Chapter 2 : Molecular Basis of Adherence of to Biomaterials

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Molecular Basis of Adherence of to Biomaterials, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap02-2.gif


This chapter focuses on the fibronectin-binding proteins (FnBPs) and fibrinogen-binding proteins (clumping factors, Clf) of . The role of the proteins in promoting bacterial adherence to immobilized ligand has been defined using site-specific adhesin-defective mutants that are compared with the parental strains in in vitro and in vivo models of foreign-body infection. The and genes of the laboratory strain 8325-4 have been inactivated by allelic replacement. This double mutant and the mutant carrying a multicopy plasmid that causes overexpression of FnBPA have allowed the role of FnBPs in promoting bacterial interactions with fibronectin to be defined. The mutant of strain 8325-4 was also defective in adherence to coverslips removed from subcutaneous chambers implanted in guinea pigs. The growth conditions used to prepare the bacterial cells for the adherence and virulence experiments would have prevented expression of the second clumping factor ClfB. The ClfA mutant was defective in adherence to immobilized fibrinogen, while the complemented mutant adhered as well as the wild-type. The increasing incidence of multiple-antibiotic-resistant strains causing nosocomial infections has increased the urgency for alternative approaches to prevention and therapy. The problem is compounded by the recent emergence of methicillin-resistant (MRSA) with intermediate sensitivity to vancomycin. In conclusion, there are several experimental vaccines that provide clear protection against infections in animals. The challenge is to determine if any of these will protect human patients against nosocomial disease and, in particular, biomaterial-related infection.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Organization of surface proteins of . The domain organization of the fibronectin-binding protein A (FnbA), the collagen-binding protein (Cna), fibrinogen-binding protein (ClfA), and protein A (Spa). The signal sequences (S) are removed during secretion across the cytoplasmic membrane. Each protein has common features at the C terminus indicated by the cross-hatched box (LPXTG motif, hydrophobic region, and positively charged residues). Regions W and R are peptidoglycan spanning regions.* indicates position of ligand-binding domains.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Organization of the Clf family of surface proteins. The domain organization of the fibrinogen-binding proteins Clf A and ClfB. The proteins have a repeated region R composed mainly of Ser-Asp dipeptides. S, signal sequence; M, membrane anchor domain including LPXTG motif, hydrophobic residues, and positively charged residues at the C terminus. Within the ligand-binding A regions is the TYTFTDYVD motif (thick broken line) and the DXSXS (MIDAS) motif (thin broken line). The thick continuous line represents an EF-hand loop that is present in region A of ClfA.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Interaction of the ligand-binding region of fibronectin-binding proteins with fibronectin. The wavy line represents the ligand-binding D1-D2-D3 repeats of FnBPs, which do not have secondary structure. The protein interacts with the type I modules of fibronectin and takes on discernable secondary structure with the formation of neoepitopes (ligand-induced binding-site epitopes).

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Structure of fibrinogen. Schematic diagram showing the structural organization of fibrinogen. The globular D domains comprise the C-terminal residues of the α-, β-, and γ-chains. The C terminus of the γ-chain protrudes from the globular γ-module. Binding sites for ClfA and integrins are shown. The E domain contains the N-terminal residues of the α-, β-, and γ-chains cross-linked by disulfide bonds.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bairoch, A. 1989. PROSITE: a Dictionary of Protein Sites and Patterns, 4th ed. University of Geneva, Geneva, Switzerland.
2. Brennan, F. R.,, T. Beliaby,, S. M. Helliwell,, T. D. Jones,, S. Kamstrup,, K. Dalsgaard,, J. J. Flock,, and W. D. O. Hamilton. 1999. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J. Virol. 73: 930 938.
3. Brown, E. M.,, P. M. Vassiley,, and S. C. Hebert 1995. Calcium ions as extracellular messengers. Cell 83: 679 682.
4. Casolini, F.,, L. Visai,, D. Joh,, G. G. Conaldi,, A. Toniolo,, M. Hook,, and P. Speziale. 1998. Antibody response to fibronectin-binding MSCRAMM in patients diagnosed with Staphylococcus aureus infections. Infect. Immunl. 66: 5433 5442.
5. Doolittle, R. F.,, G. Spraggon,, and S. J. Everse. 1998. Three-dimensional structural studies on fragments of fibrinogen and fibrin. Curr. Opin. Struct. Biol. 8: 792 798.
6. Fischer, B.,, P. Vaudaux,, M. Magnin,, Y. El Mestikawy,, R. A. Proctor,, D. P. Lew,, and H. Vasey. 1996. Novel animal model for studying the molecular mechanisms of bacterial adhesion to bone-implanted metallic devices: role of fibronectin in Staphylococcus aureus adhesion. J. Orthopaed. Res. 14: 914 920.
7. Flock, J. I.,, S. A. Hienz,, A. Heimdahl,, and T. Schennings. 1996. Reconsideration of the role of fibronectin binding in endocarditis caused by Staphylococcus aureus. Infect. Immunl. 64: 1876 1878.
8. Foster, T. J.,, and M. Höök. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6: 484 488.
9. Gemmell, C. G.,, R. Tree,, A. Patel,, M. O'Reilly,, and T. J. Foster. 1990. Susceptibility to opsonophagocytosis of protein A, alpha-haemolysin and beta-toxin deficient mutants of Staphylococcus aureus isolated by allele-replacement. Zentralbl. Bakteriol. 21( Suppl.): 273 277.
10. Greene, C.,, D. McDevitt,, P. Francois,, P. E. Vaudaux,, D. Lew,, and T. J. Foster. 1995. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of the fnp genes. Mol. Microbiol. 17: 1143 1152.
11. Hartford, O.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1997. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the staphylococcal surface. Mol. Microbiol. 25: 1065 1076.
12. Hawiger, J. 1995. Adhesive ends of fibrinogen and its anti-adhesive peptides: the end of a saga? Semin. Haematol. 32: 99 109.
13. House-Pompeo, J.,, Y. Xu,, D. Joh,, P. Speziale,, and M. Hook. 1996. Conformational changes in the fibronectin binding MSCRAMM are induced by ligand binding. J. Biol. Chem. 271: 1379 1384.
14. Hynes, R., 1993. Fibronectins, p. 56 58. In T. Kreis, and R. Vale (ed.), Guidebook to the Extracellular Matrix and Adhesion Proteins. Oxford University Press, Oxford, United Kingdom.
15. Joh, H. J.,, K. House-Pompeo,, J. M. Patti,, S. Gurusiddappa,, and M. Hook. 1994. Fibronectin receptors from Gram-positive bacteria: comparison of active sites. Biochemistry 33: 6086 6092.
16. Joh, D.,, P. Speziale,, S. Gurusiddappa,, J. Manor,, and M. Hook. 1998. Multiple specificities of the staphylococcal and streptococcal fibronectin-binding microbial surface components recognizing adhesive matrix molecules. Eur. J. Biochem. 258: 897 905.
17. Jönsson, K.,, C. Signás,, H. P. Müller,, and M. Lindberg. 1991. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. Eur. J. Biochem. 202: 1041 1048.
18. Jonsson, K.,, D. McDevitt,, M. H. McGavin,, J. M. Patti,, and M. Hook. 1995. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J. Biol. Chem. 270: 21457 21460.
19. Josefsson, E.,, K. W. McCrea,, D. Ni Eidhin,, D. O'Connell,, J. Cox,, M. H58k,, and T. J. Foster. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144: 3387 3395.
20. Kojima, K.,, M. Tojo,, D. A. Goldman,, T. D. Tosteson,, and G. B. Pier. 1990. Antibody to the capsular polysaccharide/adhesin protects rabbits against catheter-related bacteremia due to coagulase-negative staphylococci. J. Infect. Dis. 162: 435 441.
21. Kuypers, J. M.,, and R. A. Proctor. 1989. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect. Immunl. 57: 2306 2312.
22. Langone, J. J. 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32: 157 252.
23. Languino, L. R.,, J. Plescia,, A. Dupperray,, A. A. Brian,, E. F. Plow,, J. E. Geltosky,, and D. C. Altieri. 1993. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73: 1423 1434.
24. Languino, L. R.,, A. Dupperray,, K. J. Joganic,, M. Fornaro,, G. B. Thornton,, and D. C. Altieri. 1995. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc. Natl. Acad. Sci. USA 92: 1505 1509.
25. Lee, J. C. 1996. The prospects for developing a vaccine against Staphylococcus aureus. Trends Microbiol. 4: 162 166.
26. Lee, J. C.,, J. S. Park,, S. E. Shepherd,, V. Carey,, and A. Fattom. 1997. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immunl. 65: 4146 4151.
27. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11: 237 248.
28. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1995. Identification of the ligand binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol. Microbiol. 16: 895 907.
29. McDevitt, D.,, T. Nanavaty,, K. House-Pompeo,, E. Bell,, N. Turner,, L. McIntire,, T. J. Foster,, and M. Höök. 1997. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247: 416 424.
30. McGavin, M. H.,, D. Krajawska-Pietrasik,, C. Ryden,, and M. Höök. 1993. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect. Immunl. 61: 2479 2485.
31. McGavin, M. J.,, S. Gurasiddappa,, P. E. Lindgren,, M. Lindberg,, G. Raucci,, and M. Höök. 1993. Fibronectin receptors from Streptococcus dysgalactiae and Staphylococcus aureus. Involvement of conserved residues in ligand binding. J. Biol. Chem. 268: 23946 23953.
32. McGavin, M. J.,, G. Raucci,, S. Gurusiddappa,, and M. Höök. 1991. Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor. J. Biol. Chem. 266: 8343 8347.
33. McKenney, D.,, K. L. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. Doring,, J. C. Lee,, D. A. Goldman,, and G. B. Pier. 1999. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284: 1523 1527.
34. Moreillon, P.,, J. M. Entenza,, P. Francioli,, D. McDevitt,, T. J. Foster, P Francois, and P. Vaudaux. 1995. Role of Staphylococcus aureus coagulase and clumping factor in the pathogenesis of experimental endocarditis. Infect. Immunl. 63: 4738 4743.
35. Navarre, W. W.,, and O. Schneewind. 1994. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol. Microbiol. 14: 115 121.
36. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174 229.
37. Ni Eidhin, D.,, S. Perkins,, P. Francois,, P. Vaudaux,, M. Höök,, and T. J. Foster. 1998. Clumping factor B (ClfB) a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30: 245 257.
38. Nilsson, I. M.,, J. M. Patti,, T. Bremell,, M. Hook,, and A. Tarkowski. 1998. Vaccination with a recombinant fragment of the collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 101: 2640 2649.
39. O'Connell, D. P.,, T. Nanavaty,, D. McDevitt,, S. Gurusiddappa,, M. Höök,, and T. J. Foster. 1998. The fibronectin-binding MSCRAMM (clumping factor) of Staphylococcus aureus has an integrin-like Ca2+-dependent inhibitory site. J. Biol. Chem. 273: 6821 6829.
40. Palma, M.,, A. Haggar,, and J.-I. Flock. 1999. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J. Bacteriol. 181: 2840 2845.
41. Park, P. W.,, T. J. Broekelmann,, B. R. Mecham,, and R. P. Mecham. 1999. Characterization of the elastin binding domain in the cell-surface 25 kDa elastin-binding protein of Staphylococcus aureus (BbpS). J. Biol. Chem. 274: 2845 2850.
42. Park, P. W.,, D. D. Roberts,, L. E. Grosso,, W. C. Parks,, J. Rosenbloom,, W. R. Abrams,, and R. P. Mecham. 1991. Binding of elastin to Staphylococcus aureus. J. Biol. Chem. 266: 23399 23406.
43. Park, P. W.,, J. Rosenbloom,, W. R. Abrams,, J. Rosenbloom,, and R. P. Mecham. 1996. Molecular cloning and expression of the gene for elastin binding protein (EbpS) in Staphylococcus aureus. J. Biol. Chem. 271: 15803 15809.
44. Patti, J. M.,, B. L. Allen,, M. J. McGavin,, and M. Höök. 1994. MSCRAMMs mediate adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48: 585 617.
44a. Peacock, S. J.,, N. P. J. Day,, M. G. Thomas,, A. R. Berendt,, and T. J. Foster. Clinical isolates of Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human fibronectin. J. Hosp. Infect., in press.
45. Potts, J. R.,, and I. D. Campbell. 1994. Fibronectin structure and assembly. Curr. Opin. Cell Biol. 6: 648 655.
46. Raja, R. H.,, G. Raucci,, and M. Höök. 1990. Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-coated substrates. Infect. Immunl. 58: 2593 2598.
47. Ruggeri, Z. M., 1993. Fibrinogen/fibrin, p. 52 53. In T. Kreis, and R. Vale (ed.), Guidebook to the Extracellular Matrix and Adhesions Proteins. Oxford University Press, Oxford, United Kingdom.
48. Savage, B.,, E. Bottini,, and Z. M. Ruggeri. 1995. Interaction of integrin α IIb β III with multiple fibrinogen domains during platelet activation. J. Biol. Chem. 270: 28812 28817.
49. Schennings, T.,, A. Heimdahi,, K. Coster,, and J. I. Flock. 1993. Immunization with fibronectin binding protein from Staphylococcus aureus protects against experimental endocarditis in rats. Microb. Pathog. 15: 227 236.
50. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins of Staphylococcus aureus. Science 268: 103 106.
51. Schneewind, O.,, P. Model,, and V. A. Fischetti. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70: 267 281.
52. Schneewind, O.,, D. Mihaylova-Petkov,, and P. Model. 1993. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J. 12: 4803 4811.
53. Sieradski, K.,, R. B. Roberts,, S. W. Haber,, and A. Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med. 340: 517 523.
54. Signas, C.,, G. Raucci,, K. Jonsson,, P. E. Lindgren,, G. M. Anatharamaiah,, M. Höök, and M. Lindberg. 1989. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus and its use in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86: 697 703.
55. Smith, T. L.,, M. L. Pearson,, K. R. Wilcox,, C. Cruz,, M. V. Lancaster,, B. Robinson-Dunn,, F. C. Tenover,, M. J. Zervos,, J. D. Band,, E. White,, and W. R. Jarvis. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. N. Engl. J. Med. 340: 493 501.
56. Sottile, J.,, J. Schwarzbauer,, J. Selegue,, and D. F. Mosher. 1991. Five type I modules of fibronectin form a functional unit that binds to fibroblasts and to Staphylococcus aureus. J. Biol. Chem. 266: 12840 12843.
57. Speziale, P.,, D. Joh,, L. Visai,, S. Bozzini,, K. House-Pompeo,, M. Lindberg,, and M. Höök. 1996. A monoclinal antibody enhances ligand binding of a fibronectin MSCRAMM (adhesin) from Staphylococcus dysgalactiae. J. Biol. Chem. 271: 1371 1378.
58. Spraggon, G.,, S. J. Everse,, and R. F. Doolittle. 1997. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 389: 455 462.
59. Sriraamaroa, P.,, L. R. Languino,, and D. C. Altieri. 1996. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. Blood 88: 3416 3423.
60. Sun, Q.,, G. M. Smith,, C. Zahradka,, and M. J. McGavin. 1997. Identification of D motif epitopes in Staphylococcus aureus fibronectin-binding protein for the production of antibody inhibitors of fibronectin binding. Infect. Immunl. 65: 537 543.
61. Switalski, L. M.,, J. M. Patti,, W. Butcher,, A. G. Gristina,, P. Speziale,, and M. Höök. 1993. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol. Microbiol. 7: 99 107.
62. Ton-That, H.,, H. Tabischinski,, B. Berger-Bachi,, and O. Schneewind. 1998. Anchor structure of staphylococcal surface proteins III role of the FemA, FemB and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 273: 29143 29149.
63. Ugarova, T. P.,, D. A. Solovjov,, L. Zhang,, D. I. Loukinov,, V. C. Yee,, L. V. Medved,, and E. F. Plow. 1998. Identification of a novel recognition sequence for integrin α Mβ 2 within the γ-chain of fibrinogen. J. Biol. Chem. 273: 22519 22527.
64. Uhlen, M.,, B. Guss,, B. Nilsson,, S. Gatenbeck,, L. Philipson,, and M. Lindberg. 1984. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259: 1695 1702.
65. Vaudaux, P. E.,, P. Francois,, R. A. Proctor,, D. McDevitt,, T. J. Foster,, R. M. Albrecht,, D. P. Lew,, H. Wabers,, and S. L. Cooper. 1995. Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect. Immunl. 63: 585 590.
66. Yamada, K. M. 1989. Fibronectins: structure, function and receptors. Curr. Opin. Cell Biol. 1: 956 963.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error