Chapter 3 : Identifying Novel Microbial Catalysis by Enrichment Culture and Screening

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap03-2.gif


Enrichment culture is an experimental method which has been used extensively by microbiologists to obtain bacteria in monotypic, or pure, culture. Enrichment culture has yielded key information on the metabolic activities and genes of thousands of microorganisms. A pure culture offers a range of techniques for revealing the molecular details of biodegradation. Enrichment culture techniques allow selective cultivation of one or more bacterial strains obtained from a complex mixture such as that found in most soils. The method typically relies on using a particular organic compound as the sole carbon source or, less frequently, as the nitrogen, sulfur, or phosphorus source. In enrichment cultures conducted for obtaining a desired biocatalyst, a given pathway or reaction might be assumed; the goal is to obtain an enzyme of a known type which is highly active with a given substrate or under a specific set of conditions. In this case, the screening method is important, as it might be necessary to look at hundreds or thousands of enzymes yielded in the first round of screening. Another approach is to test existing strains to determine if they have the enzyme of interest and will show high activity with the substrate of interest. In this context, a limited taxonomic range of organisms is typically screened. The fungi screened include , , , , and . These genera are known to produce a host of hydrolytic biodegradative enzymes of importance in industry. The enzymes include cellulase, lipase, and rennilase.

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 3.1
Figure 3.1

Flask for growing bacteria, with a glass bulb containing a volatile organic compound. The compound, as indicated by the green spots, distributes throughout the gas and liquid phases.

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.2
Figure 3.2

Schematic representation of the enrichment culture method. A typical starting inoculum, such as soil, is put into liquid culture, with a specific compound serving as the selective substrate. The number of bacteria capable of using the compound, indicated in green, increases during the enrichment process.

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.3
Figure 3.3

Petri plate of sp. strain ADP showing clearing zones around colonies due to metabolism of the herbicide atrazine present in crystalline form on the plate.

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Accashian, J. V.,, R. T. Vinopal,, B. J. Kim,, and B. F. Smets. 1998. Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacterial culture. Appl. Environ. Microbiol. 64: 3300 3304.
2. Aitken, M. D.,, W. T. Stringfellow,, R. D. Nagel,, C. Kazunga,, and S. H. Chen. 1998. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can. J. Microbiol. 44: 743 752.
3. Atlas, R. 1995. Handbook of Media for Environmental Microbiology. CRC Press, Boca Raton, Fla.
4. Bielefeldt, A. R.,, and H. D. Stensel. 1999. Biodegradation of aromatic compounds and TCE by a filamentous bacteria-dominated consortium. Biodegradation 10: 1 13.
5. Blasco, R.,, E. Moore,, V. Wray,, D. Pieper,, K. Timmis,, and F. Castillo. 1999. 3- Nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. J. Bacteriol. 181: 149 152.
6. Burland, S. M.,, and E. A. Edwards. 1999. Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529 533.
7. Chang, J. H.,, S. K. Rhee,, Y. K. Chang,, and H. N. Chang. 1998. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol. Prog. 14: 851 855.
8. Claus, D.,, and N. Walker. 1964. The decomposition of toluene by soil bacteria. J. Gen. Microbiol. 36: 107 122.
*9. Cook, A. M.,, H. Grossenbacher,, and R. Hutter. 1983. Isolation and cultivation of microbes with biodegradative potential. Experientia 39: 1191 1198.
10. Cutler, H. G.,, and S. J. Cutler. 1999. Biologically Active Natural Products: Agrochemicals. CRC Press, Boca Raton, Fla.
11. Cutter, L.,, K. R. Sowers,, and H. D. May. 1998. Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Appl. Environ. Microbiol. 64: 2966 2969.
12. Dhillon, J. K.,, and N. Shivaraman. 1999. Biodegradation of cyanide compounds by a Pseudomonas species (SI). Can. J. Microbiol. 45: 201 208.
13. Gamier, P. M.,, R. Auria,, C. Augur,, and S. Revah. 1999. Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl. Microbiol. Biotechnol. 51: 498 503.
14. Gibson, D. T.,, J. R. Koch,, and R. E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653 2662.
15. Gieg, L. M.,, D. L. Coy,, and P. M. Fedorak. 1999. Microbial mineralization of diisopropanolamine. Can. J. Microbiol. 45: 377 388.
16. Haggblom, M. M.,, and L. Y. Young. 1999. Anaerobic degradation of 3- halobenzoates by a denitrifying bacterium. Arch. Microbiol. 17: 230 236.
17. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rossello-Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65: 999 1004.
18. Heitkamp, M. A.,, W. Franklin,, and C. E. Cerniglia. 1988. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2549 2555.
19. Holoman, T. R.,, M. A. Elberson,, L. A. Cutter,, H. D. May,, and K. R. Sowers. 1998. Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-orffo-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl. Environ. Microbiol. 64: 3359 3367.
20. Hubert, C.,, Y. Shen,, and G. Voordouw. 1999. Composition of toluenedegrading microbial communities from soil at different concentrations of toluene. Appl. Environ. Microbiol. 65: 3064 3070.
21. Iurescia, S.,, A. M. Marconi,, D. Tofani,, A. Gambacorta,, A. Paterno,, C. Devirgillis,, M. J. van der Werf,, and E. Zennaro. 1999. Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain Ml. Appl. Environ. Microbiol. 65: 2871 2876.
22. Iwaki, H.,, M. Shimizu,, T. Tokuyama,, and Y. Hasegawa. 1999. Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A. Appl. Environ. Microbiol. 65: 2232 2234.
23. Kengen, S. W.,, C. G. Breidenbach,, A. Felske,, A. J. Stams,, G. Schraa,, and W. M. de Vos. 1999. Reductive dechlorination of tetrachloroethene to cis-1,2- dichloroethene by a thermophilic anaerobic enrichment culture. Appl. Environ. Microbiol. 65: 2312 2316.
24. Kennes, C.,, M. C. Veiga,, and L. Bhatnagar. 1998. Methanogenic and perchloroethylene- dechlorinating activity of anaerobic granular sludge. Appl. Microbiol. Biotechnol. 50: 484 488.
25. Kiyohara, H.,, and K. Nagao. 1978. The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol. 105: 69 75.
26. Kleerebezem, R.,, P. L. W. Hulshoff,, and G. Lettinga. 1999. Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl. Environ. Microbiol. 65: 1152 1160.
27. Kleinheinz, G. T.,, S. T. Bagley,, W. P. St.John, , J. R. Rughani,, and G. D. McGinnis. 1999. Characterization of a/p/ifl-pinene-degrading microorganisms Enrichment Culture and Screening 37 and application to a bench-scale biofiltration. Arch. Environ. Contam. Toxicol. 37: 151 157.
28. Kniemeyer, O.,, C. Probian,, R. Rossello-Mora,, and J. Harder. 1999. Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl. Environ. Microbiol. 65: 3319 3324.
29. Kontchou, C. Y.,, and N. Gschwind. 1999. Biodegradation of s-triazine compounds by a stable mixed bacterial community. Exotoxicol. Environ. Saf. 43: 47 56.
30. Le Campion, L.,, A. Vandais,, and J. Ouazzani. 1999. Microbial remediation of NTO in aqueous industrial wastes. FEMS Microbiol. Lett. 176: 197 203.
31. Lie, T. J.,, M. L. Clawson,, W. Godchaux,, and E. R. Leadbetter. 1999. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl. Environ. Microbiol. 65: 3328 3334.
32. Lomans, B. P.,, R. Maas,, R. Luderer,, H. J. Op den Camp,, A. Pol,, C. van der Drift,, and G. D. Vogels. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 65: 3641 3650.
33. Mandelbaum, R. T.,, D. L. Allan,, and L. P. Wackett. 1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol. 61: 1451 1457.
34. Mandelbaum, R. T.,, L. P. Wackett,, and D. L. Allan. 1993. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl. Environ. Microbiol. 59: 1695 1701.
35. Mikosch, C. A.,, K. Denger,, E. M. Schafer,, and A. M. Cook. 1999. Anaerobic oxidation of cysteate: degradation via L-cysteate:2-oxoglutarate aminotransferase in Paracoccus pantotrophus. Microbiology 145: 1153 1160.
36. Molina, M.,, R. Araujo,, and R. E. Hodson. 1999. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can. J. Microbiol. 45: 520 529.
37. Nelson, M. J. K.,, S. O. Montgomery,, W. R. Mahaffey,, and P. H. Pritchard. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53: 949 954.
38. Nelson, M. J. K.,, S. O. Montgomery,, E. J. O'Neill,, and P. H. Pritchard. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52: 383 384.
39. O'Loughlin, E. J ., , G. K. Sims,, and S. J. Traina. 1999. Biodegradation of 2- methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation 10: 93 104.
40.Omura, S. 1992. The Search for Bioactive Compounds from Microorganisms. Springer-Verlag, New York, N.Y.
41. Park, H. S.,, S. J. Lim,, Y. K. Chang,, A. G. Livingston,, and H. S. Kim. 1999. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl. Environ. Microbiol. 65: 1083 1091.
42. Phelps, C. D.,, and L. Y. Young. 1999. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. Biodegradation 10: 15 25.
*43. Poindexter, J. S.,, and E. R. Leadbetter,. 1986. Enrichment cultures in bacterial ecology, p. 229 260. In J. S. Poindexter, and E. R. Leadbetter (ed.), Bacteria in Nature, vol. 2. Plenum Press, New York, N.Y.
44. Ramanathan, M. P.,, and D. Lalithakumari. 1999. Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl. Biochem. Biotechnol. 80: 1 12.
45. Roberts, S. J.,, A. Walker,, L. Cox,, and S. J. Welch. 1998. Isolation of isoproturondegrading bacteria from treated soil via three different routes. J. Appl. Microbiol. 85: 309 316.
46. Sahoo, A.,, N. Sethunathan,, and P. K. Sahoo. 1998. Microbial degradation of carbosulfan by carbosulfan- and carbofuran-retreated rice soil suspension. J. Environ. Sci. Health B 33: 369 379.
47. Savithiry, N.,, D. Gage,, W. Fu,, and P. Oriel. 1998. Degradation of pinene by Bacillus pallidus BR425. Biodegradation 9: 337 341.
48. Selifonov, S. A.,, P. J. Chapman,, S. B. Akkerman,, J. E. Gurst,, J. M. Bortiatynski,, M. A. Nanny,, and P. G. Hatcher. 1998. Use of 1 3C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [l-1 3C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria. Appl. Environ. Microbiol. 64: 1447 1453.
49. Stanier, R. Y. 1947. Simultaneous adaptation: a new technique for the study of metabolic pathways. J. Bacteriol. 54: 339 348.
50. Sukesan, S.,, and M. E. Watwood. 1998. Effects of hydrocarbon enrichment on trichloroethylene biodegradation and microbial populations in finished compost. J. Appl. Microbiol. 85: 635 642.
51. Suyama, T.,, H. Hosoya,, and Y. Tokiawa. 1998. Bacterial isolates degrading aliphatic polycarbonates. FEMS Microbiol. Lett. 161: 255 261.
52. Tan, N. C.,, F. X. Prenafeta-Boldu,, J. L. Opsteeg,, G. Lettinga,, and J. A. Field. 1999. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl. Microbiol. Biotechnol. 51: 865 871.
53. Tanghe, T.,, W. Dhooge,, and W. Verstraete. 1999. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbiol. 65: 746 751.
54.. van Hylckama Vlieg, J. E.,, J. Kingma,, A. J. van den Wijngaard,, and D. B. Janssen. 1998. A glutathione S-transferase with activity towards cis-1,2- dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl. Environ. Microbiol. 64: 2800 2805.
55. van Schie, P. M.,, and L. Y. Young. 1998. Isolation and characterization of phenol-degrading denitrifying bacteria. Appl. Environ. Microbiol. 64: 2432 2438.
56. Veiga, M. C.,, M. Fraga,, L. Armor,, and C. Kennes. 1999. Biofilter performance and characterization of a biocatalyst degrading alkylbenzene gases. Biodegradation 10: 169 176.
57. Wagner-Dobler, I.,, A. Bennasar,, M. Vancanneyt,, C. Strompl,, I. Brummer,, C. Eichner,, I. Grammel,, and E. R. Moore. 1998. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl. Environ. Microbiol. 64: 3014 3022.
58. Watanabe, K.,, M. Teramoto,, H. Futamata,, and S. Harayama. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol. 64: 4396 4402.
59. Zhao, J. S.,, and O. P. Ward. 1999. Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge. Can. J. Microbiol. 45: 427 432.


Generic image for table
Table 3.1

Substrates used in enrichment methods to obtain bacteria

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3
Generic image for table
Table 3.2

Important conditions influencing the microbial types obtained from soil or water via enrichment culture

Citation: Wackett L, Hershberger C. 2001. Identifying Novel Microbial Catalysis by Enrichment Culture and Screening, p 27-38. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error