Chapter 15 : Evasion of the Toxic Effects of Oxygen

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Evasion of the Toxic Effects of Oxygen, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap15-2.gif


Oxygen is an efficient terminal electron acceptor in respiratory pathways. In addition, toxic oxygen species (TOS) may be formed exogenously, for example, by chemical processes or through radiation. Microorganisms may neutralize TOS by mechanisms that include the enzymes superoxide dismutase (SOD), catalase, peroxidases, and a variety of reductases. Also, they may modulate intracellular oxygen concentration or redox potential, thus minimizing their exposure to oxidative damage, or minimize such damage through the evolution of cellular structures resistant to oxidative damage. There are two prominent enzymes that facilitate resistance to oxidative damage in , catalase (KatA) and SOD. In addition, there is genetic and biochemical evidence for the presence of at least two other enzyme systems involved in resistance to oxidative damage, alkylhydroperoxide reductase (Ahp) and thioredoxin-linked thiol peroxidase (scavengease). The different types of superoxide dismutase, Cu, Zn-SOD, Fe-SOD, and Mn-SOD, appear to support various functions in resistance to oxidative stress by cells. Insertional mutagenesis of in resulted in an increased sensitivity to oxidative stresses induced by cumene hydroperoxide and atmospheric air. The pentose phosphate pathway was one of the first complete biochemical pathways identified in , but its role in the maintenance of the redox status has not been investigated.

Citation: Hazell S, Harris A, Trend M. 2001. Evasion of the Toxic Effects of Oxygen, p 167-175. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Diagrammatic representation of and surrounding genes. Adapted from Manos et al. ( ) with permission.

Citation: Hazell S, Harris A, Trend M. 2001. Evasion of the Toxic Effects of Oxygen, p 167-175. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allan E.,, P. Mullany,, and S. Tabaqchali. 1998. Construction and characterisation of a Helicobacter pylori clpB mutant and role of the gene in stress response. J. Bacteriol. 180: 426 429.
2. Alm, R.,, L. Ling,, D. Moir,, B. King,, E. Brown,, P. Doig,, D. Smith,, B. Noonan,, B. Guild,, B. Dejonge,, G. Carmel,, P. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. Mills,, Q. Jiang,, D. Taylor,, G. Vovis,, and T. Trust. 1999. Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176 180.
3. Arner, E. S. J.,, M. Bjornstedt,, and A. Holmgren. 1995. 1-chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase—loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity. J. Biol. Chem. 270: 3479 3482.
4. Bagchi, D.,, G. Bhattacharya,, and S. J. Stohs. 1996. Production of reactive oxygen species by gastric cells in association with Helicobacter pylori. Free Radical Res. 24: 439 450.
5. Baillon, M. L.,, A. H. van Vliet,, J. M. Ketley,, C. Constantinidou,, and C. W. Penn. 1999. An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J. Bacteriol. 181: 4798 4804.
6. Battistoni, A.,, G. Donnarumma,, R. Greco,, P. Valenti,, and G. Rotilio. 1998. Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing. Biochem. Biophys. Res. Commun. 243: 804 807.
7. Beier, D.,, G. Spohn,, R. Rappuoli,, and V. Scarlato. 1997. Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation . J. Bacteriol. 179: 4676 4683.
8. Benhamida, A.,, W. K. Man,, N. Mcneil,, and J. Spencer. 1998. Histamine, xanthine oxidase generated oxygen derived free radicals and Helicobacter pylori in gastroduodenal inflammation and ulceration . Inflam. Res. 47: 193 199.
9. Bereswill, S.,, F. Lichte,, S. Greiner,, B. Waidner,, F. Fassbinder,, and M. Kist. 1999. The ferric uptake regulator (Fur) homologue of Helicobacter pylori: functional analysis of the coding gene and controlled production of the recombinant protein in Escherichia coli. Med. Microbiol. Immunol. 188: 31 40.
10. Bereswill, S.,, O. Neuner,, S. Strobel,, and M. Kist. 2000. Identification and molecular analysis of superoxide dismutase isoforms in Helicobacter pylori. FEMS Microbiol. Lett. 183: 241 245.
11. Bicout, D.,, M. Field,, P. Gouet,, and H. Jouve. 1995. Simulations of electron transfer in the NADPH-bound catalase from Proteus mirabilis PR. Biochim. Biophys. Acta 1252: 172 176.
12. Broide, E.,, E. Klinowski,, R. Varsano,, J. Eshchar,, M. Herbert,, and E. Scapa. 1996. Superoxide dismutase activity in Helicobacter py/on'-positive antral gastritis in children. J. Pediatr. Gastroenterol. Nutr. 23: 609 613.
13. Brown, D. M.,, J. A. Upcroft,, and P. Upcroft. 1993. Cysteine is the major low molecular weight thiol in Giardia duodenalis. Mol. Biochem. Parasitol. 61: 155 158.
14. Brown, D. M.,, J. A. Upcroft,, and P. Upcroft. 1996. A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis. Mol. Biochem. Parasitol. 83: 211 220.
15. Bruchhaus, I.,, S. Richter,, and E. Tannich. 1997. Removal of hydrogen peroxide by the 29 kDa protein of Entamoeba histolytica. Biochem. J. 326: 785 789.
16. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79 110.
17. Calzi, M. L.,, and L. B. Poole. 1997. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase. Biochemistry 36: 13357 13364.
18. Cantoni, O.,, G. Brandi,, A. Albano,, and F. Cattabeni. 1995. Action of cystine in the cytotoxic response of Escherichia coli cells exposed to hydrogen peroxide. Free Radical Res. 22: 275 283.
19. Carlberg, I.,, and B. Mannervik. 1980. Oxidase activity of glutathione reductase effected by 2,4,6-trinitrobenzenesulfonate. FEBS Lett. 115: 265 268.
20. Carlberg, I.,, L. Sahiman,, and B. Mannervik. 1985. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase. FEBS Lett. 180: 102 106.
21. Cha, M. K.,, H. K. Kim,, and I. H. Kim. 1995. Thioredoxin-linked "thiol peroxidase" from the periplasmic space of Escherichia coli. J. Biol. Chem. 270: 28635 28641.
22. Cha, M. K.,, H. K. Kim,, and I. H. Kim. 1996. Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J. Bacteriol. 178: 5610 5614.
23. Chance, B.,, H. Sies,, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527 605.
24. Crabrree, J. 1996. Immune and inflammatory responses to Helicobacter pylori infection. Scand. J. Gastroenterol. 31: 3 10.
25. Davies, G. R.,, N. Banatvala,, C. E. Collins,, M. T. Sheaff,, Y. Abdi,, L. Clements,, and D. S. Rampton. 1994. Relationship between infective load of Helicobacter pylori and reactive oxy gen metabolite production in antral mucosa. Scand. J. Gastroenterol. 29: 419 424.
26. Davies, G. R.,, N. J. Simmonds,, T. R. J. Stevens,, A. Grandison,, D. R. Blake,, and D. S. Rampton. 1992. Mucosal reactive oxygen metabolite production in duodenal ulcer disease. Gut 33: 1467 1472.
27. Degroote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazqueztorres,, Y. S. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects salmonella from product of phagocyte NADpH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Set. USA 94: 13997 14001.
28. Demple, B. 1996. Redox signalling and gene control in the Escherichia coli soxrs oxidative stress regulon—a review. Gene 179: 53 57.
29. Dhandayuthapani, S.,, M. Mudd,, and V. Deretic. 1997. Interactions of oxyr with the promoter region of the oxyr and ahpc genes from Mycobacterium leprae and Mycobacterium tuberculosis. J. Bacteriol. 179: 2401 2409.
30. Ellis, J. E.,, N. Yarlett,, D. Cole,, M.J. Humphreys,, and D. Lloyd. 1994. Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 140: 2489 2494.
31. Fahey, R. C.,, G. L. Newton,, B. Arrick,, T. Overdankbogart,, and S. B. Aley. 1984. Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224: 70 72.
32. Farr, S.,, D. Touati,, and T. Kogoma. 1988. Effects of oxygen stress on membrane functions in Escherichia coli: role of HP1 catalase. J. Bacteriol. 170: 1837 1842.
33. Farrant, J. L.,, A. Sansone,, J. R. Canvin,, M. J. Pallen,, P. R. Langford,, T. S. Wallis,, G. Dougan,, and J. S. Kroll. 1997. Bacterial copper and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol. Microbiol. 25: 785 796.
34. Fita, I.,, and M. Rossman. 1985. The NADPH binding site of beef liver catalase. Proc. Natl. Acad. Sci. USA 82: 1604 1608.
35. Forest, K. T.,, P. R. Langford,, J. S. Kroll,, and E. D. Getzoff. 2000. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. J. Mol. Biol. 296: 145 153.
36. Goldberg, I.,, and A. Hochman. 1989. Three different types of catalase in Klebsiella pneumoniae. Arch. Biochem. Biophys. 268: 124 128.
37. Gort, A. S.,, and J. A. Imlay. 1998. Balance between endogenous superoxide stress and antioxidant defenses. J. Bacteriol. 180: 1402 1410.
38. Gotz, J. M.,, J. L. Thio,, H. W. Verspaget,, G. J. A. Offerhaus,, I. Biemond,, C. B. H. W. Lamers,, and R. A. Veenendaal. 1997. Treatment of Helicobacter pylori infection favourably affects gastric mucosal superoxide dismutases. Gut 40: 591 596.
39. Gotz, J. M.,, C. I. Vankan,, H. W. Verspaget,, I. Biemond,, C. B. H. W. Lamers,, and R. A. Veenendaal. 1996. Gastric mucosal superoxide dismutases in Helicobacter pylori infection. Gut 38: 502 506.
40. Graeffwohlleben, H.,, S. Killat,, A. Banemann,, N. Guiso,, and R. Gross. 1997. Cloning and characterization of an MN-containing superoxide dismutase (Soda) of Bordetella pertussis. J. Bacteriol. 179: 2194 2201.
41. Harris, A.,, and S. Hazell. 1999. Evidence supporting post translational modification of the Helicobacter pylori catalase. Xllth International Workshop on Gastroduodenal Pathology and Helicobacter pylori. Helsinki, Finland 2-4 September 1999. Gut 45( Suppl. 111): A11.
42. Hazell, S. L., 1990. Urease and catalase as virulence factors of Helicobacter pylori, p. 3 13. In H. Menge,, M. Gregor,, G. N. J. Tytgat,, B. I. Marshall,, and C. I. A. M. McNulty (ed.), Helicobacter pylori 1990. Springer-Verlag, Berlin, Germany.
43. Hazell, S.,, D. Evans,, and D. Graham. 1991. Helicobacter pylori catalase. J. Gen. Microbiol. 137: 57 61.
44. Hillar, A.,, P. Nicholls,, J. Switala,, and P. Loewen. 1994. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast and Escherichia coli enzymes. Biochem. J. 300: 531 539.
45. Hochman, A.,, and A. Shemesh. 1987. Purification and characterisation of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J. Biol. Chem. 262: 6871 6876.
46. Juhnke, H.,, B. Krems,, P. Kotter,, and K. D. Entian. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 252: 456 464.
47. Keilin, D.,, and E. Hartree. 1945. Properties of azide-catalase. Biochemistry 39: 148 157.
48. Kim, H. K.,, S. J. Kim,, J. W. Lee,, J. W. Lee,, M. K. Cha,, and I. H. Kim. 1996. Identification of promoter in the 5'-flanking region of the E. coli thioredoxin-linked thiol peroxidase gene: evidence for the existence of oxygen-related transcriptional regulatory protein. Biochem. Biophys. Res. Commun. 221: 641 646.
49.. Kirkman, H.,, and G. Gaetani. 1984. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA 81: 4343 4347.
50. Kowalczykowski, S. C.,, D. A. Dixon,, A. K. Eggleston,, S. D. Lander,, and W. M. Rebrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58: 401 465.
51. Ksenzenko, M. Y.,, T. V. Vygodina,, V. Berka,, E. K. Rauge,, and A. A. Konstantinov. 1992. Cytochrome oxidase-catalyzed superoxide generation from hydrogen peroxide. FEBS Lett. 297: 63 66.
52. Lin, S.,, W. R. Cullen,, and D. J. Thomas. 1999. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem. Res. Toxicol. 12: 924 930.
53. Loewen, P., 1997. Bacterial catalases, p. 273 308. In J. G. Scandalios (ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Press, Plainview, N.Y..
54. Manos, J.,, T. Kolesnikow,, and S. Hazell. 1998. An investigation of the molecular basis of the spontaneous occurrence of a catalase negative phenotype in Helicobacter pylori. Helicobacter 4: 1 7.
55. Meir, E.,, and E. Yagil. 1985. Further characterization of the two catalases in Escherichia coli. Curr. Microbiol. 12: 315 320.
56. Mendz, G. L.,, and S. L. Hazell. 1991. Evidence for a pentose phosphate pathway in Helicobacter pylori. FEMS Microbiol. Lett. 84: 331 336.
57. Mori, M.,, H. Suzuki,, M. Suzuki,, A. Kai,, S. Miura,, and H. Ishii. 1997. Catalase and superoxide dismutase secreted from Helicobacter pylori. Helicobacter 2: 100 105.
58. Nadler, V.,, I. Goldberg,, and A. Hochman. 1986. Comparative study of bacterial catalases. Biochim. Biophys. Acta 882: 234 241.
59. Nalini, S.,, B. S. Ramakrishna,, A. Mohanty,, and K. A. Balasubramanian. 1992. Hydroxyl radical formation in human gastric juice . J. Gastroenterol. Hepatol. 7: 497 501.
60. Netto, L. E. S.,, H. Z. Chae,, S. W. Rang,, S. G. Rhee,, and E. R. Stadtman. 1997. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity . J. Biol. Chem. 271: 15315 15321.
61. Niimura, Y.,, L. B. Poole,, and V. Massey. 1995. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22 kDa protein component . J. Biol. Chem. 270: 25645 25650.
62. Niimura, Y.,, and V. Massey. 1996. Reaction mechanism of Amphibacillus xylanus NADH oxidase alkyl-hydroperoxide reductase flavoprotein. J. Biol. Chem. 271: 30459 30464.
63. Nishiyama, J.,, M. Mizuno,, J. Nasu,, T. Kiso,, T. Uesu,, T. Maga,, H. Okada,, J. Tomoda,, G. Yamada,, and T. Tsuji. 1996. Immunoelectron microscopic localization of copper-zinc superoxide dismutase in human gastric mucosa. Acta Histochem. Cytochem. 29: 215 220.
64. Nordberg, J.,, L. Zhong,, A. Holmgren,, and E. S. J. Arner. 1998. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J. Biol. Chem. 273: 10835 10842.
65. Odenbreit, S.,, B. Wieland,, and R. Haas. 1996. Cloning and genetic characterisation of Helicobacter pylori catalase and construction of a catalase deficient mutant. J. Bacteriol. 178: 6960 6967.
66. Pandolfi, P. P.,, F. Sonati,, R. Rivi,, P. Mason,, F. Grosveld,, and L. Luzzatto. 1995. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD)—G6PD is dispensable for pentose synthesis but essential for defence against oxidative stress. EMBO J. 14: 5209 5215.
67. Pesci, E.,, and C. Pickett. 1994. Genetic organization and enzymatic activity of a superoxide dismutase from the microaerophilic human pathogen, Helicobacter pylori. Gene 143: 111 116.
68. Phadnis, S.,, M. Parlow,, M. Levy,, D. liver,, C. Caulkins,, J. Connors,, and B. Dunn. 1996. Surface localisation of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64: 905 912.
69. Poole, L. B. 1996. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry 35: 65 75.
70. Poole, L. B.,, and H. R. Ellis. 1996. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium 1. Purification and enzymatic activities of overexpressed AHPF and AHPC proteins. Biochemistry 35: 56 64.
71. Radcliff, F. J.,, S. L. Hazell,, T. Kolesnikow,, C. Doidge,, and A. Lee. 1997. Catalase, a novel antigen for Helicobacter pylori vaccination. Infect. Immun. 65: 4668 4674.
72. Scrutton, N. S.,, A. Berry,, and P. N. Perham. 1990. Redesign of the coenzyme specificities of a dehydrogenase by protein engineering. Nature 343: 38 43.
73. Slekar, K.H.,, D.J. Kosman,,and V.C. Culotta. 1996. The yeast copper zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271: 28831 28836.
74. Smith, M. A.,, and D. I. Edwards. 1997. Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 39: 347 353.
75. Smith, M. A.,, and D. I. Edwards. 1995. Redox potential and oxygen concentration as factors in the susceptibility of Helicobacter pylori to nitroheterocyclic drugs. J. Antimicrob. Chemother. 35: 751 764.
76. Smith, N. C.,, C. Bryant,, and P. F. L. Boreham. 1988. Possible roles for pyruvate: ferredoxin oxidoreductase and thiol-depen-dent peroxidase and reductase activities in resistance to nitro-heterocyclic drugs in Giardia intestinalis. Int. J. Parasitol. 18: 991 997.
77. Spiegelhalder, C.,, B. Gerstenecker,, A. Kersten,, E. Schiltz,, and M. Kist. 1993. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect. Immun. 61: 5315 5325.
78. Storz, G.,, L. A. Tartaglia,, S. B. Farr,, and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6: 363 368.
79. Suerbaum, S.,, J.-M. Thilberg,, I. Kansau,, R. L. Ferrero,, and A. Labigne. 1994. Helicobacter pylori hspA-hspB heat shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol. Microbiol. 14: 959 974.
80. Teshima, S.,, S. Tsunawaki,, and K. Rokutan. 1999. Helicobacter pylori lipopolysaccharide enhances the expression of NADPH oxidase components in cultured guinea pig gastric mucosal cells. FEBS Lett. 452: 243 246.
81. Thompson, S. A.,, and M. J. Blaser. 1995. Isolation of the Helicobacter pylori reca gene and involvement of the reca region in resistance to low pH. Infect. Immun. 63: 2185 2193.
82. Tomb, J.-F.,, O. White,, A. Kerlavage,, R. Clayton,, G. Sutton,, R. Fleischmann,, K. Ketchum,, H. Klenk,, S. Gill,, B. Dougherty,, K. Nelson,, J. Quackbush,, L. Zhou,, E. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. Khalek,, A. Gludek,, K. McKenny,, L. Fitzegerald,, N. Lee,, M. Adams,, E. Hickey,, D. Berg,, J. Gocayne,, T. Utterback,, J. Peterson,, J. Kelley,, M. Cotton,, J. Weldman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. Hayes,, M. Borodovsky,, P. Karp,, H. Smith,, C. Fraser,, and J. Venter. 1997. The complete genome sequence of the gastric pathogen Helico bacter pylori. Nature 388: 539 547.
83. Touati, D. 2000. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373: 1 6.
84. van Vliet, A. H. M.,, M. L. A. Baillon,, C. W. Penn,, and J. M. Ketley. 1999. Campylobacter jejuni contains two fur homo-logs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181: 6371 6376.
85. van Vliet, A. H. M.,, K. G. Wooldridge,, and J. M. Ketley. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant . J. Bacteriol. 180: 5291 5298.
86. Vattanaviboon, P.,, T. Varaluksit,, and S. Mongkolsuk. 1999. Modulation of peroxide stress response by thiol reagents and the role of a redox sensor-transcription regulator, OxyR in mediating the response in Xanthomonas . FEMS Microbiol. Lett. 176: 471 476.
87. Viscogliosi, E.,, P. Delgadoviscogliosi,, D. Gerbod,, M. Dauchez,, S. Gratepanche,, A. J. P. Alix,, and D. Dive. 1998. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis. FEMS Microbiol. Lett. 161: 115 123.
88. Wan, X. Y.,, Y. Zhou,, Z. Y. Yan,, W. L. Wang,, Y. D. Hou,, and D.Y. Jin. 1997. Scavengase p20: a novel family of bacterial antioxidant enzymes. FEBS Lett. 407: 32 36.
89. Westblom, T.,, S. Phadnis,, W. Langenberg,, K. Yoneda,, E. Madan,, and B. Midkiff. 1992. Catalase negative mutants of Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis. 11: 522 526.
90. Windle, H. J.,, A. Fox,, D. N. Eidhin,, and D. Kelleher. 2000. The thioredoxin system of Helicobacter pylori. J. Biol. Chem. 275: 5081 5089.
91. Zhang, Z.,, P. J. Hillas,, and P. R. O. de Montellano. 1999. Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch. Biochem. Biophys. 363: 19 26.
92. Zhou, Y.,, X. Y. Wan,, H. L. Wang,, Z. Y. Yan,, Y. D. Hou,, and D. Y. Jin. 1997. Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins. Biochem. Biophys. Res. Commun. 233: 848 852.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error