the D-alanine carboxypeptidase of Bacillus subtilis. J. Biol. Chem. 245: 3660 3666.
93. Lazarevic, V.,, and D. Karamata. 1995. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16: 345 355.
94. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis ly-tRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949 1961.
95. Liger, D.,, D. Blanot,, and J. van Heijenoort. 1991. Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli. FEMS Microbiol. Lett. 64: 111 115.
96. Lin, W. S.,, T. Cunneen,, and C. Y. Lee. 1994. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J . Bacteriol. 176: 7005 7016.
97. Londoño-Vallejo, J. A.,, C. Frehel,, and P. Stragier. 1997. SpollQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24: 29 39.
98. Longchamp, P. F.,, C. Mauel,, and D. Karamata. 1994. Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-L-alanine amidase gene of prophage PBSX. Microbiology 140: 1855 1867.
99. Lupas, A.,, H. Engelhardt,, J. Peters,, U. Santarius,, S. Volker,, and W. Baumeister. 1994 Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224 1233.
100. Makino, S.,, I. Uchida,, N. Terakado,, C. Sasakawa,, and M. Yoshikawa. 1989. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171: 722 730.
101. Margot, P.,, and D. Karamata. 1992. Identification of the structural genes for N-acetylmuramoyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol. Gen. Genet. 232: 359 366.
102. Margot, P.,, and D. Karamata. 1996. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142: 3437 3444.
103. Margot, P.,, C. Mauel,, and D. Karamata. 1994. The gene of the N-acetyl-glucosaminidase, a Bacillus subtilis cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535 545.
104. Margot, P.,, M. Pagni,, and D. Karamata. 1999. Bacillus subtilis 168 gene lytF encodes a gamma-D-glutamatemeso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD. Microbiology 145: 57 65.
105. Margot, P.,, M. Wahlen,, A. Gholamhoseinian,, P. Piggot,, D. Karamata,, and A. Gholamhuseinian. 1998. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase . J. Bacteriol. 180: 749 752.
106. Marquardt, J. L.,, D. A. Siegele,, R. Kolter,, and C. T. Walsh. 1992. Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglu-cosamine enolpyruvyl transferase. J. Bacteriol. 174: 5748 5752.
107. Martin, C.,, T. Briese,, and R. Hakenbeck. 1992. Nucleotide sequences of genes encoding penicillin-binding proteins from Streptococcus pneumoniae and Streptococcus oralis with high homology to Escherichia coli penicillin-binding proteins 1a and 1b. J. Bacteriol. 174: 4517 4523.
108. Martinez-Carrion, M.,, and W. T. Jenkins. 1965. D-Alanine-D-glutamate transaminase. II. Inhibitors and the mechanism of transamination of D-amino acids. J. Biol. Chem. 240: 3547 3552.
109. Matsuhashi, M.,, M. D. Song,, F. Ishino,, M. Wachi,, M. Doi,, M. Inoue,, K. Ubukata,, N. Yamashita,, and M. Konno. 1986. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167: 975 980.
110. Mauel, C.,, M. Young,, and D. Karamata. 1991. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137: 929 941.
111. Mauel, C.,, M. Young,, P. Margot,, and D. Karamata. 1989. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388 394.
112. Mauel, C.,, M. Young,, A. Monsutti-Grecescu,, S. A. Marriott,, and D. Karamata. 1994. Analysis of Bacillus subtilis tag gene expression using transcriptional fusions . Microbiology 140: 2279 2288.
113. McPherson, D.,, A. Driks,, and D. L. Popham. Unpublished data.
114. Meador-Parton, J.,, and D. L. Popham. 2000. Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J. Bacteriol. 182: 4491 4499.
115. Mengin-Lecreulx, D.,, C. Parquet,, L. R. Desviat,, J. Pla,, B. Flouret,, J. A. Ayala,, and J. van Heijenoort. 1989. Organization of the murE-murG region of Escherichia coli: identification of the murD gene encoding the D-glutamic-acid-adding enzyme. J. Bacteriol. 171: 6126 6134.
116. Mengin-Lecreulx, D.,, L. Texier,, M. Rousseau,, and J. van Heijenoort. 1991. The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetyl-glucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 173: 4625 4636.
117. Mengin-Lecreulx, D.,, and J. van Heijenoort. 1990. Nucleotide sequence of the murD gene encoding the UDP-MurNAc-L-Ala-D-Glu synthetase of Escherichia coli. Nucleic Acids Res. 18: 183.
118. Merchante, R.,, H. M. Pooley,, and D. Karamata. 1995. A periplasm in Bacillus subtilis. J. Bacteriol. 177: 6176 6183.
119. Mesnage, S.,, E. Tosi-Couture,, P. Gounon,, M. Mock,, and A. Fouet. 1998. The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 52 58.
120. Mesnage, S.,, E. Tosi-Couture,, M. Mock,, P. Gounon,, and A. Fouet. 1997. Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol. Microbiol. 23: 1147 1155.
121. Michaud, C.,, D. Mengin-Lecreulx,, J. van Heijenoort, and D. Blanot. 1990. Overproduction, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 194: 853 861.
122. Michaud, C.,, C. Parquet,, B. Flouret,, D. Blanot,, and J. van Heijenoort. 1990. Revised interpretation of the sequence containing the murE gene encoding the UDP-N-acetylmuramyl-tripeptide synthetase of Escherichia coli. Biochem. J. 269: 277 278.
123. Moriyama, R.,, A. Hattori,, S. Miyata,, S. Kudoh,, and S. Makino. 1996. A gene (sieB) encoding a spore cortexlytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J. Bacteriol. 178: 6059 6063.
124. Murakami, K.,, T. Fujimura,, and M. Doi. 1994. Nucleotide sequence of the structural gene for the penicillin-binding protein 2 of Staphylococcus aureus and the presence of a homologous gene in other Staphylococci. FEMS Microbiol. Lett. 117: 131 136.
125. Murray, T.,, D. L. Popham,, C. B. Pearson,, A. R. Hand,, and P. Setlow. 1998. Analysis of outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J. Bacteriol. 180: 6493 6502.
126. Murray, T.,, D. L. Popham,, and P. Setlow. 1997. Identification and characterization of pbpA encoding Bacillus subtilis penicillin-binding protein 2A. J. Bacteriol 79: 3021 3029.
127. Murray, T.,, D. L. Popham,, and P. Setlow. 1996. Identification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3. J. Bacteriol. 178: 6001 6005.
128. Nagai, T.,, L. S. Phan Tran,, Y. Inatsu,, and Y. Itoh. 2000. A new IS4 family insertion sequence, IS4Bsul, responsible for genetic instability of poly-gamma-glutamic acid production in Bacillus subtilis. J. Bacteriol. 182: 2387 2392.
129. Nakamura, M.,, I. N. Maruyama,, M. Soma,, J. Kato,, H. Suzuki,, and Y. Horota. 1983. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol. Gen. Genet. 191: 1 9.
130. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174 229.
131. Nelson, D. E.,, and K. D. Young. 2000. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182: 1714 1721.
132. Nugroho, F. A.,, H. Yamamoto,, Y. Kobayashi,, and J. Sekiguchi. 1999. Characterization of a new sigma-K-de-pendent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J. Bacteriol. 181: 6230 6237.
133. Ohnishi, R.,, S. Ishikawa,, and J. Sekiguchi. 1999. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181: 3178 3184.
134. Paik, J.,, I. Kern,, R. Lurz,, and R. Hakenbeck. 1999. Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J. Bacteriol. 181: 3852 3856.
135. Park, W.,, and M. Matsuhashi. 1984. Staphylococcus au-reus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins. J. Bacteriol. 157: 538 544.
136. Parquet, C.,, B. Flouret,, D. Mengin-Lecreulx,, and J. van Heijenoort. 1989. Nucleotide sequence of the murP gene encoding the UDP-MurNAc-pentapeptide synthetase of Escherichia coli. Nucleic Acids Res. 17: 5379.
137. Pedersen, L. B.,, E. R. Angert,, and P. Setlow. 1999. Septal localization of penicillin-binding protein 1 in Bacillus subtilis. J. Bacteriol. 181: 3201 3211.
138. Pedersen, L. B.,, T. Murray,, D. L. Popham,, and P. Setlow. 1998. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 180: 4967 4973.
139. Pedersen, L. B.,, K. Ragkousi,, T. J. Cammett,, E. Melly,, A. Sekowska,, E. Schopick,, T. Murray,, and P. Setlow. 2000. Characterization of ywhE, which encodes a putative high-molecular-weight class A penicillin-binding protein in Bacillus subtilis. Gene 246: 187 196.
140. Perego, M.,, P. Glaser,, A. Minutello,, M. A. Strauch,, K. Leopold,, and W. Fischer. 1995. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270: 15598 15606.
141. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Gotz. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274: 8405 8410.
142. Pinho, M. G.,, H. de Lencastre,, and A. Tomasz. 2000. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphyhcoccus aureus. J. Bacteriol. 182: 1074 1079.
143. Pink, T.,, K. Langer,, C. Hotzy,, and M. Sara. 1996. Regulation of S-layer protein synthesis of Bacillus stearothermophilus PV72 through variation of continuous cultivation conditions. J. Biotechnol. 50: 189 200.
144. Piras, G.,, D. Raze,, A. E. Kharroubi,, D. Hastir,, S. Englebert,, J. Coyette,, and J.-M. Ghuysen. 1993. Cloning and sequencing of the low-affinity penicillin-binding protein 3 r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J. Bacteriol. 175: 2844 2852.
145. Pooley, H. M.,, F. X. Abellan,, and D. Karamata. 1992. CDP-glycerobpoly(glycerophosphate) glycerophospho-transferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF( rodC). J. Bacteriol. 174: 646 649.
146. Popham, D. L.,, M. E. Gilmore,, and P. Setlow. 1999. Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J. Bacteriol. 181: 126 132.
147. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J. Bacteriol. 178: 6451 6458.
148. Popham, D. L.,, J. Helin,, C. E. Costello,, and P. Setlow. 1996. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc. Nati. Acad. Sci. USA 93: 15405 15410.
149. Popham, D. L.,, B. Hlades-Aguiar,, and P. Setlow. 1995. The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J. Bacteriol. 177: 4721 4729.
150. Popham, D. L.,, and P. Setlow. 1995. Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J. Bacteriol. 177: 326 335.
151. Popham, D. L.,, and P. Setlow. 1993. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase. J. Bacteriol. 175: 2917 2925.
152. Popham, D. L.,, and P. Setlow. 1993. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J. Bacteriol. 175: 4870 4876.
153. Popham, D. L.,, and P. Setlow. 1994. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtitis pbpD gene, which codes for penicillin-binding protein 4. J. Bacteriol. 176: 7197 7205.
154. Popham, D. L.,, and P. Setlow. 1996. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular weight penicillin-binding proteins. J. Bacteriol. 178: 2079 2085.
155. Pucci, M. J.,, L. F. Discotto,, and T. J. Dougherty. 1992. Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyru-voylglucosamine reductase. J. Bacteriol. 174: 1690 1693.
156. Pucci, M. J.,, J. A. Thanassi,, L. F. Discotto,, R. E. Kessler,, and T. J. Dougherty. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632 5635.
157. Rashid, M. H.,, M. Mori,, and J. Sekiguchi. 1995. Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141: 2391 2404.
158. Regamey, A.,, and D. Karamata. 1998. The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SP beta. Microbiology 144: 885 893.
159. Roels, S.,, and R. Losick. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J. Bacteriol. 177: 6263 6275.
160. Rogers, H. J.,, H. R. Perkins,, and J. B. Ward. 1980. Microbial Cell Walls and Membranes. Chapman & Hall, Ltd., London, England.
161. Romeis, T.,, and J. V. Holtje. 1994. Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J. Biol. Chem. 269: 21603 21607.
162. Sasaki, Y.,, Y. Araki,, and E. Ito. 1983. Structure of tei-choic-acid—glycopeptide complexes from cell walls of Bacillus cereus AHU 1030. Eur. J. Biochem. 132: 207 213.
163. Schiffer, G.,, and J. V. Holtje. 1999. Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J. Biol. Chem. 274: 32031 32039.
164. Schleifer, K. H.,, and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bactenol. Rev. 36: 407 477.
165. Sekiguchi, J.,, K. Akeo,, H. Yamamoto,, F. K. Khasanov,, J. C. Alonso,, and A. Kuroda. 1995. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which effects germination in Bacillus subtilis. J. Bacteriol. 177: 5582 5589.
166. Shibaev, V. N.,, M. Duckworth,, A. R. Archibald,, and J. Baddiley. 1973. The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem. J.1 135: 383 384.
167. Sleytr, U. B.,, H. Bayley,, M. Sara,, A. Breitwieser,, S. Kupcu,, C. Mader,, S. Weigert,, F. M. Unger,, P. Messner,, B. Jahn-Schmid,, B. Schuster,, D. Pum,, K. Douglas,, N. A. Clark,, J. T. Moore,, T. A. Winningham,, S. Levy,, I. Frithsen,, J. Pankovc,, P. Beale,, H. P. Gillis,, D. A. Choutov,, and K. P. Martin. 1997. Applications of S-layers. FEMS Microbiol. Rev. 20: 151 175.
168. Smit, J.,, D. A. Grano,, R. M. Glaeser,, and N. Agabian. 1981. Periodic surface array in Caulobacter crescentus: fine structure and chemical analysis. J. Bacteriol. 146: 1135 1150.
169. Smith, T. J.,, S. A. Blackman,, and S. J. Foster. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249 262.
170. Smith, T. J.,, and S. J. Foster. 1995. Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J. Bacteriol. 177: 3855 3862.
171. Smith, T. J.,, and S. J. Foster. Unpublished data.
172. Soldo, B.,, V. Lazarevic,, P. Margot,, and D. Karamata. 1993. Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J. Gen. Microbiol. 139: 3185 3195.
173. Soldo, B.,, V. Lazarevic,, M. Pagni,, and D. Karamata. 1999. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31: 795 805.
174. Spratt, B. G. 1975. Distinct penicillin-binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Nati. Acad. Sci. USA 72: 2999 3003.
175. Spratt, B. G. 1977. Temperature-sensitive cell division mutants of Escherichia coli with thermolabile penicillin-binding proteins. J. Bacteriol. 131: 293 305.
176. Spratt, B. G.,, J. Zhou,, M. Taylor,, and M. J. Merrick. 1996. Monofunctional biosynthetic peptidoglycan transglycosylases. Mol. Microbiol. 19: 639 640.
177. Stranden, A. M.,, K. Ehlert,, H. Labischinski,, and B. Berger-Bachi. 1997. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J. Bacteriol 179: 9 16.
178. Thorne, C. B.,, C. G. Gomez,, H. E. Noyes,, and R. D. Housewright. 1954 Production of glutamyl polypeptide in Bacillus subtilis. J. Bacteriol. 68: 307 315.
179. Tipper, D. J.,, and P. E. Linnet. 1976. Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus. J. Bacteriol. 126: 213 221.
180. Todd, J. A.,, E. J. Bone,, and D. J. Ellar. 1985. The sporulation-specific penicillin-binding protein 5a from Bacillus subtilis is a DD-carboxypeptidase in vitro. Biochem. J. 230: 825 828.
181. Todd, J. A.,, A. N. Roberts,, K. Johnstone,, P. J. Piggot,, G. Winter,, and D. J. Ellar. 1986. Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5. J. Bacteriol. 167: 257 264.
182. Ueda, S., 1989. Industrial application of B. subtilis, p. 143 161. In B. Maruo, and H. Yoshikawa (ed.), Bacillus subtilis: Molecular Biology and Industrial Application. Kodansha, Ltd., Tokyo, Japan.
183. Vollmer, W.,, M. von Rechenberg,, and J. V. Holtje. 1999. Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MlpA of Escherichia coli. J. Biol. Chem. 274: 6726 6734
184. Wada, A.,, and H. Watanabe. 1998. Penicillin-binding protein 1 of Staphylococcus aureus is essential for growth. J. Bacteriol. 180: 2759 2765.
185. Ward, J. B. 1973. The chain length of the glycans in bacterial cell walls. Biochem. J. 133: 395 398.
186. Warth, A. D.,, and J. L. Strominger. 1971. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10: 4349 4358.
187. Wright, J.,, and J. E. Heckels. 1975. The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem. J 147: 187 189.
188. Wu, J.,, M. G. Howard,, and P. J. Piggot. 1989. Regulation of transcription of the Bacillus subtilis spoil A locus . J. Bacteriol. 171: 692 698.
189. Wu, J.-J.,, R. Schuch,, and P. J. Piggot. 1992. Characterization of a Bacillus subtilis operon that includes genes for an RNA polymerase σ factor and for a putative DD-carboxypeptidase. J- Bacteriol. 174: 4885 4892.
190. Yanouri, A.,, R. A. Daniel,, J. Errington,, and C. E. Buchanan. 1993. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J. Bacteriol. 175: 7604 7616.
191. Zawadzke, L. E.,, T. D. Bugg,, and C. T. Walsh. 1991. Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30: 1673 1682.

Tables

Generic image for table
TABLE 1

peptidoglycan precursor synthesis genes

References are for gene identification and demonstration of gene product function in a species or in

Identification is based upon demonstrated enzymatic activity or mutant phenotype in

Identification is based upon sequence similarity to E. gene product.

Homology to gene ( ).

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 2

Penicillin-binding protein classification and function

The PBPs listed with a PBP, Dac, or Amp designation have been identified biochemically. Inference of some additional PBPs (indicated by dash or by text description for )is based upon analysis of genome sequence information. Gene designations are given in the first set of parentheses. References for determination of the DNA sequence are given in the second set of parentheses. Genes for which references are not provided are inferred from the available genome sequence.

Based upon the complete genome sequence, this list is believed to represent the complete complement of PBPs: ( ) (http://www.pasteur.fr/Bio/SubtiList/); E. coli ( ) (http://www.genome.wisc.edu/html/kl2.html).

Functional classification is based solely upon sequence similarity with a protein of demonstrated function. The presence of a single protein within a functional class does not necessarily mean that its loss will result in an observable phenotype, as other proteins in the same class may carry out redundant functions.

Functional classification is based upon observable phenotype in a mutant strain or on demonstration of enzymatic activity.

Inference of some PBPs is based upon analysis of incomplete genome sequence information. ( and preliminary sequence data were obtained from The Institute for Genomic Research website, http://www.tigr.org). These lists may not represent the complete complement of PBPs within the species.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 3

Proposed peptidoglycan hydrolase complement of

Reproduced with permission from Smith et al. ( ).

Prototype enzyme used for search comparison. Where known, only the sequence encoding the hydrolytic functional domain was used in the search.

YomI is homologous to both lysostaphin and Slt70 and may have two peptidoglycan hydrolase domains.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 4

Candidate anionic polymer biosynthetic components of

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 5

S-layer genes and proteins from various bacterial species.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 6

Candidate . 168 poly-γ-D-glutamic acid capsule synthesis genes

Data from references and .

Indicates the gene product used for sequence alignment.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4
Generic image for table
TABLE 7

Candidate polysaccharide capsule synthesis genes

Indicates the gene product used for sequence alignment.

Citation: Foster S, Popham D. 2002. Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules, p 21-41. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error