1887

Chapter 6 : Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap06-2.gif

Abstract:

This chapter focuses on single-enzyme-catalyzed biodegradation reactions and other physiological processes that microbes use to compete successfully for scarce nutritional resources in soil and water. It is likely that a lot of reactions that fall under the general heading of biodegradation are fortuitous. There are numerous examples of this with insects or fungi that biosynthesize broad-specificity enzymes, such as cytochrome P450 monooxygenases, for detoxifying biological toxins. For example, plant-pathogenic fungi are sometimes warded off with toxic chemicals manufactured in the leaves of the plant being attacked. Fungal cytochrome P450 monooxygenases oxidize an enormous array of compounds, some of which are unlikely to prove toxic, and thus these reactions may well fall into the fortuitous category. Catabolic enzymes are so useful in large part because many have been found. In fact, catabolic enzymes may be the major group of enzymes catalyzing unique reactions found on the Earth. Additionally, there are the known catabolic enzymes which catabolize industrial chemicals. The role of biosurfactants in microbial metabolism has been investigated primarily with petroleum or with purified alkanes. Surfactants are compounds which are amphipathic; that is, they contain hydrophilic and hydrophobic chemical groups linked together in the same molecule. People use surfactants as soaps and detergents and as emulsifying agents in food. The sensing of chemical compounds starts with binding at the cell membrane to a methyl-accepting chemotaxis protein (MCP). The extracellular sensing is transmitted through the MCP, which spans the membrane, to its cytoplasmic domain.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6

Key Concept Ranking

Amide Bond Formation
0.521613
Polycyclic Aromatic Hydrocarbons
0.466008
Cell Wall Components
0.40986508
0.521613
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 6.1
Figure 6.1

Metabolism of alkylbenzenes showing the commonality in processing reactions with release of correspondingly larger organic acids with larger alkyl side chains.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.2
Figure 6.2

Space-filling model of the active site of naphthalene dioxygenase from The redox active groups, the iron-sulfur cluster and the mononuclear- iron center, are shown in green. (Courtesy of R. E. Parales and D. T. Gibson.)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.3
Figure 6.3

Permeation rates across a lipid membrane bilayer by different compounds. Those compounds further to the right transfer across a membrane correspondingly faster.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.4
Figure 6.4

Stereo view of bacterial cells adhering to an oil droplet. (From reference with permission.)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.5
Figure 6.5

Bacterial sensing and chemotaxis (top) are comparable to the human sense of smell (bottom)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818036.chap6
1. Abraham, W. R.,, H. Meyer,, and M. Yakomov. 1998. Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim. Biophys. Acta 1393: 57 62.
2. Arima, K.,, A. Kakinuma,, and G. Tamura. 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488 494.
3. Barkay, T.,, S. Navon-Venezia,, E. Z. Ron,, and E. Rosenberg. 1999. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65: 2697 2702.
4. Baumann, A.,, W. Schimmack,, H. Steindl,, and K. Bunzl. 1996. Association of fallout radiocesium with soil constituents: effect of sterilization of forest soils by fumigation with chloroform. Radiat. Environ. Biophys. 35: 229 233.
5. Biichner, E. 1897. Alcoholische Garung ohne Hefezellen. Ber. Dtsch. Chem. Ges. 30: 117 124.
6. Burd, G.,, and O. P. Ward. 1996. Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can. J. Microbiol. 42: 243 251.
7. Cech, T. R. 1993. The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135: 33 36.
8. Cooper, D. G.,, and D. A. Paddock. 1984. Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 47: 173 176.
9. Cooper, D. G.,, J. E. Zajic,, and D. E Gerson. 1979. Production of surface-active lipids by Corynebacterium lepus. Appl. Environ. Microbiol. 37: 4 10.
10. Dagley, S., 1979. Summary of the conference, p. 534 542. In A. W. Bourquin, and P. H. Pritchard (ed.), Proceedings of the Workshop on Microbial Degradation of Pollutants in Marine Environments. United States Environmental Protection Agency, Washington, D.C..
11. D'Argenio, D. A.,, A. Segura,, W. M. Coco,, P. V. Bunz,, and L. N. Ornston. 1999. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J. Bacteriol. 181: 3505 3515.
12. Esch, S. W.,, M. D. Morton,, T. D. Williams,, and C. S. Buller. 1999. A novel trisaccharide glycolipid biosurfactant containing trehalose bears ester-linked hexanoate, succinate, and acyloxyacyl moieties: NMR and MS characterization of the underivatized structure. Carbohydr. Res. 319: 112 123.
13. Finnerty, W. R.,, and M. E. Singer. 1984. A microbial biosurfactant—physiology, biochemistry, and applications. Dev. Ind. Microbiol. 25: 31 46.
*14.. Georgiou, G.,, S. C. Lin,, and M. M. Sharma. 1992. Surface-active compounds from microorganisms. Bio/Technology 10: 60 65.
15. Gibson, D. T. 1993. Biodegradation, biotransformation, and the Belmont. J. Ind. Microbiol. 12: 1 12.
16. Grau, A.,, J. C. Gomez Fernandez,, F. Peypoux,, and A. Ortiz. 1999. A study on the interaction of surfactin with phospholipid vesicles. Biochim. Biophys. Acta 141: 307 319.
17. Gregg, K.,, B. Hamdorf,, K. Henderson,, J. Kopecny,, and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl. Environ. Microbiol. 64: 3496 3498.
18. Grimm, A. C.,, and C. S. Harwood. 1997. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol. 63: 4111 4115.
19. Grimm, A. C.,, and C. S. Harwood. 1999. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol. 181: 3310 3316.
20. Guerra-Santos, L. H.,, O. Kappell,, and A. Fiechter. 1986. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443 448.
21. Harbourne, J. 1988. Ecological Biochemistry, 3rd ed. Academic Press, New York, N.Y..
22. Harkness, M. R.,, J. B. McDermott,, D. A. Abramowicz,, J. J. Salvo,, W. P. Flanagan,, M. L. Stephens,, F. J. Mondello,, R. J. May,, J. H. Lobos,, K. M. Caroll,, M. J. Brennan,, A. A. Bracco,, K. M. Fish,, G. L. Warner,, P. R. Wilson,, D. K. Dietrich,, D. T. Lin,, C. B. Morgan,, and W. L. Gately. 1993. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259: 503 507.
23. Harwood, C. S.,, N. N. Nichols,, M. K. Kim,, J. L. Ditty,, and R. E. Parales. 1994. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol. 176: 6479 6488.
24. Herman, D. C.,, Y. Zhang,, and R. M. Miller. 1997. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol. 63: 3622 3627.
25. Hommel, R.,, and C. Ratledge. 1990. Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol. Lett. 58: 183 186.
26. Hommel, R.,, O. Stuwer,, W. Stuber,, D. Haferburg,, and H.-P. Kleber. 1987. Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol. Biotechnol. 26: 199 205.
27. Horowitz, S.,, J. N. Gilbert,, and W. M. Griffin. 1990. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J. Ind. Microbiol. 6: 243 248.
28. Hulbert, M. H.,, and S. Krawiec. 1977. Cometabolism: a critique. J. Theor. Biol. 69: 287 292.
29. Hutchison, M. L.,, and D. C. Gross. 1997. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol. Plant-Microbe Interact. 10: 347 354.
30. Inoue, A.,, and K. Horikoshi. 1989. A Pseudomonas that thrives in high concentration of toluene. Nature 338: 264 266.
31. Jenneman, G. E.,, M. J. Mclnerney,, R. M. Knapp,, J. B. Clark,, J. M. Ferro,, D. E. Revus,, and D. E. Menzie. 1983. A halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. 24: 485 492.
*32.. Kauppi, B.,, K. Lee,, E. Carradano,, R. E. Parales,, D. T. Gibson,, H. Eklund,, and S. Ramaswamy. 1998. Structure of an aromatic-ring-hydroxylating dioxygenase— naphthalene 1,2-dioxygenase. Structure 6: 571 586.
33. Kelly, D. P. 1968. Fluoroacetate toxicity in Thiobacillus neapolitanus and its relevance to the problem of obligate chemoautotrophy. Arch. Mikrobiol. 6: 59 76.
34. Kieboom, J.,, J. T. Dennis,, J. A. M. de Bont,, and G. J. Zylstra. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273: 85 91.
35. Kieboom, J.,, J. J . Dennis,, G. J. Zylstra,, and J. A. M. de Bont. 1998. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180: 6769 6772.
36. Kim, J. S.,, M. Powalla,, S. Lang,, F. Wagner,, H. Lunsdorf,, and V. Wray. 1990. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J. Biotechnol. 13: 257 266.
37. Kowall, M.,, J. Vater,, B. Kluge,, T. Stein,, P. Franke,, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 204: 1 8.
38. Kretschmer, A.,, H. Bock,, and F. Wagner. 1982. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 44: 864 870.
39. Lang, S.,, and J. C. Philp. 1998. Surface-active lipids in rhodococci. Antonie Leeuwenhoek 74: 59 70.
40. Lee, Y.,, S. Y. Lee,, and J. W. Yang. 1999. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci. Biotechnol. Biochem. 63: 946 947.
*41.. Lengler, J. W.,, and P. W. Postma,. 1999. Global regulatory networks and signal transduction pathways, p. 491 523. In J. W. Lengler,, G. Drews,, and H. G. Schlegel (ed.), Biology of the Prokaryotes. Blackwell Science, Stuttgart, Germany.
42. Lindum, P. W.,, U. Anthoni,, C. Christophersen,, L. Eberl,, S. Molin,, and M. Givskov. 1998. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384 6388.
*43.. Lipscomb, J. D. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48: 371 399.
44. Liu, J. Q.,, T. Kurihara,, S. Ichiyama,, M. Miyagi,, S. Tsunasawa,, H. Kawasaki,, K. Soda,, and N. Esaki. 1998. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B. J. Biol. Chem. 273: 30897 30902.
45. Macdonald, C. R.,, D. G. Cooper,, and J. E. Zajic. 1981. Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41: 117 123.
46. Maloney, A. P.,, and H. D. Van Etten. 1994. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol. Gen. Genet. 243: 506 514.
47. Matsuyama, T.,, M. Fujita,, and I. Yano. 1985. Wetting agent produced by Serratia marcescens. FEMS Microbiol. Lett. 28: 125 129.
48. Matsuyama, T.,, K. Kaneda,, I. Ishizuka,, T. Toida,, and I. Yano. 1990. Surfaceactive novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J. Bacteriol. 172: 3015 3022.
49. Morikawa, M.,, H. Daido,, T. Takao,, S. Murata,, Y. Shimonishi,, and T. Imanaka. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175: 6459 6466.
50. Nakano, M. M.,, N. Corbell,, J. Besson,, and P. Zuber. 1992. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet. 232: 313 321.
51. Navon-Venezia, S.,, Z. Zosim,, A. Gottlieb,, R. Legmann,, S. Carmell,, E. Z. Ron,, and E. Rosenberg. 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61: 3240 3244.
52. Neu, T. R.,, T. Hartner,, and K. Poralla. 1990. Surface active properties of viscosin: a peptidolipid antibiotic. Appl. Microbiol. Biotechnol. 32: 518 520.
53. Nielsen, T. H.,, C. Christophersen,, U. Anthoni,, and J. Sorensen. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 87: 80 90.
*54.. Pedrotta, V.,, and B. Witholt. 1999. Isolation and characterization of the cisfrans- unsaturated fatty acid isomerase of Pseudomonas oleovorans GPol2. J. Bacteriol. 181: 3256 3261.
55. Persson, A.,, E. Osterberg,, and M. Dostalek. 1988. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl. Microbiol. Biotechnol. 29: 1 4.
56. Ramsay, B.,, J. McCarthy,, L. Guerra-Santos,, O. Kappeli,, A. Felchter,, and A. Margaritis. 1988. Biosurfactant production and diauxic growth oi Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can. J . Microbiol. 34: 1209 1212.
57. Resnick, S. M.,, K. Lee,, and D. T. Gibson. 1996. Diverse reactions caused by naphthalenedioxygenase from Pseudomonas sp. strain NCIB9816. J. Ind. Microbiol. 17: 438 457.
58. Rokita, S. E.,, P. A. Srere,, and C. T. Walsh. 1982. 3-Fluoro-3-deoxycitrate: a probe for mechanistic study of citrate-utilizing enzymes. Biochemistry 21: 3765 3774.
59. Stryer, L. 1988. Biochemistry, 3rd ed. W. H. Freeman and Company, New York, N.Y..
60. Van Dyke, M. I.,, P. Couture,, M. Brauer,, H. Lee,, and J. T. Trevors. 1993. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol. 39: 1071 1078.
61. Westheimer, F. 1987. Why nature chose phosphates. Science 235: 1173 1178.
62. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578 6583.
63. Whyte, L. G.,, S. J. Slagman,, F. Pietrantonio,, L. Bourbonnier,, S. F. Koval,, J. R. Lawrence,, W. E. Inniss,, and C. W. Greer. 1999. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol. 65: 2961 2968.
64. Yakimov, M. M.,, H. L. Fredrickson,, and K. N. Timmis. 1996. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol. Appl. Biochem. 23: 13 18.
65. Yakimov, M. M.,, L. Giuliano,, V. Bruni,, S. Scarfi,, and P. N. Golyshin. 1999. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 22: 249 256.
66. Zajic, J. E.,, H. Guignard,, and D. F. Gerson. 1977. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol. Bioeng. 19: 1303 1320.
67. Zhang, Y.,, and R. M. Miller. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 3276 3282.
68. Zylstra, G. J.,, L. P. Wackett,, and D. T. Gibson. 1989. Degradation of trichloroethylene by Pseudomonas putida Fl toluene dioxygenase cloned in Escherichia coli. Appl. Environ. Microbiol. 55: 3162 3166.

Tables

Generic image for table
Table 6.1

EC major divisions and distribution of enzymes in the UM-BBD as of 1 September 1999

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Generic image for table
Table 6.2

Reactions catalyzed by naphthalene 1,2-dioxygenase

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Generic image for table
Table 6.3

Examples of biosurfactant-producing microbes

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error