Chapter 4 : Colonization of Medical Devices by Coagulase-Negative Staphylococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Colonization of Medical Devices by Coagulase-Negative Staphylococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap04-2.gif


In 1981, intravenous catheters infected with staphylococci by perfusion were investigated by scanning electron microscopy (SEM) to demonstrate the mode of adhesion. Bacterial cells, primarily those of staphylococci, followed by and , were shown to be attached to the inner surface of the catheter. The thickest bacterial layers were found in catheters infected by coagulase-negative staphylococci (CoNS). Right heart flow-directed catheters removed from 18 critically ill patients after an average of 2.6 days after insertion were covered by a bacterial biofilm. In a neonatal intensive care unit, CoNS caused the majority of the nosocomial bacteremias. A study of arterial and central venous catheters removed from patients after 1 to 14 days revealed an extensive biofilm on all 42 arterial and 26 central venous catheters. By using special biofilm culture recovery methods, it was shown that 81% of the catheters were colonized by bacteria growing in slime-enclosed biofilms. It was speculated that the colonization represents a nidus for infection and bacteremia in these patients. Staphylococci also produced biofilm on polyvinyl chloride (PVC) endotracheal tubes used in neonates. Adherence of staphylococci to various intravascular catheter materials was investigated; these materials were composed of silicone elastomer, thermoplastic polyurethane, and polyurethane coated with Hydromer, a coating that absorbs water and provides a hydrophilic sheath around the catheter. Production of slime is necessary for colonization and is also observed with many other pathogens, including .

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Scanning electron micrograph (magnification, × 5,000) of KH11. Massive colonization and slime production on cellulose acetate after 24 h of cultivation are shown.

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic organization of the operon involved in PIA biosynthesis. The genes are cotranscribed. The upstream located gene encodes a regulator protein. M, membrane localized; Sec, secreted; Hairpin, transcription terminator; Pr and Pi, promoters. (Adapted from references 52 and 64.)

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Two-step model of staphylococcal biofilm formation. The first step in biofilm formation is the adherence of the bacterial cells to a surface. The second step is the imbedding of the cells in a thick slime matrix (biofilm). One type of slime has been identified as PIA. Within this biofilm, cells appear to have reduced physiological activity in an anoxic environment, and exhibit a decreased sensitivity to many antibiotics, compared with their planktonic counterparts.

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akiyama, H.,, R. Torigoe,, and J. Arata. 1993. Interaction of Staphylococcus aureus cells and silk threads in vitro and in mouse skin. J. Dermatol. Sci. 6: 247 257.
2. Ali-Vehmas, T.,, P. Westphalen,, V. Myllys,, and M. Sandholm. 1997. Binding of Staphylococcus aureus to milk fat globules increases resistance to penicillin-G. J. Dairy Res. 64: 253 260.
3. Anglen, J.,, P. S. Apostoles,, G. Christensen,, B. Gainor,, and J. Lane. 1996. Removal of surface bacteria by irrigation. J. Orthop. Res. 14: 251 254.
4. Anwar, H.,, J. L. Strap,, and J. W. Costerton. 1992. Eradication of biofilm cells of Staphylococcus aureus with tobramycin and cephalexin. Can. J. Microbiol. 38: 618 625.
5. Arizono, T.,, M. Oga,, and Y. Sugioka. 1992. Increased resistance of bacteria after adherence to polymethyl methacrylate. An in vitro study. Acta Orthop. Scand. 63: 661 664.
6. Arnaboldi, L. 1996. Antimicrobial prophylaxis with ceftriaxone in neurosurgical procedures. A prospective study of 100 patients undergoing shunt operations. Chemotherapy 42: 384 390.
7. Arvaniti, A.,, N. K. Karamanos,, G. Dimitracopoulos,, and E. D. Anastassiou. 1994. Isolation and characterization of a novel 20-kDa sulfated polysaccharide from the extracellular slime layer of Staphylococcus epidermidis. Arch. Biochem. Biophys. 308: 432 438.
8. Atmaca, S.,, S. EIci,, and K. Gul. 1996. Comparison of slime production under aerobic and anaerobic conditions. Cytobios 88: 149 152.
9. Baddour, L. M.,, L. P. Barker,, G. D. Christensen,, J. T. Parisi,, and W. A. Simpson. 1990. Phenotypic variation of Staphylococcus epidermidis in infection of transvenous endocardial pacemaker electrodes. J. Clin. Microbiol. 28: 676 679.
10. Baldassarri, L.,, G. Donnelli,, A. Gelosia,, M. C. Voglino,, A. W. Simpson,, and G. D. Christensen. 1996. Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermis clinical isolates. Infect. Immun. 64: 3410 3415.
11. Barker, L. P.,, W. A. Simpson,, and G. D. Christensen. 1990. Differential production of slime under aerobic and anaerobic conditions. J. Clin. Microbiol. 28: 2578 2579.
12. Bergamini, T. M.,, J. C. Peyton,, and W. G. Cheadle. 1992. Prophylactic antibiotics prevent bacterial biofilm graft infection. J. Surg. Res. 52: 101 105.
13. Berthaud, N.,, and J. F. Desnottes. 1997. In-vitro bactericidal activity of quinupristin/dalfopristin against adherent Staphylococcus aureus. J. Antimicrob. Chemother. 39:( Suppl. A): 99 102.
14. Boussard, P.,, A. Pithsy,, and M. J. Devleeschouwer. 1993. Relationship between slime production, antibiotic sensitivity and the phagetype of coagulase-negative staphylococci. J. Clin. Pharm. Ther. 18: 271 274.
15. Braga, P. C.,, M. Dal Sasso,, and S. Maci. 1997. Cefodizime: effects of sub-inhibitory concentrations on adhesiveness and bacterial morphology of Staphylococcus aureus and Escherichia coli: comparison with cefotaxime and ceftriaxone. J. Antimicrob. Chemother. 39: 79 84.
16. Cameron, J. S. 1995. Host defences in continuous ambulatory peritoneal dialysis and the genesis of peritonitis. Pediatr. Nephrol. 9: 647 662.
17. Campbell, I. M.,, D. N. Crozier,, and A. B. Pawagi. 1986. Effect of hypobaric oxygen and oleic acid on respiration of Staphylococcus aureus. Eur. J. Clin. Microbiol. 5: 622 628.
18. Campbell, I. M.,, D. N. Crozier,, A. B. Pawagi,, and I. A. Buivids. 1983. In vitro response of Staphylococcus aureus from cystic fibrosis patients to combinations of linoleic and oleic acids added to nutrient medium. J. Clin. Microbiol. 18: 408 415.
19. Caputy, G. G.,, and J. W. Costerton. 1982. Morphological examination of the glycocalyces of Staphylococcus aureus strains Wiley and Smith. Infect. Immun. 36: 759 767.
20. Chang, C. C.,, and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197 207.
21. Chervu, A.,, W. S. Moore,, M. Chvapil,, and T. Henderson. 1991. Efficacy and duration of antistaphylococcal activity comparing three antibiotics bonded to Dacron vascular grafts with a collagen release system. J. Vase. Surg. 13: 897 901.
22. Christensen, G. D.,, L. M. Baddour,, B. M. Madison,, J. T. Parisi,, S. N. Abraham,, D. L. Hasty,, J. H. Lowrance,, J. A. Josephs,, and W. A. Simpson. 1990. Colonial morphology of staphylococci on Memphis agar: phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. J. Infect. Dis. 161: 1153 1169.
23. Christensen, G. D.,, L. M. Baddour,, and W. A. Simpson. 1987. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect. Immun. 55: 2870 2877.
24. Christensen, G. D.,, L. P. Barker,, T. P. Mawhinney,, L. M. Baddour,, and W. A. Simpson. 1990. Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect. Immun. 58: 2906 2911.
25. Christensen, G. D.,, W. A. Simpson,, A. L. Bisno,, and E. H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318 326.
26. Cramton, S. E.,, C. Gerke,, N. F. Schnell,, W. W. Nichols,, and F. Götz. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427 5433.
27. Darouiche, R. O.,, G. C. Landon,, J. M. Patti,, L. L. Nguyen,, R. C. Fernau,, D. McDevitt,, C. Greene,, T. Foster,, and M. Klima. 1997. Role of Staphylococcus aureus surface adhesins in orthopaedic device infections: are results model-dependent? J. Med. Microbiol. 46: 75 79.
28. Dasgupta, M. K.,, H. Shishido,, S. Salama,, R. Singh,, M. Larabie,, and R. G. Micetich. 1997. The effects of macrolide and quinolone antibiotics in methicillin-resistant Staphylococcus aureus biofilm growth. Adv. Peril Dial. 13: 214 217.
29. Dasgupta, M. K.,, K. Ward,, P. A. Noble,, M. Larabie,, and J. W. Costerton. 1994. Development of bacterial biofilms on silastic catheter materials in peritoneal dialysis fluid. Am. J. Kidney Dis. 23: 709 716.
30. Deighton, M.,, and R. Borland. 1993. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect. Immun. 61: 4473 4479.
31. Deighton, M. A.,, R. Borland,, and J. A. Capstick. 1996. Virulence of Staphylococcus epidermidis in a mouse model: significance of extracellular slime. Epidemiol. Infect. 117: 267 280.
32. Diaz-Bianco, J.,, R. C. Clawson,, S. M. Roberson,, C. B. Sanders,, A. K. Pramanik,, and J. J. Herbst. 1989. Electron microscopic evaluation of bacterial adherence to polyvinyl chloride endotracheal tubes used in neonates. Crit. Care Med. 17: 1335 1340.
33. Drewry, D. T.,, L. Galbraith,, B. J. Wilkinson,, and S. G. Wilkinson. 1990. Staphylococcal slime: a cautionary tale. J. Clin. Microbiol. 28: 1292 1296.
34. Duguid, I. G.,, E. Evans,, M. R. Brown,, and P. Gilbert. 1992. Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. J. Antimicrob. Chemother. 30: 803 810.
35. Dunne, W. M., Jr. 1990. Effects of subinhibitory concentrations of vancomycin or cefamandole on biofilm production by coagulase-negative staphylococci. Antimicrob. Agents Chemother. 34: 390 393.
36. Dunne, W. M., Jr.,, and E. M. Burd. 1992. The effects of magnesium, calcium, EDTA, and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol. Immunol. 36: 1019 1027.
37. Dunne, W. M., Jr.,, E. O. Mason, Jr.,, and S. L. Kaplan. 1993. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 37: 2522 2526.
38. Elci, S.,, S. Atmaca,, and K. Gul. 1995. Effect of iron limitation on the amount of slime produced by strains of Staphylococcus epidermidis. Cytobios 84: 141 146.
39. Espersen, F.,, B. J. Wilkinson,, B. Gahrn-Hansen,, V. Thamdrup Rosdahl,, and I. Clemmensen. 1990. Attachment of staphylococci to silicone catheters in vitro. APMIS 98: 471 478.
40. Evans, E.,, M. R. Brown,, and P. Gilbert. 1994. Iron chelator, exopolysaccharide and protease production in Staphylococcus epidermidis: a comparative study of the effects of specific growth rate in biofilm and planktonic culture. Microbiology 140: 153 153.
41. Farber, B. F.,, M. H. Kaplan,, and A. G. Clogston. 1990. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J. Infect. Dis. 161: 37 40.
42. Fey, P. D.,, J. S. Ulphani,, F. Götz,, C. Heilmann,, D. Mack,, and M. E. Rupp. 1999. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis. 179: 1561 1564.
43. Fleiszig, S. M.,, D. J. Evans,, M. F. Mowrey-McKee,, R. Payor,, T. S. Zaidi,, V. Vallas,, E. Muller,, and G. B. Pier. 1996. Factors affecting Staphylococcus epidermidis adhesion to contact lenses. Optom. Vis. Sci. 73: 590 594.
44. Flock, J. I.,, S. A. Hienz,, A. Heimdahl,, and T. Schennings. 1996. Reconsideration of the role of fibronectin binding in endocarditis caused by Staphylococcus aureus. Infect. Immun. 64: 1876 1878.
45. Francois, P.,, P. Vaudaux,, and P. D. Lew. 1998. Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann. Vase. Surg. 12: 34 40.
46. Frank, U.,, and F. D. Daschner. 1989. In vitro activity of sulbactam plus ampicillin against hospital isolates of coagulase-negative staphylococci and Acinetobacter species. Infection 17: 272 274.
47. Gabriel, M. M.,, C. L. Schultz,, L. A. Wilson,, and D. G. Ahearn. 1996. Effect of Staphylococcus epidermidis on hydrogel contact lens retention on the rabbit eye. Curr. Microbiol. 32: 176 178.
48. Gagnon, R. F.,, A. D. Harris,, J. Prentis,, and G. K. Richards. 1989. The effects of heparin on rifampin activity against Staphylococcus epidermidis biofilms. Adv. Perit. Dial. 5: 138 142.
49. Gagnon, R. F.,, G. K. Richards,, and G. Obst 1993. The modulation of rifampin action against Staphylococcus epidermidis biofilms by drug additives to peritoneal dialysis solutions. Perit. Dial. Int. 13( Suppl. 2): S345 S347.
50. Gagnon, R. F.,, G. K. Richards,, and L. Wiesenfeld. 1991. Staphylococcus epidermidis biofilms: unexpected outcome of double and triple antibiotic combinations with rifampin. ASAIO Trans. 37: M158 M160.
51. Galliani, S.,, M. Viot,, A. Cremieux,, and P. Van der Auwera. 1994. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. J. Lab. Clin. Med. 123: 685 692.
52. Gerke, C.,, A. Kraft,, R. Sussmuth,, O. Schweitzer,, and F. Götz. 1998. Characterization of the N-acetylglucosaminyl transferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273: 18586 18593.
53. Goldmann, D. A. 1990. Coagulase-negative staphylococci: interplay of epidemiology and bench research. Am. J. Infect. Control 18: 211 221.
54. Goldmann, D. A.,, and G. B. Pier. 1993. Pathogenesis of infections related to intravascular catheterization. Clin. Microbiol. Rev. 6: 176 192.
55. Gorman, S. P.,, C. G. Adair,, and W. M. Mawhinney. 1994. Incidence and nature of peritoneal catheter biofilm determined by electron and confocal laser scanning microscopy. Epidemiol. Infect. 112: 551 559.
56. Gracia, E.,, A. Fernandez,, P. Conchello,, A. Lacleriga,, L. Paniagua,, F. Serai,, and B. Amorena. 1997. Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials used in orthopaedic surgery. Int. Orthop. 21: 46 51.
57. Gristina, A. G.,, R. A. Jennings,, P. T. Naylor,, Q. N. Myrvik,, and L. X. Webb. 1989. Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrob. Agents Chemother. 33: 813 816.
58. Hall, S. L.,, R. T. Hall,, W. G. Barnes,, S. W. Riddell,, L. Meng,, J. T. Parisi,, H. W. Kilbride,, and D. Maulik. 1990. Relationship of maternal to neonatal colonization with coagulase-negative staphylococci. Am. J. Perinatol. 7: 384 388.
59. Hamilton-Miller, J. M.,, and S. Shah. 1997. Activity of quinupristin/dalfopristin against Staphylococcus epidermidis in biofilms: a comparison with ciprofloxacin. J. Antimicrob. Chemother. 39( Suppl. A): 103 108.
60. Hamilton-Miller, J. M.,, S. Shah,, and C. Smith. 1993. Anomalous growth of Staphylococcus epidermidis in the presence of Silastic and glycopeptide antibiotics. FEMS Microbiol. Lett. 113: 145 147.
61. Heilmann, C.,, C. Gerke,, F. Perdreau-Remington,, and F. Götz. 1996. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277 282.
62. Heilmann, C.,, and F. Götz. 1998. Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentralbl. Bakteriol. 287: 69 83.
63. Heilmann, C.,, M. Hussain,, G. Peters,, and F. Götz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013 1024.
64. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083 1091.
65. Heinzelmann, M.,, D. O. Herzig,, B. Swain,, M. A. Mercer-Jones,, T. M. Bergamini,, and H. C. Polk, Jr. 1997. Phagocytosis and oxidative-burst response of planktonic Staphylococcus epidermidis RP62A and its non-slime-producing variant in human neutrophils. Clin. Diagn. Lab. Immunol. 4: 705 710.
66. Hjelm, E.,, and I. Lundell-Etherden. 1991. Slime production by Staphylococcus saprophyticus. Infect. Immun. 59: 445 448.
67. Hussain, M.,, J. G. Hastings,, and P. J. White. 1992. Comparison of cell-wall teichoic acid with highmolecular-weight extracellular slime material from Staphylococcus epidermidis. J. Med. Microbiol. 37: 368 375.
68. Hussain, M.,, M. Herrmann,, C. von Eiff,, F. Perdreau-Remington,, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519 524.
69. Hussain, M.,, M. H. Wilcox,, and P. J. White. 1993. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol. Rev. 10: 191 207.
70. Hussain, M.,, M. H. Wilcox,, P. J. White,, M. K. Faulkner,, and R. C. Spencer. 1992. Importance of medium and atmosphere type to both slime production and adherence by coagulase-negative staphylococci. J. Hosp. Infect. 20: 173 184.
71. Ishak, M. A.,, D. H. Groschel,, G. L. Mandell,, and R. P. Wenzel. 1985. Association of slime with pathogenicity of coagulase-negative staphylococci causing nosocomial septicemia. J. Clin. Microbiol. 22: 1025 1029.
72. Isiklar, Z. U.,, R. O. Darouiche,, G. C. Landon,, and T. Beck. 1996. Efficacy of antibiotics alone for orthopaedic device related infections. Clin. Orthop. 332: 184 189.
73. Jennings, D. A.,, M. J. Morykwas,, W. W. Burns,, M. E. Crook,, W. P. Hudson,, and L. C. Argenta. 1991. In vitro adhesion of endogenous skin microorganisms to breast prostheses. Ann. Plast. Surg. 27: 216 220.
74. Jones, J. W.,, R. J. Scott,, J. Morgan,, and J. V. Pether. 1992. A study of coagulase-negative staphylococci with reference to slime production, adherence, antibiotic resistance patterns and clinical significance. J. Hosp. Infect. 22: 217 227.
75. Kaebnick, H. W.,, D. F. Bandyk,, T. W. Bergamini,, and J. B. Towne. 1987. The microbiology of explanted vascular prostheses. Surgery 102: 756 762.
76. Khardori, N.,, E. Wong,, H. Nguyen,, C. Jeffery-Wiseman,, E. Wallin,, R. P. Tewari,, and G. P. Bodey. 1991. Effect of subinhibitory concentrations of clindamycin and trospectomycin on the adherence of Staphylococcus epidermidis in an in vitro model of vascular catheter colonization. J. Infect. Dis. 164: 108 113.
77. Kojima, Y.,, M. Tojo,, D. A. Goldmann,, T. D. Tosteson,, and G. B. Pier. 1990. Antibody to the capsular polysaccharide/adhesin protects rabbits against catheter-related bacteremia due to coagulase-negative staphylococci. J. Infect. Dis. 162: 435 441.
78. Kristinsson, K. G. 1989. Adherence of staphylococci to intravascular catheters. J. Med. Microbiol. 28: 249 257.
79. Kunin, C. M.,, and C. Steele. 1985. Culture of the surfaces of urinary catheters to sample urethral flora and study the effect of antimicrobial therapy. J. Clin. Microbiol. 21: 902 908.
80. Locci, R.,, G. Peters,, and G. Pulverer. 1981. Microbial colonization of prosthetic devices. III. Adhesion of staphylococci to lumina of intravenous catheters perfused with bacterial suspensions. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 173: 300 307.
81. Locci, R.,, G. Peters,, and G. Pulverer. 1981. Microbial colonization of prosthetic devices. IV. Scanning electron microscopy of intravenous catheters invaded by yeasts. Zentralbl. Bakteriol. Mikrobiol. Hyg. B. 173: 419 424.
82. Ludwicka, A.,, R. Locci,, B. Jansen,, G. Peters,, and G. Pulverer. 1983. Microbial colonization of prosthetic devices. V. Attachment of coagulase-negative staphylococci and "slime"-production on chemically pure synthetic polymers. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 177: 527 532.
83. Lundberg, F.,, S. Schliamser,, and A. Ljungh. 1997. Vitronectin may mediate staphylococcal adhesion to polymer surfaces in perfusing human cerebrospinal fluid. J. Med. Microbiol. 46: 285 296.
84. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178: 175 183.
85. Mack, D.,, M. Haeder,, N. Siemssen,, and R. Laufs. 1996. Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J. Infect. Dis. 174: 881 884.
86. Mack, D.,, M. Nedelmann,, A. Krokotsch,, A. Schwarzkopf,, J. Heesemann,, and R. Laufs. 1994. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect. Immun. 62: 3244 3253.
87. Mack, D.,, J. Riedewald,, H. Rohde,, T. Magnus,, H. H. Feucht,, H. A. Eisner,, R. Laufs,, and M. E. Rupp. 1999. Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect. Immun. 67: 1004 1008.
88. Mack, D.,, N. Siemssen,, and R. Laufs. 1992. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect. Immun. 60: 2048 2057.
89. Magnotta, S.,, A. Bogucki,, R. F. Vieth,, and R. W. Coughlin. 1997. Comparative behavior of E. coli and S. aureus regarding attachment to and removal from a polymeric surface. J. Biomater. Sci. Polym. Educ. 8: 683 689.
90. Marone, P.,, L. Perversi,, V. Monzillo,, R. Maserati,, and E. Antoniazzi. 1995. Ocular infections: antibiotics and bacterial adhesion on biomaterials used in ocular surgery. Ophthalmologica 209: 315 318.
91. Marone, P.,, L. Perversi,, A. Navarra,, V. Monzillo,, and E. Sartirana. 1993. Activity of daptomycin against enterococci and coagulase-negative staphylococci (CNS): relationship between CNS susceptibility and slime production. J. Chemother. 5: 151 154.
92. Marrie, T. J.,, and J. W. Costerton. 1984. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19: 687 693.
93. Marrie, T. J.,, J. Nelligan,, and J. W. Costerton. 1982. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66: 1339 1341.
94. Martinez-Martinez, L.,, A. Pascual,, M. I. Giglio,, E. J. Perea,, and G. Giglio. 1991. Effect of subinhibitory concentrations of beta-lactams on the production of slime, surface hydrophobicity and adhesion of Staphylococcus epidermidis. Enferm. Infecc. Microbiol. Clin. 9: 543 546. (Erratum, 10: 10.)
95. Matassova, N. B.,, M. V. Rodnina,, R. Endermann,, H. P. Kroll,, U. Pleiss,, H. Wild,, and W. Wintermeyer. 1999. Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. RNA 5: 939 946.
96. Matthews, K. R.,, S. P. Oliver,, and S. H. King. 1991. Expression of glycocalyx by coagulase-negative Staphylococcus species isolated from bovine milk. J. Appl. Bacterial. 70: 227 232.
97. McKenney, D.,, J. Hubner,, E. Muller,, Y. Wang,, D. A. Goldmann,, and G. B. Pier. 1998. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 66: 4711 4720.
98. McKenney, D.,, K. L. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. Doring,, J. C. Lee,, D. A. Goldmann,, and G. B. Pier. 1999. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284: 1523 1527.
99. Mempel, M.,, H. Feucht,, W. Ziebuhr,, M. Endres,, R. Laufs,, and L. Griiter. 1994. Lack of mecA transcription in slime-negative phase variants of methicillin-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 38: 1251 1255.
100. Mempel, M.,, E. Muller,, R. Hoffmann,, H. Feucht,, R. Laufs,, and L. Gruter. 1995. Variable degree of slime production is linked to different levels of beta-lactam susceptibility in Staphylococcus epidermidis phase variants. Med. Microbiol. Immunol. (Berlin) 184: 109 111.
101. Miyake, Y.,, S. Fujiwara,, T. Usui,, and H. Suginaka. 1992. Simple method for measuring the antibiotic concentration required to kill adherent bacteria. Chemotherapy 38: 286 290.
102. Moreillon, P.,, J. M. Entenza,, P. Francioli,, D. McDevitt,, T. J. Foster,, P. Francois,, and P. Vaudaux. 1995. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun. 63: 4738 4743.
103. Muller, E.,, J. Hubner,, N. Gutierrez,, S. Takeda,, D. A. Goldmann,, and G. B. Pier. 1993. Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/ adhesin and slime. Infect. Immun. 61: 551 558.
104. Muller, E.,, S. Takeda,, H. Shiro,, D. Goldmann,, and G. B. Pier. 1993. Occurrence of capsular polysaccharide/adhesin among clinical isolates of coagulase-negative staphylococci. J. Infect. Dis. 168: 1211 1218.
105. Nakashio, S.,, H. Iwasawa,, F. Y. Dun,, K. Kanemitsu,, and J. Shimada. 1995. Everninomicin, a new oligosaccharide antibiotic: its antimicrobial activity, post-antibiotic effect and synergistic bactericidal activity. Drugs Exp. Clin. Res. 21: 7 16.
106. Nickel, J. C.,, G. Reid,, A. W. Bruce,, and J. W. Costerton. 1986. Ultrastructural microbiology of infected urinary stone. Urology 28: 512 515.
107. Nilsson, M.,, L. Frykberg,, J. I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666 2673.
108. Nomura, S.,, F. Lundberg,, M. Stollenwerk,, K. Nakamura,, and A. Ljungh. 1997. Adhesion of staphylococci to polymers with and without immobilized heparin in cerebrospinal fluid. J. Biomed. Mater. Res. 38: 35 42.
109. Oga, M.,, Y. Sugioka,, C. D. Hobgood,, A. G. Gristina,, and Q. N. Myrvik. 1988. Surgical biomaterials and differential colonization by Staphylococcus epidermidis. Biomaterials 9: 285 289.
110. Ohtomo, T.,, T. Yamada,, and K. Yoshida. 1988. Outermost-cell-surface changes in an encapsulated strain of Staphylococcus aureus after preservation by freeze-drying. Appl. Environ. Microbiol. 54: 2486 2491.
111. Ohtomo, T.,, K. Yoshida,, and C. L. San Clemente. 1981. Effect of bile acid derivatives on taurine biosynthesis and extracellular slime production in encapsulated Staphylococcus aureus S-7. Infect. Immun. 31: 798 807.
112. Olson, M. E.,, I. Ruseska,, and J. W. Costerton. 1988. Colonization of n-butyl-2-cyanoacrylate tissue adhesive by Staphylococcus epidermidis. J. Biomed. Mater. Res. 22: 485 495.
113. Oshida, T.,, M. Sugai,, H. Komatsuzawa,, Y. M. Hong,, H. Suginaka,, and A. Tomasz. 1995. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc. Natl. Acad. Sci. USA 92: 285 289.
114. Pascual, A.,, I. Garcia,, E. Ramirez de Arellano,, and E. J. Perea. 1995. Activity of sparfloxacin on Staphylococcus epidermidis attached to plastic catheters. J. Antimicrob. Chemother. 36: 425 430.
115. Pascual, A.,, E. Ramirez de Arellano,, L. Martinez Martinez,, and E. J. Perea. 1993. Effect of polyurethane catheters and bacterial biofilms on the in vitro activity of antimicrobials against Staphylococcus epidermidis. J. Hosp. Infect. 24: 211 218.
116. Passerini, L.,, K. Lam,, J. W. Costerton,, and E. G. King. 1992. Biofilms on indwelling vascular catheters. Crit. Care Med. 20: 665 673.
117. Passerini, L.,, P. T. Phang,, F. L. Jackson,, K. Lam,, J. W. Costerton,, and E. G. King. 1987. Biofilms on right heart flow-directed catheters. Chest 92: 440 460.
118. Patel, R.,, M. S. Rouse,, K. E. Piper,, and J. M. Steckelberg. 1999. In vitro activity of linezolid against vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus and penicillin- resistant Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis. 34: 119 122.
119. Perdreau-Remington, F.,, M. A. Sande,, G. Peters,, and H. F. Chambers. 1998. The abilities of a Staphylococcus epidermidis wild-type strain and its slime-negative mutant to induce endocarditis in rabbits are comparable. Infect. Immun. 66: 2778 2781.
120. Peters, G. 1984. Pathogenesis of staphylococcal infections of implanted plastics and intravascular catheters. Infection 12: 235 239.
121. Peters, G.,, R. Locci,, and G. Pulverer. 1981. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl. Baketeriol. Mikrobiol. Hyg. B. 173: 293 299.
122. Raad, I.,, A. Alrahwan,, and K. Rolston. 1998. Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin. Infect. Dis. 26: 1182 1187.
123. Raad, I.,, R. Darouiche,, R. Hachem,, M. Sacilowski,, and G. P. Bodey. 1995. Antibiotics and prevention of microbial colonization of catheters. Antimicrob. Agents Chemother. 39: 2397 2400.
124. Ramirez de Arellano, E.,, A. Pascual,, L. Martinez-Martinez,, and E. J. Perea. 1994. Activity of eight antibacterial agents on Staphylococcus epidermidis attached to Teflon catheters. J. Med. Microbiol. 40: 43 47.
125. Rather, P. N.,, A. P. Davis,, and B. J. Wilkinson. 1986. Slime production by bovine milk Staphylococcus aureus and identification of coagulase-negative staphylococcal isolates. J. Clin. Microbiol. 23: 858 862.
126. Read, R. R.,, P. Eberwein,, M. K. Dasgupta,, S. K. Grant,, K. Lam,, J. C. Nickel,, and J. W. Costerton. 1989. Peritonitis in peritoneal dialysis: bacterial colonization by biofilm spread along the catheter surface. Kidney Int. 35: 614 621.
127. Reed, W. P.,, M. R. Moody,, K. A. Newman,, P. D. Light,, and J. W. Costerton. 1986. Bacterial colonization of Hemasite access devices. Surgery 99: 308 317.
128. Reid, G.,, J. D. Denstedt,, Y. S. Kang,, D. Lam,, and C. Nause. 1992. Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J. Urol. 148: 1592 1594.
129. Richards, G. K.,, R. F. Gagnon,, G. Obst,, and G. B. Kostiner. 1993. The effect of peritoneal dialysis solutions on rifampin action against Staphylococcus epidermidis in the fluid and biofilm phases of growth. Peril. Dial. Int. 13( Suppl 2): S341 S344.
130. Richards, G. K.,, R. J. Morcos,, and R. F. Gagnon. 1994. The differential activity of aminoglycoside antibiotics with rifampin explored in a kinetic in vitro model of implant-associated infection (Staphylococcus epidermidis). Adv. Perit. Dial. 10: 183 188.
131. Richards, G. K.,, J. Prentis,, and R. F. Gagnon. 1990. The effect of protamine on antibiotic action against Staphylococcus epidermidis biofilms. ASAIO Trans. 36: M296 M299.
132. Rimland, D.,, and W. Alexander. 1989. Absence of factors associated with significant urinary tract infections caused by coagulase-negative staphylococci. Diagn. Microbiol. Infect. Dis. 12: 123 127.
133. Rossi, T.,, R. Peltonen,, J. Laine,, E. Eerola,, J. Vuopio-Varkila,, and P. Kotilainen. 1996. Eradication of the long-term carriage of methicillin-resistant Staphylococcus aureus in patients wearing dentures: a follow-up of 10 patients. J. Hosp. Infect. 34: 311 320.
134. Rozgonyi, F.,, and G. Seltmann. 1985. Pathogenicity and virulence of methicillin resistant Staphylococcus aureus: slime layer production. Acta Microbiol. Hung. 32: 155 165.
135. Rupp, M. E.,, and K. E. Hamer. 1998. Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis. J. Antimicrob. Chemother. 41: 155 161.
136. Sanger, J. R.,, N. K. Sheth,, and T. R. Franson. 1989. Adherence of microorganisms to breast prostheses: an in vitro study. Ann. Plast. Surg. 22: 337 342.
137. Santini, C.,, P. Baiocchi,, M. Venditti,, C. Brandimarte,, A. Tarasi,, L. Rizzo,, F. Speziale,, P. Fiorani,, and P. Serra. 1993. Aorto-femoral graft infections: a clinical and microbiological analysis. J. Infect. 27: 17 26.
138. Sardelic, F.,, P. Y. Ao,, D. A. Taylor,, and J. P. Fletcher. 1996. Prophylaxis against Staphylococcus epidermidis vascular graft infection with rifampicin-soaked, gelatin-sealed Dacron. Cardiovasc. Surg. 4: 389 392.
139. Schumacher-Perdreau, F.,, C. Heilmann,, G. Peters,, F. Götz,, and G. Pulverer. 1994. Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiol. Lett. 117: 71 78.
140. Schwank, S.,, Z. Rajacic,, W. Zimmerli,, and J. Blaser. 1998. Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob. Agents Chemother. 42: 895 898.
141. Sheth, N. K.,, T. R. Franson,, and P. G. Sohnle. 1985. Influence of bacterial adherence to intravascular catheters on in vitro antibiotic susceptibility. Lancet ii: 1266 1268.
142. Shibl, A. M.,, M. A. Ramadan,, and A. F. Tawfik. 1994. Differential inhibition by clindamycin on slime formation, adherence to teflon catheters and hemolysin production by Staphylococcus epidermidis. J. Chemother. 6: 107 110.
143. Shiro, H.,, E. Muller,, N. Gutierrez,, S. Boisot,, M. Grout,, T. D. Tosteson,, D. Goldmann,, and G. B. Pier. 1994. Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. J. Infect. Dis. 169: 1042 1049.
144. Svensson, E.,, H. Hanberger,, M. Nilsson,, and L. E. Nilsson. 1997. Factors affecting development of rifampicin resistance in biofilm- producing Staphylococcus epidermidis. J. Antimicrob. Chemother. 39: 817 820.
145. Takahashi, A.,, S. Yomoda,, T. Kanda,, Y. Fukumura,, T. Ohkubo,, M. Inoue,, and I. Kobayashi. 1997. Slime formation as a marker of serious infection with methicillin-resistant Staphylococcus aureus. J. Med. 28: 87 98.
146. Tchekmedyian, N. S.,, K. Newman,, M. R. Moody,, J. W. Costerton,, J. Aisner,, S. C. Schimpff,, and W. P. Reed. 1986. Special studies of the Hickman catheter of a patient with recurrent bacteremia and candidemia. Am. J. Med. Sci. 291: 419 424.
147. Thomas, V. L.,, B. A. Sanford,, R. Moreno,, and M. A. Ramsay. 1997. Enzyme-linked lectinsorbent assay measures N-acetyl-D-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis. Curr. Microbiol. 35: 249 254.
148. Tojo, M.,, N. Yamashita,, D. A. Goldmann,, and G. B. Pier. 1988. Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J. Infect. Dis. 157: 713 722. (Erratum, 158: 268.)
149. Tollefson, D. F.,, D. F. Bandyk,, H. W. Kaebnick,, G. R. Seabrook,, and J. B. Towne. 1987. Surface biofilm disruption. Enhanced recovery of microorganisms from vascular prostheses. Arch. Surg. 122: 38 43.
150. Udo, E. E.,, L. E. Jacob,, and T. D. Chugh. 1995. Antimicrobial resistance of coagulase-negative staphylococci from a Kuwait hospital. Microb. Drug Resist. 1: 315 320.
151. Vaudaux, P. 1998. Phenotypic antibiotic tolerance of Staphylococcus aureus in implant-related infections: relationship with in vitro colonization of artificial surfaces. Drug Resist. Update 1: 352 357.
152. Virden, C. P.,, M. K. Dobke,, P. Stein,, C. L. Parsons,, and D. H. Frank. 1992. Subclinical infection of the silicone breast implant surface as a possible cause of capsular contracture. Aesthetic Plast. Surg. 16: 173 179.
153. von Eiff, C.,, and G. Peters. 1999. Comparative in-vitro activities of moxifloxacin, trovafloxacin, quinupristin/dalfopristin and linezolid against staphylococci. J. Antimicrob. Chemother. 43: 569 573.
154. Wadstrom, T. 1989. Molecular aspects of bacterial adhesion, colonization, and development of infections associated with biomaterials. J. Invest. Surg. 2: 353 360.
155. Watts, J. L.,, A. S. Naidu,, and T. Wadstrom. 1990. Collagen binding, elastase production, and slime production associated with coagulase-negative staphylococci isolated from bovine intramammary infections. J. Clin. Microbiol. 28: 580 583.
156. Williams, I.,, W. A. Venables,, D. Lloyd,, F. Paul,, and I. Critchley. 1997. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143( Pt 7): 2407 2413.
157. Yasuda, H.,, Y. Ajiki,, T. Koga,, and T. Yokota. 1994. Interaction between clarithromycin and biofilms formed by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 38: 138 141.
158. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890 896.
159. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. LdBner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 3 2: 345 356.


Generic image for table
Table 1

Biofilm formation by CoNS on catheters and other prosthetic devices

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Generic image for table
Table 2

CoNS colonize nearly any synthetic polymer

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Generic image for table
Table 3

Adherence of CoNS to polymers precoated with various blood compounds

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Generic image for table
Table 4

Antibiotics tested to prevent biofilm formation or to cure staphylococcal foreign-body infection

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4
Generic image for table
Table 5

Synergistic and antagonistic activities of various antibiotic combinations in treatment of staphylococcal biofilm infections

Citation: Götz F, Peters G. 2000. Colonization of Medical Devices by Coagulase-Negative Staphylococci, p 55-88. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error