1887

Chapter 1 : Fe(III) and Mn(IV) Reduction

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fe(III) and Mn(IV) Reduction, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap01-2.gif

Abstract:

This chapter summarizes the known environmental consequences of Fe(III) respiration as well as related forms of respiration such as reduction of Mn(IV) and humic substances. The finding that specialized microorganisms are capable of Fe(III)-based respiration substantially changed the understanding of iron geochemistry in soils and sediments. The concept of metal-based respiration has been expanded from Fe(III) to a wide variety of redox-active metals and metalloids that have now been found to serve as terminal electron acceptors in microbial respiration. The chapter provides a brief overview of the major groups of Fe(III)-reducing microorganisms that grow at circumneutral pH. Sedimentation of soils naturally high in Fe(III) or Mn(IV) may also enhance Fe(III) and Mn(IV) reduction in aquatic sediment. Reoxidation of Fe(II) and Mn(II) produced as the result of Fe(III) and Mn(IV) reduction can also be an important source of Fe(III) and Mn(IV) for microbial reduction. It is apparent that more research is required to better understand the mechanisms for Fe(III) oxide reduction by Fe(III)-respiring microorganisms (FRM) in pure culture, but elucidating the pathways for Fe(III) reduction in soils and sediments may be even more difficult. Further investigation into the biochemical and biogeochemical mechanisms of Fe(III) and Mn(IV) reduction is required in order to fully realize the potential of these processes for environmental remediation.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model for degradation of organic matter in anoxic environments in which Fe(III) reduction is the TEAR Dashed lines represent minor pathways. A similar model is likely to apply to sediments in which Mn(IV) reduction predominates.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogeny of members of the Bacteria known to conserve energy to support growth via Fe(III) reduction based on 16S rDNA sequences.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Phylogeny of members of the Archaea known to reduce Fe(III) based on 16S rDNA sequences. Those highlighted in bold conserve energy to support growth from Fe(III) reduction. All others, with the exception of Pyrobaculum occultum and Sulfolobus shibatae, which have not yet been evaluated, have the ability to reduce Fe(III) in cell suspensions.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Hypothetical evolution of the iron cycle (‘ferrous wheel’) on early Earth. (A) Generation of Fe(III) and hydrogen from UV-mediated oxidation of dissolved Fe(II) as well as Fe(III) and hydrogen from other sources may have provided hydrogen and Fe(III) for protometabolism catalyzed by iron-sulfur nanocrystal membranes. (B) Iron cycle with hydrogen oxidation coupled to Fe(III) reduction by early microorganisms. (C) Enhanced precipitation of Fe(III) with the evolution of Fe(II)-based and/or oxygenic photosynthesis resulting in the coprecipitation of organic matter and Fe(III) oxides which supported heterotrophic Fe(III) reduction.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Appearance of sandy aquifer material from an uncontaminated portion of a shallow aquifer (left) and of aquifer material from within a petroleum-contaminated portion of the aquifer in which Fe(III) has been extensively reduced as the result of microbial oxidation of contaminants coupled to Fe(III) reduction (right).

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Schematic of remediation of petroleum-contaminated aquifers with soluble Fe(III). Chelated Fe(III) is introduced in an injection well. The Fe(III) serves as an electron acceptor for the oxidation of benzene and other contaminants. The Fe(II) produced can be recovered in a downgradient well, exposed to air to reoxidize the Fe(II) to Fe(III), and then reintroduced into the aquifer.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Model for the potential significance of microbially reduced humics serving as an electron donor for denitrification in organic-rich, iron-depleted soil aggregates.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Model for electron transport to extracellular Fe(III) in G. sulfurreducens.

Citation: Lovley D. 2000. Fe(III) and Mn(IV) Reduction, p 3-30. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818098.chap1
1. Aller, R. C. 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philos. Trans. R. Soc. London Sen A 331: 51 68.
2. Aller, R. C.,, J. E. Macklin,, and R. T. J. Cox. 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res. 6: 263 289.
3. Anderson, R. T.,, and D. R. Lovley. 1997. Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microb. Ecol. 15: 289 350.
4. Anderson, R. T.,, and D. R. Lovley. 1999. Naphthalene and benzene degradation under Fe(III)- reducing conditions in petroleum-contaminated aquifers. Bioremediation J. 3: 121 135.
5. Anderson, R. T.,, J. Rooney-Varga,, C. V. Gaw,, and D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32: 1222 1229.
6. Aristovskaya, T. V.,, and G. A. Zavarzin,. 1971. Biochemistry of iron in soil, p. 385 408. In A. D. McLaren, and J. Skujins (ed.), Soil Biochemistry. Marcel Dekker, Inc., New York, N.Y..
7. Arnold, R. G.,, T. J. DiChristina,, and M. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (“Pseudomonas ferrireductans”) . Appl. Environ. Microbiol. 52: 281 289.
8. Arnold, R. G.,, M. R. Hoffman,, T. J. DiChristina,, and F. W. Picardal. 1990. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl Environ. Microbiol. 56: 2811 2817.
9. Arnold, R. G.,, T. M. Olson,, and M. R. Hoffmann. 1986. Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200. BiotechnoL Bioeng. 28: 1657 1671.
10. Balashova, V. V.,, and G. A. Zavarzin. 1980. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48: 635 639.
11. Baur, M. E.,, J. M. Hayes,, S. A. Studley,, and M. R. Walter. 1985. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80: 270 282.
12. Beliaev, A. S.,, and D. A. Saffarini. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacterial. 180: 6292 6297.
13. Benz, M.,, B. Schink,, and A. Brune. 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ. Microbiol. 64: 4507 4512.
14. Boone, D. R.,, Y. Liu,, Z.-J. Zhao,, D. L. Balkwill,, G. T. Drake,, T. O. Stevens,, and H. C. Aldrich. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45: 441 448.
15. Brock, T. D.,, C. S. ,, S. Petersen,, and J. L. Mosser. 1976. Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40: 493 500.
16. Caccavo, F., Jr.,, R. P. Blakemore,, and D. R. Lovley. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58: 3211 3216.
17. Caccavo, F., Jr.,, J. D. Coates,, R. A. Rossello-Mora,, W. Ludwig,, K. H. Schleifer,, D. R. Lovley,, and M. J. Mclnerney. 1996. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol. 165: 370 376.
18. Caccavo, F.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. F. Stolz,, and M. J. Mclnerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ. Microbiol 60: 3752 3759.
19. Cairns-Smith, A. G.,, A. J. Hall,, and M. J. Russell. 1992. Mineral theories of the origin of life and an iron sulfide example. Origins Life Evol Biosph. 22: 161 180.
20. Canfield, D. E.,, B. B. j0rgensen,, H. Fossing,, R. Glud,, J. Gundersen,, N. B. Ramsing,, B. Thamdrup,, J. W. Hansen,, L. P. Nielsen,, and P. O. J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113: 27 40.
21. Chapelle, F. H.,, and D. R. Lovley. 1992. Competitive exclusion of sulfate reduction by Fe(III)- reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30: 29 36.
22. Coates, J. D.,, T. B. Councell,, D. J. Ellis,, and D. R. Lovley. 1998. Carbohydrate-oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe 4: 277 282.
23. Coates, J. D.,, D. J. Ellis,, and D. R. Lovley. 1999. Geothrix femientans gen. nov. sp. nov., an acetate-oxidizing Fe(III) reducer capable of growth via fermentation. Int. J. Syst. Bacteriol 49: 1615 1622.
24. Coates, J. D.,, D. J. Ellis,, E. Roden,, K. Gaw,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Recovery of humics-reducing bacteria from a diversity of sedimentary environments. Appl Environ. Microbiol. 64: 1504 1509.
25. Coates, J. D.,, D. J. Lonergan,, H. Jenter,, and D. R. Lovley. 1996. Isolation of Geobacter species from diverse sedimentary environments. Appl Environ. Microbiol. 62: 1531 1536.
26. Coleman, M. L.,, D. B. Hedrick,, D. R. Lovley,, D. C. White,, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361: 436 438.
27. Cummings, D. E.,, F. Caccavo, Jr., S. Spring,, and R. F. Rosenzweig. 1999. Ferribacter limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol. 171: 183 188.
28. deDuve, C.. Vital Dust. Basic Books, New York, N.Y..
29. de Duve, C., 1998. Clues from present-day biology: the thioester world, p. 219 236. In A. Brack (ed.), The Molecular Origins of Life. Cambridge University Press, Cambridge, United Kingdom.
30. DiChristina, T. J. 1992. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J. Bacteriol. 174: 1891 1896.
31. DiChristina, T. J.,, R. G. Arnold,, M. E. Lidstrom,, and M. R. Hoffmann. 1988. Dissimilative iron reduction by the marine eubacterium Alteromonas putrefaciens strain 200. Water Sci. Technol. 20: 69 79.
32. DiChristina, T. J.,, and E. F. DeLong. 1993. Design and application of rRNA-targeted oligonulceotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. Appl. Environ. Microbiol. 59: 4152 4160.
33. DiChristina, T. J.,, and E. F. DeLong. 1994. Isolation of anaerobic respiratory mutants of Shewanella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on Fe3 + . J. Bacteriol. 176: 1468 1474.
34. Ehrenreich, A.,, and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, new type of phototrophic metabolism. Appl. Environ. Microbiol. 60: 4517 4526.
35. Ernstsen, V.,, W. R Gates,, and J. W. Stucki. 1998. Microbial reduction of structural iron in clays— a renewable source of reduction capacity. J. Environ. Qual. 27: 761 766.
36. Fenchel, T.,, and T. H. Blackburn. 1979. Bacteria and Mineral Cycling. Academic Press, Ltd., London, United Kingdom.
37. Fredrickson, J. K.,, and Y. A. Gorby. 1996. Environmental processes mediated by iron-reducing bacteria. Curr. Opin. Biotechnol. 7: 287 294.
38. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, H. Dong,, T. C. Onstott,, N. W. Hinman,, and S.-M. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62: 3239 3257.
39. Gaspard, S.,, F. Vazquez,, and C. Holliger. 1998. Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Appl. Environ. Microbiol. 64: 3188 3194.
40. Gates, W. P.,, A. M. Jaunet,, D. Tessier,, M. A. Cole,, H. T. Wilkinson,, and J. W. Stucki. 1998. Swelling and texture of iron-bearing smectites reduced by bacteria. Clays Clay Miner. 46: 487 497.
41. Ghiorse, W. C., 1988. Microbial reduction of manganese and iron, p. 305 331. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons Inc., New York, N.Y.
42. Gibbs-Eggar, Z.,, B. Jude,, J. Dominik,, J.-L. Loizeau,, and F. Oldfield. 1999. Possible evidence for dissimilatory bacterial magnetite dominating the magnetic properties of recent lake sediments. Earth Planet. Sci. Lett. 168: 1 6.
43. Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89: 6045 6049.
44. Gorby, Y.,, and D. R. Lovley. 1991. Electron transport in the dissimilatory iron-reducer, GS-15. Appl. Environ. Microbiol. 57: 867 870.
45. Greene, A. .,, B. K. C. Patel,, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505 509.
46. Hartman, H., 1984. The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations, p. 449 453. In B. Crawford (ed.), Microbial Mats: Stromatolites. Alan R. Liss, Inc., New York, N.Y..
47. Heijman, C. G.,, E. Grieder,, C. Holliger,, and R. P. Schwarzenbach. 1995. Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol. 29: 775 783.
48. Heijman, C. G.,, C. Holliger,, M. A. Glaus,, R. P. Schwarzenbach,, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59: 4350 4353.
49. Hofstetter, T. B.,, C. G. Heijman,, S. B. Haderlein,, C. Holliger,, and R. P. Schwarzenbach. 1999. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ. Sci. Technol. 33: 1479 1487.
50. Jannasch, H. W. 1995. Microbial interactions with hydrothermal fluids. Seafloor hyrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophys. Monogr. 91: 273 296.
51. Karl, D. M., 1995. Ecology of free-living hydrothermal vent microbial communities, p. 35 124. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, Inc., New York, N.Y.
51.a. Kashefi, K.,, and D. R. Lovley. 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66: 1050 1056.
52. Kieft, T. L.,, J. K. Fredrickson,, T. C Onstott,, Y. A. Gorby,, H. M. Kostandarithes,, T. J. Bailey,, D. W. Kennedy,, W. Li,, A. E. Plymale,, C. M. Spadoni,, and M. S. Gray. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65: 1214 1221.
53. Knight, V.,, and R. Blakemore. 1998. Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch. Microbiol. 169: 239 248.
54. Kostka, J. E.,, and K. H. Nealson. 1995. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29: 2535 2540.
55. Kostka, J. E.,, J. W. Stucki,, K. H. Nealson,, and J. Wu. 1996. Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays Clay Miner. 44: 522 529.
56. LaKind, J. S.,, and A. T. Stone. 1989. Reductive dissolution of goethite by phenolic reductants. Geochim. Cosmochim. Acta 53: 961 971.
57. Landa, E. R.,, E. J. P. Phillips,, and D. R. Lovley. 1991. Release of 226-Ra from uranium mill tailings by microbial Fe(III) reduction. Appl. Geochem. 6: 647 652.
58. Laverman, A. M.,, J. Switzer Blum,, J. K. Schaefer,, E. J. P. Phillips,, D. R. Lovley,, and R. S. Oremland. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 3556 3561.
59. Litaor, M. I.,, and R. B. Keigley. 1991. Geochemical equilibria of iron in sediments of the rorarine river alluvial fan, Rocky Mountain National Park, Colorado. Earth Surf. Proc. Landforms 16: 533 546.
60. Lloyd, J. R.,, E. L. Blunt-Harris,, and D. R. Lovley. 1999. The periplasmic 9.6 kDa c-type cytochrome is not an electron shuttle to Fe(III). J. Bacteriol. 181: 7647 7649.
61. Lonergan, D. J.,, and D. R. Lovley,. 1991. Microbial oxidation of natural and anthropogenic aromatic compounds coupled to Fe(III) reduction, p. 327 338. In R. A. Baker (ed.), Organic Substances and Sediments in Water. Lewis Publishers, Inc., Chelsea, Mich..
62. Lovley, D. R. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol. J. 5: 375 399.
63. Lovley, D. R., 1990. Magnetite formation during microbial dissimilatory iron reduction, p. 151 166. In R. B. Frankel,, and R. P. Blakemore (ed.), Iron Biominerals. Plenum Press, New York, N.Y.
64. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259 287.
65. Lovley, D. R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14: 85 93.
66. Lovley, D. R. 1995. Microbial reduction of iron, manganese, and other metals. Adv. Agron. 54: 175 231.
67. Lovley, D. R. 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20: 305 315.
68. Lovley, D. R. 1997. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Ind. Microbiol. 18: 75 81.
69. Lovley, D. R., Fe(III)- and Mn(IV)-reducing prokaryotes. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes, in press. Springer-Verlag, New York, N.Y..
70. Lovley, D. R., Reduction of iron and humics in subsurface environments, in press. In J. Fredrickson, and M. Fletcher (ed.), Subsurface Microbiology and Biogeochemistry, John Wiley & Sons Inc., New York, N.Y..
71. Lovley, D. R.,, and R. T. Anderson. 2000. The influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. J. Hydrol. in press.
72. Lovley, D. R.,, M. J. Baedecker,, D. J. Lonergan,, I. M. Cozzarelli,, E. J. P. Phillips,, and D. I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297 299.
73. Lovley, D. R.,, and E. L. Blunt-Harris. 1999. Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65: 4252 4254.
74. Lovley, D. R.,, and F. H. Chapelle. 1995. Deep subsurface microbial processes. Rev. Geophys. 33: 365 381.
75. Lovley, D. R.,, F. H. Chapelle,, and J. C. Woodward. 1994. Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic ground water. Environ. Sci. Technol. 28: 1205 1210.
76. Lovley, D. R.,, and J. D. Coates. 1997. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285 289.
77. Lovley, D. R.,, J. D. Coates,, E. L. Blunt-Harris,, E. J. P. Phillips,, and J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 445 448.
78. Lovley, D. R.,, J. D. Coates,, D. A. Saffarini,, and D. J. Lonergan,. 1997. Dissimilatory iron reduction, p. 187 215. In G. Winkelman, and C. J. Carrano (ed.), Iron and Related Transition Metals in Microbial Metabolism. Harwood Academic Publishers, Chur, Switzerland.
79. Lovley, D. R.,, J. L. Fraga,, E. L. Blunt-Harris,, L. A. Hayes,, E. J. P. Phillips,, and J. D. Coates. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26: 152 157.
80. Lovley, D. R.,, J. L. Fraga,, J. D. Coates,, and E. L. Blunt-Harris. 1999. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1: 89 98.
81. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby,, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336 344.
82. Lovley, D. R.,, and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52: 2993 3003.
83. Lovley, D. R.,, K. Kashefi,, M. Vargas,, J. M. Tor,, and E. L. Blunt-Harris. Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem. Geol. in press.
84. Lovley, D. R.,, and D. J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, and /7-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858 1864.
85. Lovley, D. R.,, and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52: 751 757.
86. Lovley, D. R.,, and E. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683 689.
87. Lovley, D. R.,, and E. J. P. Phillips. 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol 53: 2636 2641.
88. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472 1480.
89. Lovley, D. R.,, and E. J. P. Phillips. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl. Environ. Microbiol. 55: 3234 3236.
90. Lovley, D. R.,, and E. J. P. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850 856.
91. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. R. Landa. 1991. Microbial reduction of uranium. Nature 350: 413 416.
92. Lovley, D. R.,, E. J. P. Phillips,, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700 706.
93. Lovley, D. R.,, E. J. P. Phillips,, and D. J. Lonergan. 1991. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ. Sci. Technol. 25: 1062 1067.
94. Lovley, D. R.,, E. E. Roden,, E. J. P. Phillips,, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113: 41 53.
95. Lovley, D. R.,, J. F. Stolz,, G. L. Nord,, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252 254.
96. Lovley, D. R.,, and J. C. Woodward. 1996. Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem. Geol 132: 19 24.
97. Lovley, D. R.,, J. C. Woodward,, and F. H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128 131.
98. Lovley, D. R.,, J. C. Woodward,, and F. H. Chapelle. 1996. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Em iron. Microbiol. 62: 288 291.
99. McKay, D. S.,, E. K. Gibson, Jr.,, K. L. Thomas-Deprta,, H. Vali,, C. S. Romanek,, S. J. Clement,, X. D. F. Chillier,, C. R. Maechling,, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924 930.
100. McKnight, D. M.,, P. Behmel,, D. A. Francko,, E. T. Gjessing,, U. Munster,, R. C. Petersen Jr.,, O. M. Skulberg,, C. E. W. Steinberg,, E. Tipping,, S. A. Visser,, P. W. Werner,, and R. G. Wetzel,. 1990. Group report how do organic acids interact with solutes, surfaces, and organisms, p. 223 243. In E. M. Perdue, and E. T. Gjessing (ed.), Organic Acids in Aquatic Ecosystems. John Wiley & Sons, Inc., New York, N.Y..
101. Mortimer, R. J. G.,, and M. L. Coleman. 1997. Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochim. Cosmochim. Acta 61: 1705 1711.
102. Mortimer, R. J. G.,, M. L. Coleman,, and J. E. Rae. 1997. Effect of bacteria on the elemental composition of early diagenetic siderite: implications for paleoenvironmental interpretations. Sedimentology 44: 759 765.
103. Munch, J. C.,, and J. C. G. Ottow. 1977. Modelluntersuchungen zum Mechanismus der bakteriellen Eisenreduktion in Hydromorphen Boden. Z. Pflanzenernaehr. Bodenkd. 140: 549 562.
104. Munch, J. .,, and J. C. G. Ottow. 1983. Reductive transformation mechanism of ferric oxides in hydromorphic soils. Environ. Biogeochem. Ecol. Bull. {Stockholm) 35: 383 394.
105. Myers, C. R.,, and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429 3438.
106. Myers, C. R.,, and J. M. Myers. 1993. Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 108: 15 22.
107. Myers, C. R.,, and J. M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179: 1143 1152.
108. Myers, C. R.,, and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 1319 1321.
109. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311 343.
110. Obuekwe, C. O.,, and D. W. S. Westlake. 1982. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil. Can. J. Microbiol. 28: 989 992.
111. Obuekwe, C. O.,, D. W. S. Westlake,, and F. D. Cook. 1981. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27: 692 697.
112. Ottow, J. C. G. 1970. Bacterial mechanism of gley formation in artificially submerged soil. Nature 225: 103.
113. Ottow, J. C. G. 1970. Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria. Z Allg. Mikrobiol. 10: 55 62.
114. Ottow, J. C G., and H. Glathe. 1971. Isolation and identification of iron-reducing bacteria from gley soils. Soil Biol. Biochem. 3: 43 55.
115. Pace, N. R. 1991. Origin of life-facing up to the physical setting. Cell 65: 531 533.
116. Pedersen, K.,, J. Arlinger,, S. Ekendahl, and L, Hallbeck. 1996. 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol. Ecol. 19: 249 262.
117. Phillips, E.,, D. R. Lovley,, and E. E. Roden. 1993. Composition of non-microbially reducible Fe(III) in aquatic sediments. Appl. Environ. Microbiol. 59: 2727 2729.
118. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24: 29 96.
119. Ponnamperuma, F. N., 1984. Effects of flooding on soils, p. 9 45. In T. T. Kozlowski (ed.), Flooding and Plant Growth. Academic Press, Inc., New York, N.Y..
120. Roden, E. E.,, and R. G. Wetzel. 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41: 1733 1748.
121. Rooney-Varga, J. N.,, R. T. Anderson,, J. L. Fraga,, D. Ringelberg,, and D. R. Lovley. 1999. Microbial communities associated with anaerobic benzene mineralization in a petroleumcontaminated aquifer. Appl. Environ. Microbiol. 65: 3056 3063.
122. Rossello-Mora, R. A.,, W. Ludwig, R Kampfer, R. Amann, and K.-H. Schleifer. 1995. Ferrimonas balearica gen. nov. spec, nov., a new marine facultative Fe(III)-reducing bacterium. Svst. Appl Microbiol 18: 196 202.
123. Russell, M. J.,, D. E. Daia,, and A. J. Hall,. 1998. The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean, p. 77 126. In J. Wiegel, and M. W. W. Adams (ed.), Thermophiles: the Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, Pa..
124. Scott, D. T.,, D. M. McKnight,, E. L. Blunt-Harris,, S. E. Kolesar,, and D. R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol 32: 2984 2989.
125. Seeliger, S.,, R. Cord-Ruwisch,, and B. Schink. 1998. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J. Bacteriol. 180: 3686 3691.
126. Slobodkin, A.,, A.-L. Reysenbach,, N. Strutz,, M. Dreier,, and J. Wiegel. 1997. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47: 541 547.
127.Sorensen, J, 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ. Microbiol. 43: 319324.
128. Starkey, R. L.,, and H. O. Halvorson. 1927. Studies on the transformations of iron in nature. II. Concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci. 24: 381 402.
129. Stolz, J. F.,, D. J. Ellils,, J. Switzer Blum,, D. Ahmann,, D. R. Lovley,, and R. S. Oremland. 1999. Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the Epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49: 1177 1180.
130. Straub, K. L.,, M. Benz,, B. Schink,, and F. Widdel. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol 62: 1458 1460.
131. Straub, K. L.,, and B. E. E. Cuchholz-Cleven. 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from European sediments. Appl. Environ. Microbiol 64: 4846 4856.
132. Straub, K. L.,, M. Hanzlik,, and B. E. E. Buchholz-Cleven. 1998. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst. Appl. Microbiol. 21: 442 449.
132.a. Synoeyenbos-West, O. L.,, K. R. Nevin,, and D. R. Lovley. Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers. Microb. Ecol, in press.
133. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65 67.
134. Verschuur, G. L. 1993. The History and Mystery of Magnetism. Oxford University Press, New York, N.Y..
135. Vroblesky, D. A.,, and F. H. Chapelle. 1994. Temporal and spatial changes of terminal electron accepting processes in a petroleum hydrocarbon contaminated aquifer and the significance for contaminant biodegradation. Water Re sour. Res. 30: 1561 1570.
136. Walker, J. C. G. 1980. Atmospheric constraints on the evolution of metabolism. Origins Life 10: 93 104.
137. Walker, J. C. G. 1984. Suboxic diagenesis in banded iron formations. Nature 309: 340 342.
138. Walker, J. C. G. 1987. Was the Archaean biosphere upside down? Nature 329: 710 712.
139. Weiner, J. M.,, T. S. Lauck,, and D. R. Lovley. 1998. Enhanced anaerobic benzene degradation with the addition of sulfate. Bioremediation J. 2: 159 173.
140. Widdel, F.,, S. Schnell,, S. Heising,, A. Ehrenreich,, B. Assmus,, and B. Schink. 1993. Ferrous iron oxidation by anoxygenie phototrophic bacteria. Nature 362: 834 835.
141. Zehnder, A. J. B.,, and W. Stumm,. 1988. Geochemistry and biogeochemistry of anaerobic habitats, p. 1 38. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York, N.Y..

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error