Chapter 10 : Microbial Reduction of Chromate

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Reduction of Chromate, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap10-2.gif


Chromium is one of the most widely used metals in industry. In addition, trivalent chromium( Cr(III)), is an essential trace element necessary for glucose and lipid metabolism and for the utilization of amino acids. Current treatment techniques for chromium-containing wastes generally involve aqueous reduction of hexavalent chromium (Cr(VI)) to Cr(III) by using a reducing agent at lowered pH with subsequent adjustment of the solution pH to near-neutral ranges to precipitate the less soluble Cr(III). Many facultative anaerobes are capable of reducing Cr(VI) to Cr(III) under appropriate conditions. Chromium-reducing bacteria may utilize a variety of organic compounds as electron donors for chromium reduction. The toxicity of Cr(VI) toward Cr(VI) reduction may be illustrated by the finite capacity of cells. The ability of an enzyme-based kinetic model to analyze Cr(VI) reduction was further demonstrated with two other strains, and , reported in the literature. The model illustrates an important characteristic of microbial Cr(VI) reduction. The electron donors known for Cr(VI) reduction are generally limited to nontoxic aliphatic compounds, mainly low-molecular-weight carbohydrates, amino acids, and fatty acids. Recent work has revealed the potential of using Cr(VI)-reducing microorganisms for detoxifying Cr(VI)-contaminated environments or for treating Cr(VI)-containing wastes, even if the biochemical mechanisms of Cr(VI) reduction are not yet fully understood. Recent success in using a biofilm reactor for continuous reduction of Cr(VI) may have shed some light on methods for the biological treatment of Cr(VI)-containing wastes.

Citation: Wang Y. 2000. Microbial Reduction of Chromate, p 225-235. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Mechanisms of Cr(VI) reduction in bacteria. SR, soluble reductase; MR, membrane-bound reductase.

Citation: Wang Y. 2000. Microbial Reduction of Chromate, p 225-235. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alvarez-Cohen, L.,, and P. L. McCarty. 1991. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25: 1381 1387.
2. Beszedits, S.,, 1988. Chromium removal from industrial wastewaters, p. 232 263. In O. Nriagu, and E. Nieboer (ed.), Chromium in the Natural and Human Environments. John Wiley & Sons, Inc., New York, N.Y.
3. Bianchi, V.,, L. Celotti,, and G. Lanfranchi. 1983. Genetic effects of chromium compounds. Mutat. Res. 117: 279 300.
4. Bopp, L. H.,, and H. L. Ehrlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426 431.
5. Canter, L. W.,, and R. C. Knox. 1986. Ground Water Pollution Control. Lewis Publishers, Inc., Chelsea, Mich.
6. Cervantes, C.,, and S. Silver. 1992. Plasmid chromate resistance and chromate reduction. Plasmid 27: 65 71.
7. Chirwa, E. M. N.,, and Y. T. Wang. 1997. Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ. Sci. Technol. 31: 1446 1451.
8. Chirwa, E. M. N.,, and Y. T. Wang. 1997. Biological reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in a fixed-film reactor. J Environ. Eng. 123: 760 766.
9. DeFlora, S.,, V. Bianchi,, and A. G. Levis. 1984. Distinctive mechanisms for interaction of hexavalent omium and trivalent chromium with DNA. Toxicol. Environ. Chem. 8: 287 294.
10. Eary, L. E.,, and D. Ral. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972 977.
11. Enterline, P. E. 1974. Respiratory cancer among chromate workers. J. Occup. Med. 16: 523 526.
12. Gvozdyak, P. I.,, N. F. Mogilevich,, A. F. Rylskii,, and N. I. Grishchenko. 1986. Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962 965.
13. Heller, R. J.,, and C. H. Roy. 1986. Hexavalent chromium reduction. Plating Surf. Finishing 73: 22.
14. Horitsu, H.,, S. Futo,, Y. Miyazawa,, S. Ogai,, and K. Kawai. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-l. Agric. Biol. Chem. 51: 2417 2420.
15. Ishibashi, Y.,, C. Cervantes,, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268 2270.
16. Komori, K.,, A. Rivas,, K. Toda,, and H. Ohtake. 1989. Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioeng. 35: 951 954.
17. Komori, K.,, P. C. Wang,, K. Toda,, and H. Ohtake. 1989. Factors affecting chromate reduction in Enterobacter cloacae strain HOI. Appl. Microbiol. Biotechnol. 31: 567 570.
18. Lebedeva, E. V.,, and N. N. Lyalikova. 1979. Reduction of crocoite by Pseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517 522.
19. Llovera, S.,, R. Bonet,, M. Simon-Pujol,, and F. Congregado. 1993. Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl. Environ. Microbiol. 59: 3516 3518.
20. Lofroth, G.,, and B. N. Ames. 1978. Mutagenicity of inorganic compounds in Salmonella typhimurium: arsenic, chromium and selenium. Mutat. Res. 53: 65 66.
21. Lovley, D. R.,, and E. J. P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl. Environ. Microbiol. 60: 726 728.
21a. Mancuso, T. F., 1975. Consideration of chromium as an industrial carcinogen, p. 343 356. In T. C. Hutchinson (ed.), Proceedings of the International Conference on Heavy Metals in the Environment. Toronto Institute of Environmental Studies, Toronto, Canada.
22. Ohtake, H.,, E. Fujii,, and T. Toda. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ. Technol 11: 663 668.
23. Petrilli, F. L.,, and S. DeFlora. 1977. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl. Environ. Microbiol. 33: 805 809.
24. Richard, F. C.,, and A. C. M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Water Res. 25: 807 816.
25. Roe, F. J. C.,, and R. L. Carter. 1969. Chromium carcinogenesis: calcium chromate as a potent carcinogen from the subcutaneous tissues of the rat. Br. J. Cancer 23: 172 176.
26. Shen, H.,, and Y. T. Wang. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 59: 3771 3777.
27. Shen, H.,, and Y. T. Wang. 1994. Modeling hexavalent chromium reduction in Escherichia coli 33456. Biotechnol. Bioeng. 43: 293 300.
28. Shen, H.,, and Y. T. Wang. 1994. Biological reduction of chromium by E. coli. J. Environ. Eng. 120: 560 572.
29. Shen, H.,, and Y. T. Wang. 1995. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbiol. 61: 2754 2758.
30. Smillie, R. H.,, K. Hunter,, and M. Loutit 1981. Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res. 15: 1351 1354.
31. Stumm, W.,, and J. J. Morgan. 1980. Aquatic Chemistry, 2nd ed. John Wiley & Sons, Inc., New York, N.Y.
32. Suzuki, T.,, N. Miyata,, H. Horitsu,, K. Kawai,, K. Takamizawa,, Y. Tai,, and M. Okazaki. 1992. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-l: a Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol 174: 5340 5345.
33. Towhill, L. E.,, C. R. Shriner,, J. S. Drury,, A. S. Hammons,, and J. W. Holleman. 1978. Reviews of the Environmental Effects of Pollutants. III. Chromium. EPA 600/1-78-023. U.S. Environmental Protection Agency, Washington, D.C.
34. Wang, P. C.,, T. Mori,, K. Komori,, M. Sasatsu,, K. Toda,, and H. Ohtake. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665 1669.
35. Wang, P. C.,, K. Toda,, H. Ohtake,, I. Kusaka,, and I. Yabe. 1991. Membrane-bound respiratory system of Enterobacter cloacae strain HOI grown anaerobically with chromate. FEMS Microbiol. Lett. 78: 11 16.
35a. Wang, Y. T.,, and E. M. Chirwa. 1997. Simultaneous removal of chromium and organic pollutants by an anaerobic consortium of bacteria, p. 187 196. In Proceedings of the 29th Mid-Atlantic Industrial and Hazardous Waste Conference. Technomic Publishing Co., Lancaster, Pa.
36. Wang, Y. T.,, and C. Xiao. 1995. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res. 29: 2467 2474.
37. Wang, Y. T.,, and H. Shen. 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14: 159 163.
38. Wang, Y. T.,, and H. Shen. 1997. Modelling Cr(VI) reduction by pure bacterial cultures. Water Res. 31: 727 732.
39. Yamamoto, K.,, J. Kato,, T. Yano,, and H. Ohtake. 1993. Kinetics and modeling of hexavalent chromium in Enterobacter cloacae. Biotechnol. Bioeng. 41: 129 133.


Generic image for table
Table 1

Microbial -populations that transform Cr(VI) to Cr(III)

Citation: Wang Y. 2000. Microbial Reduction of Chromate, p 225-235. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error