1887

Chapter 28 : Genetic Exchange

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetic Exchange, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap28-2.gif

Abstract:

has a recombinational, or panmictic, population structure, which is indicative of frequent genetic exchange among strains. Horizontal gene exchange may occur via three classical mechanisms: natural transformation, conjugation, and transduction. The aim of this chapter is to review what is known about each of these mechanisms of exchange in the context of . Transformation is defined as the mechanism by which exogenous DNA is taken up by bacteria and the DNA becomes heritable. In a study, a chromosomal antibiotic resistance marker was transferred from one strain to another. Conjugation may provide an important method for performing genetic manipulations in strains resistant to transformation. The use of conjugation as a mechanism for DNA delivery may have the advantage of bypassing restriction barriers that could inhibit genetic exchange by natural transformation. Several potential barriers exist to genetic exchange for . Although the information regarding genetic exchange in continues to expand, there remain many unanswered questions. Finally, although there is one study that indicates gene transfer can occur in vivo based on strains isolated from a human subject, in vivo animal studies need to be performed to shed light on the significance of all three methods for genetic exchange in an environment that recapitulates human gastric mucosa. Ultimately, elucidating the mechanisms of genetic exchange in will lead to a better understanding of the immense diversity that exists, as well as further development of genetic tools for the study of .

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818005.chap28
1. Achtman, M.,, T. Azuma,, D. E. Berg,, Y. Ito,, G. Morelli,, Z. J. Pan,, S. Suerbaum,, S. A. Thompson,, A. van der Ende,, and L. J. van Doom. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32: 459 470.
2. Akopyanz, N.,, N. O. Bukanov,, T. U. Westblom,, S. Kresovich,, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137 5142.
3. Aim, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176 180.
4. Ando, T.,, D. A. Israel,, K. Kusugami,, and M. J. Blaser. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J. Bacteriol. 181: 5572 5580.
5. Ando, T.,, Q. Xu,, M. Torres,, K. Kusugami,, D. A. Israel,, and M.J. Blaser. 2000. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37: 1052 1065.
6. Atherton, J. C.,, P. Cao,, R. M. Peek, Jr.,, M. K. Tummuru,, M. J. Blaser,, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270: 17771 17777.
7. Avery, O. T.,, C. M. McLeod,, and M. McCarthy. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137 158.
8. Correia, F. F.,, S. Inouye,, and M. Inouye. 1986. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J. Bacteriol. 167: 1009 1015.
9. Danner, D. B.,, R. A. Deich,, K. L. Sisco,, and H. O. Smith. 1980. An 11-base pair sequence determines the specificity of DNA uptake in Haemophilus influenzae. Gene 11: 311 318.
10. Donahue, J. P.,, D. A. Israel,, R. M. Peek, Jr.,, M. J. Blaser,, and G. G. Miller. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37: 1066 1074.
11. Elkins, C.,, C. E. Thomas,, H. S. Seifert,, and P. F. Sparling. 1991. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173: 3911 3913.
12. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. FitzHugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L.I. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
13. Go, M. F.,, V. Kapur,, D. Y. Graham,, and J. M. Musser. 1996. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacteriol. 178: 3934 3938.
14. Goodgal, S. H. 1982. DNA uptake in Haemophilus transformation. Annu. Rev. Genet. 16: 169 192.
15. Goodman, S. D.,, and J. J. Scocca. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85: 6982 6986.
16. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113 159.
17. Haas, R.,, T. F. Meyer,, and J. P. van Putten. 1993. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol. Microbiol. 8: 753 760.
18. Heintschel von Heinegg, E.,, H. P. Nalik,, and E. N. Schmid. 1993. Characterisation of a Helicobacter pylori phage (HP1). J. Med. Microbiol. 38: 245 249.
19. Heuermann, D.,, and R. Haas. 1998. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257: 519 528.
20. Hofreuter, D.,, S. Odenbreit,, G. Henke,, and R. Haas. 1998. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28: 1027 1038.
21. Israel, D. A. Personal observation.
22. Israel, D. A.,, A. S. Lou,, and M. J. Blaser. 2000. Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol. Lett. 186: 275 280.
23. Ivic, A.,, K. J. Jakeman,, C. W. Penn,, and N. L. Brown. 1999. Type II restriction endonucleases from Helicobacter pylori include an enzyme with a novel recognition sequence. FEMS Microbiol. Lett. 179: 175 180.
24. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96: 3801 3806.
25. Jiang, Q.,, K. Hiratsuka,, and D. E. Taylor. 1996. Variability of gene order in different Helicobacter pylori strains contributes to genome diversity. Mol. Microbiol. 20: 833 842.
26. Kersulyte, D.,, H. Chalkauskas,, and D. E. Berg. 1999. Emergence of recombinant strains of Helicobacter pylori during human infection. Mol. Microbiol. 31: 31 43.
27. Kuipers, E. J.,, D. A. Israel,, J. G. Kusters,, and M. J. Blaser. 1998. Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori. J. Bacteriol. 180: 2901 2905.
28. Lederberg, J.,, and E. L. Tatum. 1953. Sex in bacteria; genetic studies 1945-1952. Science 118: 169 175.
29. Lopez, C. R.,, R.J. Owen,, and M. Desal. 1993. Differentiation between isolates of Helicobacter pylori by PCR-RFLP analysis of urease A and B genes and comparison with ribosomal RNA gene patterns. FEMS Microbiol. Lett. 110: 37 43.
30. Lorenz, M. G.,, K. Reipschlager,, and W. Wackernagel. 1992. Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Arch. Microbiol. 157: 355 360.
31. Maiden, M. C. 1998. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin. Infect. Dis. 27( Suppl. 1): S12 S20.
32. Majewski, J.,, and F. M. Cohan. 1999. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153: 1525 1533.
33. Majewski, J.,, and F. M. Cohan. 1998. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148: 13 18.
34. Majewski, J.,, P. Zawadzki,, P. Pickerill,, F. M. Cohan,, and C. G. Dowson. 2000. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182: 1016 1023.
35. Marshall, B. J.,, J. A. Armstrong,, G. J. Francis,, N. T. Nokes,, and S. H. Wee. 1987. Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis. Digestion 37( Suppl. 2): 16 30.
36. Nedenskov-Sorensen, P.,, G. Bukholm,, and K. Bovre. 1990. Natural competence for genetic transformation of Campylobacter pylori. J. Infect. Dis. 161: 365 366.
37. Palmen, R.,, B. Vosman,, P. Buijsman,, C. K. Breek,, and K. J. Hellingwerf. 1993. Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Ger. Microbiol. 139( Pt. 2): 295 305.
38. Parkhill, J.,, M. Achtman,, K. D. James,, S. D. Bentley,, C. Churcher,, S. R. Klee,, G. Morelli,, D. Basham,, D. Brown,, T. Chillingworth,, R. M. Davies,, P. Davis,, K. Devlin,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, K. Mungall,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, M. Simmonds,, J. Skelton,, S. Whitehead,, B. G. Spratt,, and B. G. Barrell. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404: 502 506.
39. Roberts, R. J.,, and D. Macelis. 2000. REBASE—restriction enzymes and methylases. Nucleic Acids Res. 28: 306 307.
40. Salaun, L.,, C. Audibert,, G. Le Lay,, C. Burucoa,, J. L. Fauchere,, and B. Picard. 1998. Panmictic structure of Helicobacter pylori demonstrated by the comparative study of six genetic markers. FEMS Microbiol. Lett. 161: 231 239.
41. Salyers, A. A.,, and C. F. Amabile-Cuevas. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41: 2321 2325.
42. Saunders, N. J.,, J. F. Peden,, and E. R. Moxon. 1999. Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145( Pt. 12): 3523 3528.
43. Schmid, E. N.,, G. von Recklinghausen,, and R. Ansorg. 1990. Bacteriophages in Helicobacter (Campylobacter) pylori. J. Med. Microbiol. 32: 101 104.
44. Scocca, J. J.,, R. L. Poland,, and K. C. Zoon. 1974. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J. Bacteriol. 118: 369 373.
45. Segal, E. D.,, and L. S. Tompkins. 1993. Transformation of Helicobacter pylori by electroporation. Biotechniques 14: 225 226.
46. Smeets, L. C.,, J. J. Bijlsma,, E. J. Kuipers,, C. M. Vandenbroucke-Grauls,, and J. G. Kusters. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 27: 99 102.
47. Smith, J. M.,, C. G. Dowson,, and B. G. Spratt. 1991. Localized sex in bacteria. Nature 349: 29 31.
48. Solnick, J. V.,, L. M. Hansen,, and M. Syvanen. 1997. The major sigma factor (RpoD) from Helicobacter pylori and other gram-negative bacteria shows an enhanced rate of divergence. J. Bacteriol. 179: 6196 6200.
49. Stein, D. C.,, S. Gregoire,, and A. Piekarowicz. 1988. Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae. Infect. Immun. 56: 112 116.
50. Suerbaum, S.,, J. M. Smith,, K. Bapumia,, G. Morelli,, N. H. Smith,, E. Kunstmann,, I. Dyrek,, and M. Achtman. 1998. Free recombination within Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95: 12619 12624.
51. Taylor, D. E.,, M. Eaton,, N. Chang,, and S. M. Salama. 1992. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J. Bacteriol. 174: 6800 6806.
52. Tettelin, H.,, N. J. Saunders,, J. Heidelberg,, A. C. Jeffries,, K. E. Nelson,, J. A. Eisen,, K. A. Ketchum,, D. W. Hood,, J. F. Peden,, R. J. Dodson,, W. C. Nelson,, M. L. Gwinn,, R. DeBoy,, J. D. Peterson,, E. K. Hickey,, D. H. Haft,, S. L. Salzberg,, O. White,, R. D. Fleischmann,, B. A. Dougherty,, T. Mason,, A. Ciecko,, D. S. Parksey,, E. Blair,, H. Cittone,, E. B. Clark,, M. D. Cotton,, T. R. Utterback,, H. Khouri,, H. Qin,, J. Vamathevan,, J. Gill,, V. Scarlato,, V. Masignani,, M. Pizza,, G. Grandi,, L. Sun,, H. O. Smith,, C. M. Eraser,, E. R. Moxon,, R. Rappuoli,, and J. C. Venter. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287: 1809 1815.
53. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539 547.
54. Tsuda, M.,, M. Karita,, and T. Nakazawa. 1993. Genetic transformation in Helicobacter pylori. Microbiol. Immunol. 37: 85 89.
55. van Doom, L. J.,, C. Figueiredo,, R. Sanna,, S. Pena,, P. Midolo,, E. K. Ng,, J. C. Atherton,, M. J. Blaser,, and W. G. Quint. 1998. Expanding allelic diversity of Helicobacter pylori vacA. J. Clin. Microbiol. 36: 2597 2603.
56. Vulic, M.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763 9767.
57. Wang, Y.,, K. P. Roos,, and D. E. Taylor. 1993. Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J. Gen. Microbiol. 139: 2485 2493.
58. Xu, Q.,, R. M. Peek, Jr.,, G. G. Miller,, and M. J. Blaser. 1997. The Helicobacter pylori genome is modified at CATG by the product of hypylM. J. Bacteriol. 179: 6807 6815.
59. Zinder, N. D.,, and J. Lederberg. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64: 679 699.

Tables

Generic image for table
Table 1

Characteristics of mechanisms for genetic exchange

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28
Generic image for table
Table 2

predicted proteins with putative roles in transformation or conjugation

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error