1887

Chapter 7 : Chromosome Replication and Segregation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chromosome Replication and Segregation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap07-2.gif

Abstract:

This chapter reviews our current understanding of bacterial DNA replication and chromosome partitioning in and makes comparisons to and other organisms where appropriate. Bacterial chromosome replication initiates once per cell division cycle in response to a signal that is tightly coupled to cell mass. Although the helicase function of DnaC has not yet been confirmed biochemically, two types of (TS) mutations, defective in initiation and elongation, map to . Strong interaction between the helicase and the primase has been demonstrated in . The current understanding of bacterial chromosome partitioning can be simplified into three steps: (i) origin region separation and repositioning, (ii) overall chromosome organization and compaction, and (iii) terminus region separation. This final step includes chromosome decatenation, chromosome dimer-to-monomer resolution when necessary, and movement of the termini to either side of midcell before completion of medial division. The structural maintenance of chromosomes (SMC) protein family is well conserved and is important for chromosome segregation in bacteria, archaea, and eukaryotes. Both and have proteins that appear to be involved in postseptational chromosome partitioning. These proteins, SpoIIIE and FtsK, respectively, have domains that are homologous to the DNA translocation domains of proteins involved in conjugative plasmid transfer. In and , SMC functions in chromosome partitioning presumably by affecting chromosome organization and compaction. All organisms seem to have proteins that contribute to chromosome folding and compaction.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Simplified cartoon of the bacterial cell cycle and chromosome orientation. The chromosome is indicated by a thin oval inside the cell. The origin of replication () is indicated by a small gray circle, and the terminus of replication () is indicated by a gray square. The replisome is indicated by two triangles, one for each replication fork that initiates from . In this model, replication initiates at or near midcell, the origins rapidly separate, replication continues as the newly replicated DNA is refolded (in part by Smc), and copies separate from each other. The cell division machinery assembles at midcell, and cells divide. This is simplified, because at rapid growth rates, newborn cells have a partly duplicated chromosome and the origin regions have already duplicated and separated to the cell quarters.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of initiation mechanism of chromosome replication. The gene constitutes an operon with ( ). DnaA boxes exist in two noncoding regions upstream and downstream of , where DnaA actually binds ( ). The operon is probably expressed after initiation of replication ( ) and is autoregulated by DnaA ( ). Thus, DnaA newly synthesized after initiation would stop its transcription. Two DnaA box clusters are required for initiation of replication in vivo (shown as , autonomously replicating sequence) ( ), and the regions form a loop mediated by DnaA in vitro ( ). It is unclear whether the loop is formed only at the time of initiation. This loop formation opens double-stranded DNA locally at an AT-rich sequence between and ( ), consistent with in vivo observations that plasmid and chromosome replication start at this non-coding region ( ). DnaB, DnaD, and Dnal are probably components of a primosome ( ) and thus play roles for loading the DnaC helicase into the unwound region. DnaD interacts with DnaA ( ), but the role of the interaction is still unclear. DnaB exhibits single-stranded DNA-binding activity ( ) and forms an oligomer ( ), similar to DnaC helicase loader. However, DnaB did not interact with DnaA, DnaC, DnaD, or Dnal by the yeast two-hybrid assay ( ). Its precise role is still obscure. Dnal interacted strongly with the DnaC helicase ( ), indicating that it acts as a component of the helicase loading system. Once the helicase is loaded into , primase (DnaG) and τ subunit (DnaX) of DNA polymerase III are assembled by protein-protein interaction followed by formation of the replisome on .

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of proteins present at the replication fork of

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Spo0J binding sites on the chromosome. is at 0°/360° on the circular chromosome. The eight known sites ( ) are indicated.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model of SMC. SMC is an antiparallel homodimer with two long coiled-coil regions separated by a flexible hinge ( ).

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Chromosome partitioning events specific to the terminus region. (A) Chromosome decatenation. (B) When necessary, a site-specific recombination resolves a chromosome dimer (left) to two monomers. (C) Model for SpoIIIE (or FtsK) movement of trapped chromosome out of the division septum.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap7
1. Adams, D. E.,, E. M. Shekhtman,, E. L. Zechiedrich,, M. B. Schmid,, and N. R. Cozzarelli. 1992. The role of topoi-somerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71: 277 288.
2. Alonso, J. C.,, and L. M. Fisher. 1995. Nucleotide sequence of the recF gene cluster from Staphylococcus aureus and complementation analysis in Bacillus subtilis recF mutants. Mol. Gen. Genet. 246: 680 686.
3. Alonso, J. C.,, K. Shirahige,, and N. Ogasawara. 1990. Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis. Nucleic Acids Res. 18: 6771 6777.
4. Autret, S.,, A. Levine,, F. Vannier,, Y. Fujita,, and S. J. Seror. 1999. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 31: 1665 1679.
5. Baker, T. A.,, and S. P. Bell. 1998. Polymerases and the replisome: machines within machines. Cell 92: 295 305.
6. Barns, M. H.,, R. A. Hammond,, C. C. Kennedy,, S. L. Mack,, and N. C. Brown. 1992. Localization of the exonuclease and polymerase domains of Bacillus subtilis DNA polymerase III. Gene 111: 43 49.
7. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177: 6211 6222.
8. Belmont, A. S.,, and A. F. Straight. 1998. In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol. 8: 121 124.
9. Bird, L. E.,, H. Pan,, P. Soultanas,, and D. B. Wigley. 2000. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearotaermoprulus. Biochemistry 39: 171 182.
10. Boye, E.,, T. Stokke,, N. Weckner,, and K. Skarstad. 1996. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc. Natl. Acad. Sci. USA 93: 12206 12211.
11. Britton, R. A.,, and A. D. Grossman. 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181: 5860 5864.
12. Britton, R. A.,, D. C. Lin,, and A. D. Grossman. 1998. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12: 1254 1259.
13. Bruand, C.,, and S. D. Ehrlich. 1995. The Bacillus subtilis dnal gene is part of the dnaB operon. Microbiology 141: 1199 1200.
14. Bruand, C.,, S. D. Ehrlich,, and L. J. Janniere. 1995. Primosome assembly site in Bacillus subtilis. EMBO J. 14: 2642 2650.
15. Bruand, C.,, A. Sorokin,, P. Serror,, and S. D. Ehrlich. 1995. Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology 141: 321 322.
16. Bruck, I.,, and M. O'Donnell. 2000. The DNA replication machine of a gram-positive organism. J. Biol. Chem. 275: 28971 28983.
17. Calcutt, M. J. 1994. Gene organization in the dnaA-gyrA region of the Streptomyces coelicolor chromosome. Gene 151: 23 28.
18. Cervin, M. A.,, G. B. Spiegelman,, B. Raether,, K. Ohlsen,, M. Perego,, and J. A. Hoch. 1998. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol. Microbiol. 29: 85 95.
19. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544
20. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3: 65 78.
21. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler,, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404: 37 41.
22. Donachie, W. D. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219: 1077 1079.
23. Ehrlich, S. D.,, C. Bruand,, and P. Polard. Personal communication.
24. Erdmann, N.,, T. Petroff,, and B. E. Funnell. 1999. Intracellular localization of PI ParB protein depends on ParA and parS. Proc. Natl. Acad. Sci. USA 96: 14905 14910.
25. Fang, L.,, M. J. Davey,, and M. O'Donnell. 1999. Repli-some assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell. 4: 541 553.
26. Firshein, W. 1989. Role of the DNA/membrane complex in prokaryotic DNA replication. Annu. Rev. Microbiol. 43: 89 120.
27. Flett, F.,, D. de,, M. Jungmann-Campello,, V. Mersinias,, S. L.-M. Koh,, R. Godden,, and C. P. Smith. 1999. A “gram-negative-type” DNA polymerase III is essential for replication of the linear chromosome of Streptomyces coelicolor A3(2). Mol. Microbiol. 31: 949 958.
28. Frandsen, N.,, I. Barak,, C. Karmazyn-Campelli,, and P. Stragier. 1999. Transient gene asymmetry during sporula-tion and establishment of cell specificity in Bacillus subtilis. Genes Dev. 13: 394 399.
29. Fukuoka, T.,, S. Moriya,, H. Yoshikawa,, and N. Oga-sawara. 1990. Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis. J. Biochem. (Tokyo) 107: 732 739.
30. Gerdes, K.,, J. M0ller-Jensen,, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phytogeny. Mol. Microbiol. 37: 455 466.
31. Glaser, P.,, M. E. Sharpe,, B. Raether,, M. Perego,, K. Ohlsen,, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11: 1160 1168.
32. Gordon, G. S.,, D. Sitnikov,, C. D. Webb,, A. Teleman,, A. Straight,, R. Losick,, A. W. Murray,, and A. Wright. 1997. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90: 1113 1121.
33. Henckes, G.,, F. Harper,, A. Levine,, F. Vannier,, and S. J. Seror. 1989. Overreplication of the origin region in the dnaB37 mutant of Bacillus subtilis: postinitiation control of chromosomal replication. Proc. Natl. Acad. Sci. USA 86: 8660 8664.
34. Herrick, J.,, M. Kohiyama,, T. Atlung,, and F. G. Hansen. 1996. The initiation mess? Mol. Microbiol. 19: 659 666.
35. Hill, T. M., 1996. Features of the chromosomal terminus region, p. 1602 1614. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington, D.C.
36. Himmelreich, R.,, H. Hilbert,, H. Plagens,, E. Pirkl,, B. C. Li,, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420 4449.
37. Hingorani, M. M.,, and M. O'Donnell. 2000. Sliding clamps: a (tail)ored fit. Curr. Biol. 10: R25 R29.
38. Hirano, T. 1999. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 13: 11 19.
39. Holmes, V. F.,, and N. R. Cozzarelli. 2000. Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc. Natl. Acad. Sci. USA 97: 1322 1324.
40. Hoshino, T.,, T. McKenzie,, S. Schmidt,, T. Tanaka,, and N. Sueoka. 1987. Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. Proc. Natl. Acad. Sci. USA 84: 653 657.
41. Huang, W.,, J. Libbey,, P. van der Hoeven,, and S. Yu. 1998. Bipolar localization of Bacillus subtilis topoisomerase IV, an enzyme required for chromosome segregation. Proc. Natl. Acad. Sci. USA 95: 4652 4657.
42. Imai, Y.,, N. Ogasawara,, D. Ishigo-Oka,, R. Kadoya,, T. Daito,, and S. Moriya. 2000. Subcellular localization of Dna-initiation proteins of Bacillus subtilis: evidence that chromosome replication begins at either edge of nucleoids. Mol. Microbiol. 36: 1037 1048.
43. Iordanescu, S. 1993. Characterization of the Staphylococcus aureus chromosomal gene pcrA, identified by mutations affecting plasmid pT181 replication. Mol. Gen. Genet. 241: 185 192.
44. Ireton, K.,, N. W. T. Gunther,, and A. D. Grossman. 1994 - spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176: 5320 5329.
45. Ishigo-oka, D.,, N. Ogasawara,, and S. Moriya. 2001. DnaD protein of Bacillus subtilis interacts with DnaA, the initiator protein of replication. J. Bacterial. 183: 2148 2150.
46. Jensen, R. B.,, and L. Shapiro. 1999. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl. Acad. Sci. USA 96: 10661 10666.
47. Katayama, T.,, T. Kubota,, K. Kurokawa,, E. Crooke,, and K. Sekimizu. 1998. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94: 61 71.
48. Kato, J.,, Y. Nishimura,, R. Imamura,, H. Niki,, S. Hiraga,, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63: 393 404.
49. Kelman, Z.,, and M. O'Donnell. 1995. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64: 171 200.
50. Kelman, Z.,, A. Yuzhakov,, J. Andjelkovic,, and M. O'Donnell. 1998. Devoted to the lagging strand—the χ sub-unit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J. 17: 2436 2449.
51. Kitagawa, R.,, T. Ozaki,, S. Moriya,, and T. Ogawa. 1998. Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev. 12: 3032 3043.
52. Kong, X. P.,, R. Onrust,, M. O'Donnell,, and J. Kuriyan. 1992. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69: 425 437.
53. Koonin, E. V.,, and P. Bork. 1996. Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. Trends Biochem. Sci. 21: 128 129.
54. Koonin, E. V.,, and P. Bork. 1992. DnaC protein contains a modified ATP-binding motif and belongs to a novel family of ATPases including also DnaA. Nucleic Acids Res. 20: 1997.
55. Kornberg, A.,, and T. A. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman &. Co., San Francisco, Calif.
56. Koshland, D.,, and A. Strunnikov. 1996. Mitotic chromosome condensation. Annu. Rev. Cell. Dev. Biol. 12: 305 333.
57. Krause, M.,, B. Riickert,, R. Lurz,, and W. Messer. 1997. Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J. Mol. Biol. 274: 365 380.
58. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
59. Larsen, B.,, N. M. Wills,, C. Nelson,, J. F. Atkins,, and R. F. Gesteland. 2000. Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc. Natl. Acad. Sci. USA 97: 1683 1688.
60. Learn, B. A.,, S.-J. Urn,, L. Huang,, and R. McMacken. 1997. Cryptic single-stranded-DNA binding activities of the phage λ P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA. Proc. Natl. Acad. Sci. USA 94: 1154 1159.
61. Lee, P. S.,, D. C.-H. Lin,, and A. D. Grossman. Unpublished results.
62. Lemon, K. P.,, and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282: 1516 1519.
63. Lemon, K. P.,, and A. D. Grossman. 2000. Movement of replicating DNA through a stationary replisome. Mol. Cell. 6: 1321 1330.
64. Lemon, K. P.,, and A. D. Grossman. Unpublished results.
65. Lemon, K. P.,, I. Kurtser,, and A. D. Grossman. 2001. Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98: 212 217.
66. Levin, P. A.,, and A. D. Grossman. 1998. Cell cycle: the bacterial approach to coordination. Curr. Biol. 8: R28 R31.
67. Levine, A.,, S. Autret,, and S. J. Seror. 1995. A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the stringent response in Bacillus subtilis. Mol. Microbiol. 15: 287 295.
68. Levine, A.,, F. Vannier,, M. Dehbi,, G. Henckes,, and S. J. Seror. 1991. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J. Mol. Biol. 219: 605 613.
69. Lewis, P. J.,, and J. Errington. 1997. Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol. Microbiol. 25: 945 954.
70. Lin, D. C.-H., and A. D. Grossman. 1998. Identification and characterization of a bacterial chromosome partitioning site. Cell 92: 675 685.
71. Lin, D. C.-H. 1999. Chromosome partitioning in Bacillus subtilis. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, Mass.
72. Lin, D. C.-H.,, P. A. Levin,, and A. D. Grossman. 1997. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 94: 4721 4726.
73. Lindow, J.,, R. Britton,, and A. D. Grossman. Unpublished results.
74. Liu, G.,, G. C. Draper,, and W. D. Donachie. 1998. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29: 893 903.
75. Lobner-Olesen, A.,, K. Skarstad,, F. G. Hansen,, K. von Meyenburg,, and E. Boye. 1989. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57: 881 889.
76. Lohman, T. M.,, and M. E. Ferrari. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63: 527 570.
77. Losick, R.,, and L. Shapiro. 1999. Changing views on the nature of the bacterial cell: from biochemistry to cytology. J. Bacteriol. 181: 4143 4145.
78. Lu, M.,, J. L. Campbell,, E. Boye,, and N. Kleckner. 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77: 413 426.
79. Marians, K. J. 1999. PriA: at the crossroads of DNA replication and recombination. Prog. Nucleic Acid Res. Mol. Biol. 63: 39 67.
80. Marians, K. J. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25: 185 189.
81. Masai, H.,, J. Deneke,, Y. Furui,, T. Tanaka,, and K. I. Arai. 1999. Escherichia coli and Bacillus subtilis PriA proteins essential for recombination-dependent DNA replication: involvement of ATPase/helicase activity of PriA for inducible stable DNA replication. Biochimie 81: 847 857.
82. Melby, T. E.,, C. N. Ciampaglio,, G. Briscoe,, and H. P. Erickson. 1998. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142: 1595 1604.
83. Messer, W.,, and C. Weigel,. 1996. Initiation of chromosome replication, p. 1579 1601. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
84. Michel, B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25: 173 178.
85. Mohl, D. A.,, and J. W. Gober. 1997. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88: 675 684.
86. Moriya, S.,, T. Atlung,, F. G. Hansen,, H. Yoshikawa,, and N. Ogasawara. 1992. Cloning of an autonomously replicating sequence (ars) from the Bacillus subtilis chromosome. Mol. Microbiol. 6: 309 315.
87. Moriya, S.,, W. Firshein,, H. Yoshikawa,, and N. Ogasawara. 1994. Replication of a Bacillus subtilis oriC plasmid in vitro. Mol. Microbiol. 12: 469 478.
88. Moriya, S.,, Y. Imai,, A. K. Hassan,, and N. Ogasawara. 1999. Regulation of initiation of Bacillus subtilis chromosome replication. Plasmid 41: 17 29.
89. Moriya, S.,, K. Kato,, H. Yoshikawa,, and N. Ogasawara. 1990. Isolation of a dnaA mutant of Bacillus subtilis defective in initiation of replication: amount of DnaA protein determines cells' initiation potential. EMBO J. 9: 2905 2910.
90. Moriya, S.,, and N. Ogasawara. 1996. Mapping of the replication origin of the Bacillus subtilis chromosome by the two-dimensional gel method. Gene 176: 81 84.
91. Moriya, S.,, and N. Ogasawara. Unpublished results.
92. Moriya, S.,, N. Ogasawara,, and H. Yoshikawa. 1985. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 13: 2251 2265.
93. Moriya, S.,, E. Tsujikawa,, A. K. Hassan,, K. Asai,, T. Kodama,, and N. Ogasawara. 1998. A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol. 29: 179 187.
94. Niki, H.,, and S. Hiraga. 1998. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12: 1036 1045.
95. Niki, H.,, and S. Hiraga. 1997. Subcellular distribution of actively partitioning. F plasmid during the cell division cycle in E. coll. Cell 90: 951 957.
96. Niki, H.,, R. Imamura,, M. Kitaoka,, K. Yamanaka,, T. Ogura,, and S. Hiraga. 1992. E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11: 5101 5109.
97. Niki, H.,, A. Jaffe,, R. Imamura,, T. Ogura,, and S. Hiraga. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10: 183 193.
98. Niki, H.,, Y. Yamaichi,, and S. Hiraga. 2000. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14: 212 223.
99. Ogasawara, N.,, S. Moriya,, P. G. Mazza,, and H. Yoshikawa. 1986. Nucleotide sequence and organization of dnaB gene and neighbouring genes on the Bacillus subtilis chromosome. Nucleic Acids Res. 14: 9989 9999.
100. Ogasawara, N.,, S. Moriya,, K. von Meyenburg,, F. G. Hansen,, and H. Yoshikawa. 1985. Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli. EMBO J. 4: 3345 3350.
101. Ogura, Y.,, Y. Imai,, N. Ogasawara,, and S. Moriya. 2001. Autoregulation of the dnaA-dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis. J. Bacteriol. 183: 3833 3841.
102. Pacitti, D. F.,, M. H. Barnes,, D. H. Li,, and N. C. Brown. 1995. Characterization and overexpression of the gene encoding Staphylococcus aureus DNa polymerase III. Gene 165: 51 56.
103. Petit, M.-A.,, E. Dervyn,, M. Rose,, K.-D. Entian,, S. Mc-Govern,, S. D. Ehrlich,, and C. Bruand. 1998. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol. 29: 261 273.
104. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
105. Qin, M.-H.,, M. V. V. W. Madiraju,, S. Zachariah,, and M. Rajagopalan. 1999. Characterization of the functional replication origin of Mycobacterium tuberculosis. Gene 233: 121 130.
106. Qin, M.-H.,, M. V. V. W. Madiraju,, S. Zachariah,, and M. Rajagopalan. 1997. Characterization of the oriC region of Mycobacterium smegmatis. J. Bacteriol. 179: 6311 6317.
107. Quisel, J. D.,, and A. D. Grossman. 2000. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J. Bacteriol. 182: 3446 3451.
108. Quisel, J. D.,, D. C.-H. Lin,, and A. D. Grossman. 1999. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell. 4: 665 672.
109. Recchia, G. D.,, M. Aroyo,, D. Wolf,, G. Blakely,, and D. J. Sherratt. 1999. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J. 18: 5724 5734.
110. Redenbach, M.,, H. M. Kieser,, D. Denapaite,, A. Eich-ner,, J. Cullum,, H. Kinashi,, and D. A. Hopwood. 1996. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Srreptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21: 77 96.
111. Robinett, C. C.,, A. Straight,, G. Li,, C. Willhelm,, G. Sudlow,, A. Murray,, and A. S. Belmont. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135: 1685 1700.
112. Roos, M.,, A. B. van Geel,, M. E. Aarsman,, J. T. Veuskens,, C. L. Woldringh,, and N. Nanninga. 1999. Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization. Biochimie 81: 797 802.
113. Sakamoto, Y.,, S. Nakai,, S. Moriya,, H. Yoshikawa,, and N. Ogasawara. 1995. The Bacillus subtilis dnaC gene encodes a protein homologous to the DnaB helicase of Escherichia coli. Microbiology 141: 641 644.
114. Salazar, L.,, H. Fsihi,, F. de Rossi,, G. Riccardi,, C. Rios,, S. T. Cole,, and H. E. Takiff. 1996. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol. Microbiol. 20: 283 293.
115. Sanjanwala, B.,, and A. T. Ganesan. 1991. Genetic structure and domains of DNA polymerase III of Bacillus subtilis. Mol. Gen. Genet. 226: 467 472.
116. Sauer, U.,, A. Treuner,, M. Buchholz,, J. D. Santangelo,, and P. Durre. 1994. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J. Bacteriol. 176: 6572 6582.
117. Sawitzke, J. A.,, and S. Austin. 2000. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc. Natl. Acad. Sci. USA 97: 1671 1676.
118. Sciochetti, S. A.,, P. J. Piggot,, and G. Blakely. 2001. Identification and characterization of the dif site from Bacillus subtilis. J. Bacteriol. 83: 1058 1068.
119. Sciochetti, S. A.,, P. J. Piggot,, D. J. Sherratt,, and G. Blakely. 1999. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J. Bacteriol. 181: 6053 6062.
120. Seitz, H.,, C. Weigel,, and W. Messer. 2000. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol. Microbiol. 37: 1270 1279.
121. Seror, S. J.,, S. Casaregola,, F. Vannier,, N. Zouari,, M. Dahl,, and E. Boye. 1994. A mutant cysteinyl-tRNA synthetase affecting timing of chromosomal replication initiation in B. subtilis and conferring resistance to a protein kinase C inhibitor. EMBO J. 13: 2472 2480.
122. Sharpe, M. E.,, and J. Errington. 1996. The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol. Microbiol. 21: 501 509.
123. Sharpe, M. E.,, and J. Errington. 1998. A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co-ordination of chromosome segregation and cell division. Mol. Microbiol. 28: 981 990.
124. Sharpe, M. E.,, and J. Errington. 1995. Postseptational chromosome partitioning in bacteria. Proc. Natl. Acad. Sci. USA 92: 8630 8634.
125. Stein, A.,, and W. Firshein. 2000. Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex. J. Bocteriol. 182: 2119 2124.
126. Steiner, W.,, G. Liu,, W. D. Donachie,, and P. Kuempel. 1999. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31: 579 583.
127. Straight, A. F.,, A. S. Belmont,, C. C. Robinett,, and A. W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6: 1599 1608.
128. Sueoka, N. 1998. Cell membrane and chromosome replication in Bacillus subtilis. Prog. Nucleic Acid Res. Mol. Biol. 59: 35 53.
129. Sutton, M. D.,, K. M. Carr,, M. Vicente,, and J. M. Kaguni. 1998. Escherichia coli DnaA protein. J. Biol. Chem. 273: 34255 34262.
130. Teleman, A. A.,, P. L. Graumann,, D. C. H. Lin,, A. D. Grossman,, and R. Losick. 1998. Chromosome arrangement within a bacterium. Curr. Biol. 8: 1102 1109.
131. Turner, J.,, M. M. Hingorani,, Z. Kelman,, and M. O'Donnell. 1999. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18: 771 783.
132. Ullmann, S.,, and P. Duerre. 1996. Nucleotide sequence and molecular characterization of the DNA gyrase genes from Clostridium acetobutylicum. Anaerobe 2: 239 248.
133. Ullsperger, C.,, and N. R. Cozzarelli. 1996. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271: 31549 31555.
134. von Freiesleben, U.,, K. Rasmussen,, and M. Schaechter. 1994 - SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 14: 763 772.
135. Wang, L.,, and J. Lutkenhaus. 1998. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29: 731 740.
136. Webb, C. D.,, P. L. Graumann,, J. A. Kahana,, A. A. Teleman,, P. A. Silver,, and R. Losick. 1998. Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol. Microbiol. 28: 883 892.
137. Webb, C. D.,, A. Teleman,, S. Gordon,, A. Straight,, A. Belmont,, D. C. Lin,, A. D. Grossman,, A. Wright,, and R. Losick. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88: 667 674.
138. Weigel, C.,, A. Schmidt,, H. Seitz,, D. Tiingler,, M. Welzeck,, and W. Messer. 1999. The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Mol. Microbiol. 34: 53 66.
139. White, O., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans Rl. Science 286: 1571 1577.
140. Winston, S.,, and N. Sueoka. 1980. DNA-membrane association is necessary for initiation of chromosomal and plasmid replication in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77: 2834 2838.
141. Wold, S.,, K. Skarstad,, H. B. Steen,, T. Strokke,, and E. Boye. 1994. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J. 13: 2097 2102.
142. Wu, L. J.,, and J. Errington. 1994. Bacillus subtilis spoIlIE protein required for DNA segregation during asymmetric cell division. Science 264: 572 575.
143. Wu, L. J.,, and J. Errington. 1997. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16: 2161 2169.
144. Wu, L. J.,, P. J. Lewis,, R. Allmansberger,, P. M. Hauser,, and J. Errington. 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9: 1316 1326.
145. Yamaichi, Y.,, and H. Niki. 2000. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Nad. Acad. Sci. USA 97: 14656 14661.
146. Yamanaka, K.,, T. Ogura,, H. Niki,, and S. Hiraga. 1996. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli. Mol. Gen. Genet. 250: 241 251.
147. Yamazoe, M.,, T. Onogi,, Y. Sunako,, H. Niki,, K. Yamanaka,, T. Ichimura,, and S. Hiraga. 1999. Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J. 18: 5873 5884.
148. Yoshikawa, H.,, and R. G. Wake,. 1993. Initiation and termination of chromosome replication, p. 507 528. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.

Tables

Generic image for table
TABLE 1

genes involved in chromosomal DNA replication

The numbers indicate nucleotide positions of each gene (coding region) on the whole genome. To the left and right of the hyphen are positions of the first and last letters of start and stop codons, respectively. (See http://bacillus.genome.ad.jp/ or http://genolist.pasteur.fr/SubtiList/)

Personal communication from S.D. Ehrlich.

and constitute an operon ( ). is a member of the operon ( ). and belong to a putative operon ( ).

and , γ subunit is also produced from the gene by translational frameshifting and transcriptional slippage, respectively ( ). The existence of γ has not yet been confirmed in .

The core of DNA polymerase III consists of α, є, and θ subunits ( ). In , the activity of proofreading exonuclease (є) is included in the α subunit, and no homologs of θ are found.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Generic image for table
TABLE 2

Orthologous proteins involved in chromosome replication in gram-positive bacteria and

Orthologous genes were searched by BLAST 2.0 (Advanced) and specialized BLAST to Microbial Genomes (finished and unfinished) at the National Center for Biotechnology Information website using proteins as query. Where there were no orthologs in , proteins were used as query. The amino acid sequences of query proteins were obtained from http://bacillus.genome.ad.jp/ and http://dna.aist-nara.ac.jp/ecoli/ for and , respectively. Orthologous genes having alignment scores of >100 are listed except where noted. In , , , and , the presence of the orthologs is shown as “+” because the gene names were not available in the databases. When orthologs were not found but the genome sequencing had not yet been completed, the columns remain blank. Genome sequencing has finished in , but annotation of genes has not been done. Therefore, when orthologs are not detected, “−” is given in such columns.

Abbreviations of strains, with references: , ; , ; , ( ); , ; , ( ); , ( ); , ( ); , ; , ; , ( ); , ( ).

Alignment score, 30–50.

BLAST search (tblastn) identified a homologous gene here, but no coding sequence is assigned in the database.

Alignment score, 50–100.

In this organism, δ has been recently found, and a τδδ′ complex (without γ) actually acts as a clamp loader ( ).

These genes are named in their original databases but are renamed in this table.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error