Chapter 13 : Bioremediation of Radionuclide-Containing Wastewaters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bioremediation of Radionuclide-Containing Wastewaters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap13-2.gif


This chapter highlights the key steps in the nuclear fuel cycle where biological treatment strategies may replace or augment existing chemical processes. Radionuclide-containing wastes are produced at all steps in the nuclear fuel cycle. The mechanisms of microbial interactions with key radionuclides in the wastes are discussed alongside the possible antagonistic effects of other organic and inorganic species copresented in solution. Although emphasis is placed on the development of "end-of-pipe" treatments, the application of biological agents in the detoxification of already polluted ecosystems via in situ bioremediation is also highlighted. Microorganisms can interact with radionuclides via several mechanisms, some of which may be used as the basis of potential bioremediation strategies. The major types of interaction are summarized in this chapter. Technical challenges associated with large-scale clean-up of highly complex wastes must be overcome prior to the full commercial realization of the technologies currently under consideration. The chapter summarizes the major technical challenges. Since biosorption of uranium has been covered extensively in the literature and since biosorbents relate in general to structural, not metabolic, aspects of the biomass, this chapter notes only a few recent developments. To implement biotechnology to treat large areas contaminated with historic waste, the challenges are to gain a better understanding of microbial communities at site and devise effective methods of stimulating or augmenting microbial activities required in situ.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The nuclear fuel cycle.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms of radionuclide-microbe interactions.

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdelouas, A.,, Y. L. Lu,, W. Lutze,, and H. E. Nuttall. 1998. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water. J. Contam. Hydrol 35: 217 233.
2. Anderson, S.,, and V. D. Apanna. 1994. Microbial formation of crystalline strontium carbonate. FEMS Microbiol. Lett. 116: 42 48.
3. Andres, Y.,, H. J. MacCordick,, and J.-C. Hubert. 1993. Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl. Microbiol Biotechnol. 39: 413 417.
4. Andres, Y.,, H. J. MacCordick,, and J. C. Hubert. 1994. Binding sites of sorbed uranyl ion in the cell wall of Mycobacterium smegmatis. FEMS Microbiol Lett. 115: 27 32.
5. Andres, Y.,, H. J. MacCordick,, and J. C. Hubert. 1995. Selective biosorption of thorium ions by an immobilized mycobacterial biomass. Appl. Microbiol. Biotechnol. 44: 271 276.
6. Appanna, V. D.,, L. G. Gazso,, J. Huang,, and M. St. Pierre. 1996. A microbial model for ceasium containment. Microbios 86: 121 126.
7. Ashley, N. V.,, and D. J. W. Roach. 1990. Review of biotechnology applications to nuclear waste treatment. J. Chem. Technol. Biotechnol. 4 9: 381 394.
8. Avery, S. A.,, and J. M. Tobin. 1992. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58: 3883 3889.
9. Avery, S. V. 1995. Microbial interactions with caesium—implications for biotechnology. J. Chem. Technol. Biotechnol. 62: 3 16.
10. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1991. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J. Gen. Microbiol. 137: 405 413.
11. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1992. Caesium transport in the cyanobacterium Anabaena variabilis kinetics and evidence for uptake via ammonium transport system(s). FEMS Microbiol. Lett. 95: 253 258.
12. Avery, S. V.,, G. A. Codd,, and G. M. Gadd. 1993. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina. J. Gen. Microbiol. 139: 827 834.
13. Bailar, J. C.,, H. J. Emelium,, R. Nyholm,, and A. F. Trotman-Dickenson. 1973. The Actinides, vol. 5. Pergamon Press, Oxford, United Kingdom.
14. Barnes, L. J.,, F. J. Janssen,, J. Sherren,, J. H. Versteegh,, R. O. Koch,, and P. J. H. Scheeren. 1991. A new process for the microbial removal of sulphate and heavy metal from contaminated waters extracted by a geohydrological control system. Chem. Eng. Res. Des. 69A: 184 186.
15. Barnhart, B. J.,, E. W. Campbell,, E. Martinez,, D. E. Caldwell,, and R. Hallett. 1980. Potential Microbial Impact on Transuranic Wastes under Conditions Expected in the Waste Isolation Pilot Plant (WIPP). Document LA-8297-PR. Los Alamos National Laboratory, Los Alamos, N.Mex.
16. Basnakova, G.,, and L. E. Macaskie. 1999. Accumulation of zirconium and nickel by Citrobacter sp. J. Chem. Technol. Biotechnol. 74: 509 514.
17. Basnakova, G.,, and L. E. Macaskie. 1998. Microbially-enhanced chemisorption of heavy metals: a method for the bioremediation of solutions containing long-lived isotopes of neptunium and plutonium. Environ. Sci. Technol. 32: 184 187.
18. Basnakova, G.,, and L. E. Macaskie. 1997. Microbially-enhanced chemisorption of nickel into biologically-synthesized hydrogen uranyl phosphatea novel system for the removal and recovery of metals from aqueous solution. Biotechnol. Bioeng. 54: 319 328.
19. Basnakova, G.,, A. J. Spencer,, E. Palsgard,, G. W. Grime,, and L. E. Macaskie. 1998. Identification of the nickel uranyl phosphate deposit on Citrobacter sp. cells by electron microscopy with electron probe X-ray microanalysis (EPXMA) and by proton induced X-ray emission analysis (PIXE). Environ. Sci. Technol 32: 760 765.
20. Basnakova, G.,, E. Stephens,, M. C. Thaller,, G. M. Rossolini,, and L. E. Macaskie. 1998. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl. Microbiol. Biotechnol. 50: 266 272.
21. Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51: 203 204.
22. Belly, R. T.,, J. J. Lauff,, and C. T. Goodhue. 1975. Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl. Microbiol. 29: 787 794.
23. Bengtsson, L.,, B. Johansson,, T. J. Hackett,, L. McHale,, and A. P. McHale. 1995. Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Appl. Microbiol. Biotechnol. 42: 807 811.
24. Beveridge, T. J.,, M. N. Hughes,, H. Lee,, K. T. Leung,, R. K. Poole,, I. Savvaidis,, S. Silver,, and J. T. Trevors. 1997. Metal-microbe interactions: contemporary approaches. Adv. Microb. Physiol. 38: 177 243.
25. Binks, P. R. 1996. Radioresistant bacteria: have they got industrial uses? J. Chem. Technol. Biotechnol. 67: 319 322.
26. Blount, J. G. 1998. Physicochemical and biogeochemical stabilization of uranium in a low level radioactive waste disposal cell. Environ. Eng. Geosci. 4: 491 502.
27. Boegley, W. J. J.,, and H. J. Alexander. 1986. Radioactive wastes. J. Water Pollut. Control Fed. 58: 594 600.
28. Bolton, H. J.,, S. W. Li,, D. J. Workman,, and D. C. Girvin. 1993. Biodegradation of synthetic chelates in subsurface sediments from the southeastern coastal plain. J. Environ. Qual. 22: 125 132.
29. Bonthrone, K. M.,, G. Basnakova,, F. Lin,, and L. E. Macaskie. 1996. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat. Biotechnol. 14: 635 638.
30. Borst-Pauwels, G. W. F. H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 88 127.
31. Bosecker, K. 1997. Bioleaching: metal solubilisation by microorganisms. FEMS Microbiol. Rev. 20: 591 604.
32. Bossemeyer, D.,, A. Schlosser,, and E. Bakker. 1989. Specific cesium transport via the Escherichia coli Kup (TrkD) K + uptake system. J. Bacteriol. 171: 2219 2221.
33. Brady, D.,, A. Stoll,, and J. R. Buncan. 1994. Biosorption of heavy metal cations by non-viable yeast biomass. Environ. Technol. 15: 429 439.
34. Brierley, C. L.,, and J. Brierley. 1981. Biological Processes for Concentrating Trace Elements from Uranium Mine Wastes. Technical Completion Report 140. New Mexico Water Resources Research Institute, Las Cruces.
35. Brierley, I. A.,, G. M. Goyak,, and C. L. Brierley,. 1986. Considerations for commercial use of natural products for metal recovery, p. 105 120. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by BioSorption. Ellis Horwood, Chichester, United Kingdom.
36. Bryers, J. D.,, and S. Sanin. 1994. Resuscitation of starved ultramicrobacteria to improve in-situ bioremediation. Ann. N.Y. Acad. Sci. 745: 61 76.
37. Brynhildsen, L.,, and B. Allard. 1994. Influence of metal complexation on the metabolism of citrate by Klebsiella oxytoca. Biometals 7: 163 169.
38. Brynhildsen, L.,, and T. Rosswall. 1989. Effects of copper, magnesium and zinc on the decomposition of citrate by a Klebsiella sp. Appl. Environ. Microbiol. 55: 1375 1379.
39. Burnett, W. C.,, J. B. Cowart,, and P. A. Chin,. 1987. Polonium in the superficial aquifer of West Central Florida, p. 251 269. In B. Graves (ed.), Radon Radium and Other Radioactivity in Groundwater. Hydrogeologic Impact and Application to Indoor Airborne Contamination. Lewis Publishers, Boca Raton, Fla.
40. Bustard, M.,, A. Donnellan,, A. Rollan,, L. McHale,, and A. P. McHale. 1996. The effect of pulsed field strength on electric field stimulated biosorption of uranium by Kluyveromyces marxianus IMB 3. Biotechnol. Lett. 18: 479 482.
41. Caccavo, F.,, J. D. Coates,, R. A. Rossello-Mora,, W. Ludwig,, K. H. Schleifer,, D. R. Lovley,, and M. J. Mclnerney. 1996. Geobacter ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol. 165: 370 376.
42. Caccavo, F. Jr.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. F. Stolz,, and M. J. Mclnerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752 3759.
43. Cataldo, D. A.,, T. R. Garland,, R. E. Wildung,, and R. J. Fellows. 1989. Comparative metabolic behaviour and interrelationships of Tc and S in soybean plants. Health Phys. 57: 281 288.
44. Cherrier, J.,, W. C. Burnett,, and P. A. LaRock. 1995. Uptake of polonium and sulfur by bacteria. Geomicrobiol. J. 13: 103 115.
45. Clearfield, A. 1988. Role of ion exchange in solid-state chemistry. Chem. Rev. 88: 125 148.
46. Cleveland, J. M.,, and T. F. Rees. 1981. Characterisation of plutonium in Maxey Flats radioactive trench leachates. Science 212: 1506 1509.
47. Crameri, A.,, G. Dawes,, E. Rodriguez,, S. Silver,, and W. P. C. Stemmer. 1997. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15: 436 438.
48. Cripps, R. E.,, and A. S. Noble. 1973. The metabolism of nitrilotriacetate by a pseudomonad. Biochem. J. 136: 1059 1068.
49. Davis, W. J., 1984. Radiolytic behavior, p. 221 265. In W. W. Schulz,, J. D. Navratil,, and A. E. Talbot (ed.), Science and Technology of Tributyl Phosphate. CRC Press Inc, Boca Raton, Fla.
50. Dehut, J. P.,, K. Fosny,, C. Myttenaere,, D. Deprins,, and C. M. Vandecasteele. 1989. Bioavailability of Tc incorporated in plant material. Health Phys. 57: 263 267.
51. Delegard, C. H. 1987. Solubility of Pu02 in alkaline high-level waste solution. Radiochim. Acta 41: 11 21.
52. Derks, W. J. G.,, and G. W. F. H. Borst-Pauwels. 1979. Apparent three-site kinetics of Cs +-uptake by yeast. Physiol. Plant. 46: 241 246.
53. deRome, L.,, and G. M. Gadd. 1991. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7: 97 104.
54. Dhami, P. S.,, V. Gopalakrishnan,, R. Kannan,, A. Ramanujam,, N. Salvi,, and S. I. Udupa. 1998. Biosorption of radionuclides by Rhizopus arrhizus. Biotechnol. Lett. 20: 225 228.
55. Diels, L.,, Q. Dong,, D. van der Lelie,, W. Baeyens,, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142 153.
56. Dodge, C. J.,, and A. J. Francis. 1994. Photodegradation of uranium citrate complex with uranium recovery. Environ. Sci. Technol. 28: 1300 1306.
57. Dorhout, P. K.,, R. J. Kissane,, K. D. Abney,, L. R. Avens,, P. G. Eller,, and A. B. Ellis. 1989. Intercalation reactions of the neptunyl (VI) dication with hydrogen uranyl phosphate and hydrogen neptunyl host lattices. Inorg. Chem. 28: 2926 2930.
58. Dwivedy, K. K.,, and A. K. Mathur. 1995. Bioleaching—our experience. Hydrometallurgv 38: 99 109.
59. Eccles, H., 1999. Nuclear waste managementa bioremediation approach, p. 187 208. In G. R. Choppin, and M. K. Khankhasayev (ed.), Chemical Separation Technologies and Related Methods of Nuclear Waste Management. Kluwer Academic Publishers, Dordrecht, The Netherlands.
60. Eccles, H. 1995. Removal of heavy metals from effluent streams—why select a biological process? Intl. Biodeterior. Biodegrad. 35: 5 16.
61. Ehrlich, H. L. 1996. Geomicrobiology, 3rd ed. Marcel Dekker, Inc, New York, N.Y.
62. Ellwood, D. C.,, M. J. Hill,, and J. H. P. Watson,. 1992. Pollution control using microorganisms and metal separation, p. 89–; 112. In J.-C. Fry,, G. M. Gadd,, R. A. Herbert,, C. W. Jones,, and I. A. Watson-Craik (ed.), 46th Symposium of the Society for General Microbiology. Microbial Control of Pollution. Cambridge University Press, Cambridge, United Kingdom.
63. Entry, J. A.,, P. T. Rygiewicz,, and W. H. Emmingham. 1994. Sr-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ. Pollut. 86: 201 206.
64. Ferris, F. G.,, C. M. Fratton,, J. P. Gertis,, S. Schultzelam,, and B. S. Lollar. 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol. J. 13: 57 67.
65. Fisher, N. S.,, P. Bjerregaard,, L. Huynh-Ngoc,, and G. R. Harvey. 1983. Interactions of marine plankton with transuranic elements. Influence of dissolved organic compounds on americium and plutonium accumulation in diatoms. Mar. Chem. 13: 45 56.
66. Fortin, D.,, D. Davis,, and T. J. Beveridge. 1996. The role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol. 21: 11 24.
67. Francis, A. J. 1994. Microbial transformations of radioactive wastes and environmental restoration through bioremediation. J. Alloys Compounds 213/ 214: 226 231.
68. Francis, A. J.,, and C. J. Dodge. 1998. Remediation of soils and wastes contaminated with uranium and toxic metals. Environ. Sci. Technol. 32: 3993 3998.
69. Francis, A. J.,, and C. J. Dodge. March 1994. U.S. patent 5,292,456.
70. Francis, A. J.,, C. J. Dodge,, J. B. Gillow,, and J. E. Cline. 1991. Microbial transformations of uranium in wastes. Radiochim. Acta 52/ 53: 311 316.
71. Francis, A. J.,, C. J. Dodge,, F. Lu,, G. P. Halada,, and C. R. Clayton. 1994. XPS and XANES studies of uranium reduction by Clostridium sp. Environ. Sci. Technol. 28: 636 639.
72. FraustodaSilva, J. J. R.,, and R. J. P. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, Oxford, United Kingdom.
73. Friedman, B. A.,, and P. R. Dugan. 1968. Concentration and accumulation of metallic ions by the bacterium Zoogloea. Dev. Ind. Microbiol. 9: 381 395.
74. Friis, N.,, and P. Myers-Keith. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28: 21 28.
75. Gadd, G. M. 1996. Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20: 150 156.
76. Gadd, G. M. 1997. Roles of microorganisms in the environmental fate of radionuclides. CIBA Found. Symp. 203: 94 104.
77. Gadd, G. M.,, and C. White,. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, p. 19 38. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. IRL Press, Oxford, United Kingdom.
78. Gadd, G. M.,, and C. White. 1989. Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol. Bioeng. 33: 592 597.
79. Gale, G. R.,, and H. H. McLain. 1963. Effect of ethambutol on cytology of Mycobacterium smegmatis. J. Bacteriol. 86: 749 756.
80. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1993. Accumulation of zirconium by microalgae and cyanobacteria. Appl. Microbiol. Biotechnol. 39: 666 672.
81. Garnham, G. W.,, G. A. Codd,, and G. M. Gadd. 1992. Uptake of technetium by fresh water green microalgae. Appl. Microbiol. Biotechnol. 37: 679 684.
82. Ghosh, S.,, A. Sharma,, and G. Talukder. 1992. Zirconium, an abnormal trace element in biology. Biol. Trace Element Res. 35: 247 271.
83. Gibson, J. F.,, R. K. Poole,, M. N. Hughes,, and J. R. Rees. 1986. Ruthenium nitrosyl complexes— toxicity to Escherichia coli and yeasts, and uptake by marine bacteria. Arch. Environ. Contam. Toxicol. 15: 519 523.
84. Giesy, J. P. J.,, and D. Paine. 1977. Uptake of americium-241 by algae and bacteria. Prog. Water Technol. 9: 845 857.
85. Gorby, Y. A.,, F. Caccavo,, and H. Bolton. 1998. Microbial reduction of cobalt III, EDTA in the presence and absence of manganese(IV) oxide. Environ. Sci. Technol. 32: 244 250.
86. Gorby, Y. A.,, and D. R. Lovley. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26: 205 207.
87. Gray, K. R.,, and A. J. Biddlestone. 1995. Engineered reed-bed systems for waste-water treatment. Trends Biotechnol. 13: 248 252.
88. Gray, N. F. 1992. Biology of Wastewater Treatment. Oxford University Press, Oxford, United Kingdom.
89. Greene, B.,, M. T. Henzl,, J. M. Hosea,, and D. W. Darnall. 1986. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris. Biotechnol. Bioeng. 28: 764 772.
90. Guibal, E.,, C. Roulph,, and P. Le Cloirec. 1995. Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ. Sci. Technol. 29: 2496 2503.
91. Guibal, E.,, C. Roulph,, and P. Le Cloirec. 1992. Uranium biosorption by a filamentous fungus Mucor miehei: pH effect on mechanisms and performances of uptake. Water Res. 26: 1139 1145.
92. Hafez, N.,, A. S. Abdel-Razek,, and H. M. B. 1997. Accumulation of some heavy metals on Aspergillus flavus. J. Chem. Technol. Biotechnol. 68: 19 22.
93. Hard, B. C.,, S. Friedrich,, and W. Babel. 1997. Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol. Res. 152: 65 73.
94. Harvey, R. S.,, and R. Patrick. 1967. Concentration of 137Cs, 65Zn and 85Sr by freshwater algae. Biotechnol. Bioeng. 9: 449 456.
95. Henrot, J. 1989. Bioaccumulation and chemical modification of Tc by soil bacteria. Health Phys. 57: 239 245.
96. Higham, D. P.,, P. J. Sadler,, and M. D. Scawen. 1984. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium binding proteins. Science 225: 1043 1046.
97. Hu, M. Z. -C.,, and M. Reeves. 1997. Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol. Prog. 13: 60 70.
98. Hughes, M. N.,, and R. K. Poole. 1989. Metals and Micro-Organisms. Chapman & Hall, London, United Kingdom.
99. Hunsberger, L. R.,, and A. B. Ellis. 1990. Excited-state properties of lamellar solids derived from metal complexes and hydrogen uranyl phosphate. Coord. Chem. Rev. 97: 209 224.
100. Jeffers, T. H.,, P. G. Bennett,, and R. R. Corwin. 1994. Biosorption of Metal Contaminents Using Immobilized Biomass-Field Studies. Document Rl 9461. U.S. Bureau of Mines, Salt Lake City, Utah.
101. Jeong, B. C.,, C. Hawes,, K. M. Bonthrone,, and L. E. Macaskie. 1997. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal acumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143: 2497 2507.
102. Jeong, B. C.,, P. S. Poole,, A. J. Willis,, and L. E. Macaskie. 1998. Purification and characterization of acid-type phosphatases from a heavy metal-accumulating Citrobacter sp. Arch. Microbiol. 169: 166 173.
103. Johnson, D. B. 1995. Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int. Biodeterior. Biodegrad. 35: 41 58.
104. Johnson, E. E.,, A. G. O'Donnell,, and P. Ineson. 1991. An autoradiographic technique for selecting Cs-137-sorbing microorganisms from soil. J. Microbiol. Methods 13: 293 298.
105. Joshitope, G.,, and A. J. Francis. 1995. Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens. J. Bacteriol. 177: 1989 1993.
106. Kapoor, A.,, and T. Viraraghavan. 1995. Fungal biosorption—an alternative treatment option for heavy metal bearing wastewatera review. Bioresource Technol. 53: 185 206.
107. Karavaiko, G. I.,, A. S. Kareva,, Z. A. Avakian,, V. I. Zakharova,, and A. A. Korenevsky. 1996. Biosorption of scandium and yttrium from solutions. Biotechnol. Lett. 18: 1291 1296.
108. Katz, J. J.,, G. T. Seaborg,, and L. R. Morss. 1986. Chemistry of the Actinide Elements. Chapman & Hall, London, United Kingdom.
109. Khalid, A. M.,, S. R. Ashfaq,, T. M. Bhatti,, and M. A. Anwar,. 1993. The uptake of microbially leached uranium by microbial biomass, p. 299 300. In A. E. Torma,, M. L. Apel,, and C. L. Brierley (ed.), Biohydrometallurgical Technologies, vol. 2. The Minerals, Metals and Materials Society, Warrendale, Pa.
110. Kirby, H. W. 1986. The Chemistry of the Actinide Elements. Chapman & Hall, London, United Kingdom.
111. Kotegov, K. V.,, O. N. Pavlov,, and V. P. Shvendov,. 1968. Technetium, p. 1 90. In H. J. Emelius, and A. G. Sharpe (ed.), Advances in Inorganic Chemistry and Radiochemistry. Academic Press, Inc., New York, N.Y.
112. Kuyucak, N.,, and B. Volesky. 1989. Accumulation of cobalt by marine algae. Biotechnol. Bioeng. 33: 809 814.
113. Landa, E. R.,, E. J. P. Phillips,, and D. R. Lovley. 1991. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction. Appl. Geochem. 6: 647 652.
114. Lange, C. C.,, L. P. Wackett,, K. W. Minton,, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16: 929 933.
115. LaRock, P.,, J.-H. Hyun,, S. Boutelle,, W. C. Burnett,, and C. D. Hull. 1996. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta 60: 4321 328.
116. Lauff, J. J.,, D. B. Steel,, L. A. Coogan,, and J. M. Breitfeller. 1990. Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl. Environ. Microbiol. 56: 3346 3353.
117. Lear, D. W.,, and C. H. Oppenheimer. 19. Biological removal of radioisotopes 90Sr and 90Y from seawater by marine microrganisms. Limnol. Oceeanogr. 7( Suppl.): 44 62.
118. Lieser, K. H.,, and A. Muhlenweg. 1988. Np in the hydrosphere and in the geosphere. Radiochim. Acta 43: 27 35.
119. Lloyd, J. R.,, J. A. Cole,, and L. E. Macaskie. 1997. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J. Bacteriol. 179: 2014 2021.
120. Lloyd, J. R.,, C. L. Harding,, and L. E. Macaskie. 1997. Tc(VII) reduction and precipitation by immobilized cells of Escherichia coli. Biotechnol. Bioeng. 55: 505 510.
121. Lloyd, J. R.,, and L. E. Macaskie. 1997. Microbially-mediated reduction and removal of technetium from solution. Res. Microbiol. 148: 530 532.
122. Lloyd, J. R.,, and L. E. Macaskie. 1996. A novel phosphorlmager based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62: 578 582.
123. Lloyd, J. R.,, H.-F. Nolting,, V. A. Sole,, K. Bosecker,, and L. E. Macaskie. 1998. Technetium reduction and precipitation by sulphate-reducing bacteria. Geomicrobiol. J. 15: 43 56.
124. Lloyd, J. R.,, J. Ridley,, T. Khizniak,, N. N. Lyalikova,, and L. E. Macaskie. 1999. Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterisation and use in a flowthrough bioreactor. Appl. Environ. Microbiol. 65: 2691 2696.
125. Lloyd, J. R.,, G. H. Thomas,, J. A. Finlay,, J. A. Cole,, and L. E. Macaskie. 1999. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol. Bioeng. 66: 122 130.
125a. Lloyd, J. R.,, P. Yong,, and L. E. Macaskie. Biological reduction and removal of Np(V) by two microorganisms. Environ. Sci. Technol., in press.
126. Loewenschuss, H. 1982. Metal-ferrocyanide complexes for the decontamination of cesium from aqueous radioactive waste. Radioact. Waste Manage. 2: 327 324.
127. Lonergan, D. J.,, H. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. Schmidt,, and D. R. Lovley. 1996 Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402 2408.
128. Lovley, D.,, and E. J. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850 856.
129. Lovley, D. R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14: 85 93.
130. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47: 263 290.
131. Lovley, D. R.,, and J. D. Coates. 1997. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285 289.
132. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby,, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336 344.
133. Lovley, D. R.,, and E. J. P. Phillips. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26: 2228 2234.
134. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. Landa. 1991. Microbial reduction of uranium. Nature 350: 413 416.
135. Lovley, D. R.,, E. E. Roden,, E. J. P. Phillips,, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate reducing bacteria. Mar. Geol. 113: 41 53.
136. Lovley, D. R.,, P. K. Widman,, J. C. Woodward,, and E. J. P. Phillips. 1993. Reduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris. Appl. Environ. Microbiol. 59: 3572 3576.
137. Lyalikova, N. N.,, and T. V. Khizhnyak. 1996. Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus. Microbiol. 65: 468 473.
138. Macaskie, L. E. 1991. The application of biotechnology to the treatment of wastes produced from nuclear fuel cycle biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit. Rev. Biotechnol. 11: 41 112.
139. Macaskie, L. E. 1997. Bioaccumulation of heavy metals and application to the remediation of acid mine drainage water containing uranium. Res. Microbiol. 148: 528 530.
140. Macaskie, L. E. 1990. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49: 357 379.
141. Macaskie, L. E.,, and K. M. Bonthrone. 1996. Modelling of Genetic, Biochemical, Cellular and Microenvironmental Parameters Determining Bacterial Sorption and Mineralization Processes for Recuperation of Heavy or Precious Metals. Final report on EU contract BE 5350.
142. Macaskie, L. E.,, K. M. Bonthrone,, P. Yong,, and D. Goddard. Enzymatically-mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for extracellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology, in press.
143. Macaskie, L. E.,, and A. C. R. Dean. 1985. Strontium accumulation by immobilized cells of a Citrobacter sp. Biotechnol. Lett. 7: 627 630.
144. Macaskie, L. E.,, R. M. Empson,, A. K. Cheetham,, C. P. Grey,, and A. J. Skarnulis. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically-mediated growth of polycrystalline HUO 2 PO 4 . Science 257: 782 784.
145. Macaskie, L. E.,, R. M. Empson,, F. Lin,, and M. R. ToIIey. 1995. Enzymatically-mediated uranium accumulation and uranum recovery using a Citrobacter sp. immobilised as a biofilm within a plugflow reactor. J. Chem. Technol. Biotechnol. 63: 1 16.
146. Macaskie, L. E.,, B. C. Jeong,, and M. R. Tolley. 1994. Enzymically-accelerated biomineralization of heavy metalsapplication to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14: 351 368.
147. Macaskie, L. E.,, J. R. Lloyd,, R. A. P. Thomas,, and M. R. Tolley. 1996. The use of microoorganisms for the remediation of solutions contaminated with actinide elements, other radionuclides and organic contaminants generated by nuclear fuel cycle activities. Nuclear Energy 35: 257 271.
148. Macaskie, L. E.,, P. Yong,, T. C. Doyle,, M. G. Roig,, M. Diaz,, and T. Manzano. 1997. Bioremediation of uranium-bearing wastewaterbiochemical and chemical factors influencing bioprocess application. Biotechnol. Bioeng. 53: 100 109.
149. MacKenzie, A. B.,, and R. D. Scott. 1993. Sellafield waste radionuclides in Irish Sea intertidal and salt marsh sediments. Environ. Geochem. Health 15: 173 178.
150. Marques, A. M.,, R. Bonet,, M. D. Simon-Oujol,, M. C. Fuste,, and F. Congregado. 1990. Removal of uranium by an exopolysaccharide from Pseudomonas sp. Appl. Microbiol. Biotechnol. 34: 429 431.
151. Marques, A. M.,, X. Roca,, M. D. Simon-Pujol,, M. C. Fuste,, and C. Francisco. 1991. Uranium acumulation by Pseudomonas sp. EPS-5028. Appl. Microbiol. Biotechnol. 35: 406 410.
152. McCready, R. G. L.,, and H. R. Krouse. 1980. Sulfur isotope fractionation by Desulfovibrio vulgaris during metabolism of BaS04 . Geomicrobiol. J. 2: 55 62.
153. McCready, R. G. L.,, and V. I. Lakshmanan,. 1986. Review of bioadsorption research to recover uranium from leach solutions in Canada, p. 219 226. In H. Eccles, and S. Hunt (ed.), Immobilization of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
154. McCullough, J.,, T. C. Hazen,, S. M. Benson,, F. B. Metting,, and A. C. Palmisano. 1999. Bioremediation of Metals and Radionuclides ... What Is It and How It Works. Lawrence Berkeley National Laboratory, Berkeley, Calif.
155. McDonald, P.,, G. T. Cook,, M. S. Baxter,, and J. C. Thomson. 1990. Radionuclide transfer from Sellafield to South West Scotland. J. Environ. Radioact. 12: 285 298.
156. McHale, A. P.,, and S. McHale. 1994. Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 12: 647 652.
157. Means, J. L.,, D. A. Crerar,, and J. O. Duguid. 1978. Migration of radioactive wastes: radionuclide mobilisation by complexing agents. Science 200: 1477 1481.
158. Mellor, R. B.,, J. Ronnenberg,, W. H. Campbell,, and S. Diekmann. 1992. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717 719.
159. Mohegheghi, A.,, D. M. Updegraff,, and M. B. Goldhaber. 1994. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiol. J. 4: 153 173.
160. Mudder, T. I.,, and J. L. Whitlock. 1984. Biological treatment of cyanidation wastewaters. Miner. Metall. Process. SME-AIME Trans. 276: 161 165.
161. Myers, C. R.,, and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429 3438.
162. Nakajima, A.,, T. Horikoshi,, and T. Sakaguchi. 1982. Recovery of uranium by immobilized microorganisms. Eur. J Appl. Microbiol. Biotechnol. 16: 88 91.
163. Nealson, K. H.,, and C. R. Myers. 1992. Microbial reduction of manganese and iron new approaches to carbon cycling. Appl. Environ. Microbiol. 58: 439 443.
164. Nelson, D. M.,, and M. B. Lovett. 1978. Oxidation state of plutonium in the Irish Sea. Nature 276: 599 601.
165. Nemec, P.,, H. Prochazka,, K. Stamberg,, J. Katzer,, J. Stamberg,, R. Jilek,, and P. Hulak. May 1977. U.S. patent 4,021,368.
166. Nero, A. V. 1979. A Guidebook to Nuclear Reactors. University of California Press, Berkeley.
167. Niki, T.,, T. Yagi,, I. Inokuchi,, and K. Kimura. 1977. Electrode reaction of cytochrome c 3 of Desulfovibrio vulgaris Miyazaki. J. Electrochem. Soc. 124: 1889 1892.
168. Norberg, A. B.,, and H. Persson. 1984. Accumulation of heavy metal ions by Zoogloea ramigera. Biotechnol. Bioeng. 26: 239 246.
169. Nortemann, B. 1992. Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58: 671 676.
170. O'Boyle, N. C.,, G. P. Nicholson,, T. J. Piper,, D. M. Taylor,, D. R. Williams,, and G. Williams. 1997. A review of plutonium (IV) selective ligands. Appl. Radiat. Isot. 48: 183 200.
171. Okorov, L. A.,, L. P. Lichko,, V. M. Kodomtseva,, V. P. Kholodenko,, V. T. Titovsky,, and I. S. Kulaev. 1977. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur. J. Biochem. 75: 373 377.
172. Omar, N. B.,, M. L. Merroun,, M. T. Gonzalez-Munoz,, and J. M. Arias. 1996. Brewery yeast as a biosorbent for uranium. J. Appl Bacteriol 81: 283 287.
173. Organbide, G.,, S. Philip-Holingsworth,, E. Tola,, R. A. Cedergren,, A. Squartini,, F. B. Dazzo,, and R. P. Hollingsworth. 1996. Glycoconjugate and lipid components of Rhizobium hedysara IS 123. Can. J. Microbiol 42: 340 345.
174. Paccard, E.,, and B. Besnanou. 1995. French patent 9509563.
175. Palumbo, A. V.,, S. Y. Lee,, and P. Boerman. 1994. Effect of media composition of EDTA degradation by Agrobacterium sp. Appl Biochem. Biotechnol 45: 811 822.
176. Peretrukhin, V. F.,, N. N. Khizhniak,, N. N. Lyalikova,, and K. E. German. 1996. Biosorption of technetium-99 and some actinides by bottom sediments of Lake Belsso Kosino of the Moscow region. Radiochem. 38: 440 443.
177. Perkins, J.,, and G. M. Gadd. 1993. Caesium toxicity, accumulation and intracellular location in yeasts. Mycol Res. 97: 712 724.
178. Pham-Thi, M.,, and P. Columban. 1985. Cationic conductivity, water species motions and phase transitions in H3OU02P04-3H,0 (HUP) and MUP related compounds (M + = Na + , K + , Ag + , Li + NH 4 +). Solid State Ion 17: 295 306.
179. Phillips, E. J. P.,, E. R. Landa,, and D. R. Lovley. 1995. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J. Ind. Microbiol. 14: 203 207.
180. Pignolet, L.,, K. Fonsny,, F. Capot,, and Z. Moureau. 1989. Role of various microorganisms on Tc behaviour in sediments. Health Phys. 57: 791 800.
181. Pinar, G.,, E. Duque,, A. Haidour,, J. M. Oliva,, L. Sanchez-Barcero,, V. Calvo,, and J. L. Ramos. 1997. Removal of high concentrations of nitrate from industrial wastewater by bacteria. Appl. Environ. Microbiol. 63: 2071 2073.
182. Pitt, W. W.,, C. W. Hancher,, and B. D. Patton. 1981. Biological reduction of nitrates in wastewater from nuclear fuel reprocessing using a fluidised bed reactor. Nuclear Chem. Waste Manage. 2: 57 70.
183. Plato, P.,, and J. T. Denovan. 1974. The influence of potassium on the removal of l37Cs by live Chlorella from low level radioactive wastes. Radiat. Bot. 14: 37 41.
184. Pons, M. P.,, and M. C. Fuste. 1993. Uranium uptake by immbilized cells of Pseudomonas strain EPS 5028. Appl. Microbiol. Biotechnol. 39: 661 665.
185. Postgate, J. R. 1979. The Sulphate Reducing Bacteria. Cambridge University Press, Cambridge, United Kingdom.
186. Pozas-Tormo, R.,, L. Moreno-Real, Martinez-Lara, and S. Bruque-Gamez. 1987. Intercalation of lanthanides into H 3OUO2PO4•3H 2O and C 4H9NH3UO2P04•3H 2O. Inorg. Chem. 26: 1442 1445.
187. Pozas-Tormo, R.,, L. Moreno-Real,, M. Martinez-Lara,, and S. Bruque-Gamez. 1986. Layered metal uranyl phosphates. Retention of divalent ions by amine intercalates of uranyl phosphates. Can. J. Chem. 64: 30 34.
188. Premuzic, E. T.,, A. J. Francis,, M. Lin,, and J. Schubert. 1985. Induced formation of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium. Arch. Environ. Contam. Toxicol. 14: 759 768.
189. Premuzic, E. T.,, M. S. Lin,, J.-Z. Jin,, and K. Hamilton. 1997. Geothermal waste treatment biotechnology. Energy Sources 19: 9 17.
190. Pumpel, T. 1997. Metal biosorption: a structured data space? Res. Microbiol 148: 514 515.
191. Reid, G. W.,, P. Lassovszky,, and S. Hathaway. 1985. Treatment, waste management and cost for removal of radioactivity from drinking water. Health Phys. 48: 671 694.
192. Riordan, C.,, M. Bustard,, R. Putt,, and A. P. McHale. 1997. Removal of uranium from solution using residual brewery yeast: combined biosorption and bioprecipitation. Biotechnol. Lett. 19: 385 387.
193. Roig, M. G.,, J. F. Kennedy,, and L. E. Macaskie. 1995. Biological Rehabilitation of Metal Bearing Wastewaters. Final report. EC contract EV5V-CT93-0251. European Commission, Brussels, Belgium.
194. Rosenberg, A.,, and M. Alexander. 1979. Microbial cleavage of various organophosphorous insecticides. Appl. Environ. Microbiol. 37: 886 891.
195. Ross, I. S.,, and C. C. Townsley,. 1986. The uptake of heavy metals by filamentous fungi, p. 49 58. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Bio-Sorption. Ellis Horwood, Chichester, United Kingdom.
196. Rusin, P. A.,, Q. L.,, J. R. Brainard,, B. A. Strietelmeier,, C. D. Tait,, S. A. Ekberg,, P. D. Palmer,, T. W. Newton,, and D. L. Clark. 1994. Solubilization of plutonium hydrous oxide by iron reducing bacteria. Environ. Sci. Technol. 28: 1686 1690.
197. Salt, D. E.,, M. Blaylock,, N. P. B. A. Kumar,, V. Dushenkov,, B. D. Ensley,, I. Chet,, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. BiolTechnol. 13: 468 474.
198. Scott, C. D. 1992. Removal of dissolved metals by plant tissue. Biotechnol. Bioeng. 39: 1064-– 1068.
199. Shumate, S. E. III,, and G. W. Strandberg,. 1985. Accumulation of metals by microbial cells, p. 235 249. In M. Moo-Young (ed.), Comprehensive Biotechnology, vol. 4. Pergamon Press, New York, N.Y.
200. Simmons, P.,, J. M. Tobin,, and I. Singleton. 1995. Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J. Ind. Microbiol. 14: 240 246.
201. Singh, S.,, S. Negi,, S. Barati,, and H. N. Singh. 1994. Common nitrogen control of caesium (Cs +) uptake, caesium (Cs +) toxicity and ammonium (methylammonium) uptake in the cyanobacterium Nostoc muscorum. FEMS Microbiol. Lett. 117: 243 247.
202. Spear, J. R.,, L. A. Fugueroa,, and B. D. Honeyman. 1999. Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ. Sci. Technol. 33: 2667 2675.
203. Spooner, G. M. 1949. Observation of the absorption of radioactive strontium and yttrium by marine algae. J. Mar Biol. Assoc. 28: 587 625.
204. Stoner, D. L.,, and A. J. Tien. September 1995. U.S. patent 5,453,375.
205. Strandberg, G.,, and W. D. Arnold. 1988. Microbial accumulation of neptunium. J. Ind. Microbiol. 3: 329 331.
206. Strandberg, G. W.,, S. E. Shumate II,, and J. R. Parrott. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237 245.
207. Sun, H.,, X. R. Wang,, L. S. Wang,, L. M. Dai,, Z. Li,, and Y. J. Cheng. 1997. Bioconcentration of rare earth elements lanthanum, gadolinium and yttrium in algae (Chlorella vulgaris Beijerinck): influence of chemical species. Chemosphere 34: 1753 1760.
208. Swanson, J. L., 1990. Purex process flowsheets, p. 55 79. In W. W. Schulz, and J. D. Navratil (ed.), Science and Technology of Tributyl Phosphate, vol. 3. CRC Press Inc., Boca Raton, Fla.
209. Taghavi, S.,, M. Mergeay,, D. Nies,, and D. Van der Lelie. 1997. Alcaligenes eutrophus as a model system for bacterial interaction with heavy metals in the environment. Res. Microbiol. 148: 536 551.
210. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162: 193 198.
211. Tengerdy, R. P.,, J. E. Johnson,, J. Hollo,, and J. Toth. 1981. Denitrification and removal of heavy metals from waste water by immobilized microorganisms. Appl. Biochem. Biotechnol. 6: 3 13.
212. Thomas, R. A. P.,, A. J. Beswick,, G. Basnakova,, R. Moller,, and L. E. Macaskie. Growth of naturally-occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol., in press.
213. Thomas, R. A. P.,, K. Lawlor,, M. Bailey,, and L. E. Macaskie. 1998. The biodegradation of metal- EDTA complexes by an enriched microbial population. Appl. Environ. Microbiol. 64: 1319 1322.
214. Thomas, R. A. P.,, and L. E. Macaskie. 1996. Biodegradation of tributyl phosphate by naturally occuring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ. Sci. Technol. 30: 2371 2375.
215. Thomas, R. A. P.,, and L. E. Macaskie. 1998. The effect of growth conditions on the biodegradation of tributyl phosphate and potential for the remediation of acid mine drainage waters by a naturally-occurring mixed microbial culture. Appl. Microbiol. Biotechnol. 49: 202 209.
216. Thomas, R. A. P.,, A. P. Morby,, and L. E. Macaskie. 1997. The biodegradation of tributyl phosphate by naturally-occurring microbial isolates. FEMS Microbiol. Lett. 155: 155 159.
217. Tiedje, J. M. 1975. Microbial biodegradation of ethylenediaminetetraacetic acid in soils and sediments. Appl. Microbiol. 30: 327 329.
218. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1984. Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47: 821 824.
219. Tobin, J. M.,, C. White,, and G. M. Gadd. 1994. Metal accumulation by fungi: applications in environmental biotechnology. J. Ind. Microbiol. 13: 126 130.
220. Tolley, M. R.,, and L. E. Macaskie,. 1993. Bioaccumulation of heavy metals: aplication to the decontamination of solutions containing americium, plutonium and neptunium, p. 89 96. In A. E. Torma,, M. L. Apel,, and C. L. Brierley (ed.), Biohydrometallurgical Technologies. The Minerals, Metals and Materials Society, Nepean, Ontario, Canada.
221. Tolley, M. R.,, and L. E. Macaskie. 1994. United Kingdom patent GB94/00626.
222. Tolley, M. R.,, L. F. Strachan,, and L. E. Macaskie. 1995. Lanthanum accumulation from acidic solutions using Citrobacter sp. immobilized in a flow-through bioreactor. J. Ind. Microbiol. 14: 271 280.
223. Tomioka, N.,, H. Uchiyama,, and O. Yagi. 1992. Isolation and characterization of cesiumaccumulating bacteria. Appl. Environ. Microbiol. 58: 1019 1023.
224. Trabalka, J. R.,, and C. T. Garten Jr.. 1983. Behaviour of the long-lived synthetic elements and their natural analogues in food chains. Adv. Radiat. Biol. 10: 68 73.
225. Treen-Sears, M. E.,, B. Volesky,, and R. J. Neufeld. 1984. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent. Biotechnol. Bioeng. 26: 1323 1329.
226. Trollope, D. R.,, and B. Evans. 1976. Concentrations of copper, iron, lead, nickel and zinc in fresh water algal blooms. Environ. Pollut. 11: 109 116.
227. Truex, M. J.,, B. M. Peyton,, N. B. Valentine,, and Y. A. Gorby. 1997. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnol. Bioeng. 55: 490 496.
228. Tsezos, M. 1983. The role of chitin in uranium adsorption by Rhizopus arrhizus. Biotechnol. Bioeng. 25: 2025 2040.
229. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1987. The elution of radium adsorbed by microbial biomass. Chem. Eng. J. 34: B57 B64.
230. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1986. The kinetics of radium biosorption. Chem. Eng. J. 33: B35 B41.
231. Tsezos, M.,, M. H. I. Baird,, and L. W. Shemilt. 1987. The use of immobilised biomass to remove and recover radium from Elliot Lake Uranium Tailing Streams. Hydrometallurgy 17: 357 368.
232. Tsezos, M.,, and D. M. Keller. 1983. Adsorption of radium-226 by biological origin absorbents. Biotechnol. Bioeng. 25: 201 215.
233. Tsezos, M.,, R. G. L. McCready,, and J. P. Bell. 1989. The continuous recovery of uranium from biologically leached solutions using immobilized biomass. Biotechnol. Bioeng. 34: 10 17.
234. Tsezos, M.,, E. Remoudaki,, and V. Angelatou. 1996. A study of the effects of competing ions on the biosorption of metals. Int. Biodeterior. Biodegrad. 38: 19 29.
235. Tsezos, M.,, E. Remoudaki,, and V. Angelatou. 1996. A systematic study on the equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. Int. Biodeterior. Biodegrad. 35: 129 154.
236. Tsezos, M.,, and B. Volesky. 1981. Biosorption of uranium and thorium by Rhizopus arrhizus. Biotechnol. Bioeng. 23: 583 604.
237. Tsezos, M.,, and B. Volesky. 1982. The mechanism of thorium biosorption. Biotechnol. Bioeng. 24: 955 969.
238. Tsezos, M.,, and B. Volesky. 1982. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24: 385 401.
239. Tuicker, M. D.,, L. L. Barton,, and B. M. Thompson. 1998. Removal of U and Mo from water by immobilized Desulfovibrio desulfuricans in column reactors. Biotechnol. Bioeng. 60( l): 90 96.
240. Thicker, M. D.,, L. L. Barton,, and B. M. Thomson. 1996. Kinetic coefficients for simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans. Appl. Microbiol. Biotechnol. 46: 74 77.
241. TXirner, J. S.,, and N. J. Robinson. 1995. Cyanobacterial metallothioneins: Biochemistry and molecular genetics. J. Ind. Microbiol. 14: 119 125.
242. Van Roy, S.,, K. Peys,, T. Dresselaers,, and L. Diels. 1997. The use of an Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metal recovery. Res. Microbiol. 148: 526 528.
243. Vesely, V.,, and V. Pekarek. 1972. Synthetic inorganic ion exchangers. 1. Hydrous oxides and acidic salts of multivalent metals. Talanta 19: 219 262.
244. Volesky, B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14: 291 302.
245. Volesky, B. 1990. Biosorption of Heavy Metals. CRC Press Inc., Boca Raton, Fla.
246. Volesky, B.,, and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235 250.
247. Volesky, B.,, and H. A. May-Phillips. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797 806.
248. Volesky, B.,, and M. Tsezos. March 1981. U.S. patent 4,320,093.
249. Watson, J. H. P.,, and D. C. Ellwood. 1994. Biomagnetic separation and extraction process for heavy metals from solution. Miner. Eng. 7: 1017 1028.
250. Watson, J. S.,, C. D. Scott,, and B. D. Faison. 1989. Adsorption of Sr by immobilized microorganisms. Appl. Biochem. Biotechnol. 20/ 21: 699.
251. Watson, J. S.,, C. D. Scott,, and B. D. Faison. 1989. Adsorption of Sr by soil microorganisms. Appl. Biochem. Biotechnol. 21: 201 209.
252. Weidemann, D. P.,, R. D. Tanner,, G. W. Strandberg,, and S. E. Shumate II. 1981. Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb. Technol. 3: 33 40.
253. Wersin, P.,, M. F. Hochella Jr.,, P. Persson,, G. Redden,, J. O. Leckie,, and D. W. Harris. 1994. Interaction between aqueous uranium (VI) and sulfide minerals: spectoscopic evidence for sorption and reduction. Geochim. Cosmochim. Acta 58: 2829 2843.
254. White, C.,, and G. M. Gadd. 1990. Biosorption of radionuclides by fungal biomass. J Chem. Technol. Biotechnol. 49: 331 343.
255. White, C.,, and G. M. Gadd. 1987. Inhibition of H + efflux and K + uptake and induction of K + efflux in yeast by heavy metals. Tox. Assess. 2: 437 447.
256. White, C.,, and G. M. Gadd. 1996. Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142: 2197 2205.
257. White, C.,, A. K. Sharman,, and G. M. Gadd. 1998. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 16: 572 575.
258. Wildung, R. E.,, K. M. McFadden,, and T. R. Garland. 1979. Technetium sources and behaviour in the environment. J. Environ. Qual. 8: 156 161.
259. Woolfolk, C. A.,, and H. R. Whiteley. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84: 647 658.
260. Wurtz, E. A.,, T. H. Sibley,, and W. R. Schell. 1986. Interactions of Escherichia coli and marine bacteria with 2 4 1 Am in laboratory cultures. Health Phys. 50: 79 88.
261. Yakubu, N. A.,, and A. W. L. Dudeney,. 1986. Biosorption of uranium with Aspergillus niger, p. 183 200. In H. Eccles, and S. Hunt (ed.), Immobilization of Ions by Biosorption. Ellis Horwood, Chichester, United Kingdom.
262.Yong, R 1996. PhD. thesis. University of Birmingham, Birmingham, United Kingdom.
263. Yong, P.,, and L. E. Macaskie. 1998. Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to develop a method for the biologically-mediated removal of plutonium from solution. J. Chem. Technol. Biotechnol. 71: 15 26.
264. Yong, P.,, and L. E. Macaskie. 1997. Effect of substrate concentration and nitrate inhibition on product release and heavy metal removal by a Citrobacter sp. Biotechnol. Bioeng. 55: 821 830.
265. Yong, P.,, and L. E. Macaskie. 1995. Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymatically-mediated growth of polycrystalline NH 4 UO 2 PO 4. J. Chem. Technol. Biotechnol. 63: 101 108.
266. Yong, P.,, and L. E. Macaskie. 1997. Removal of lanthanum, uranium and thorium from the citrate complexes by immobilized cells of Citrobacter sp. in a flow-through reactor: implications for the decontamination of solutions containing plutonium. Biotechnol. Lett. 19: 251 255.
267. Yong, P.,, and L. E. Macaskie. 1995. Removal of the tetravalent actinide thorium from solution by a biocatalytic system. J. Chem. Technol. Biotechnol. 64: 87 95.
268. Yurkova, N. A.,, and N. N. Lyalikova. 1991. New vanadate-reducing facultative chemolithotrophic bacteria. Microbiology 59: 672 677.
269. Zajic, J. E.,, and Y. S. Chiu. 1972. Recovery of heavy metals by microbes. Dev. Ind. Microbiol. 13: 91 100.


Generic image for table
Table 1

Biosorbents for U(VI)

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13
Generic image for table
Table 2

Microbial systems reported to reduce U(VI) to U(IV)

Citation: Lloyd J, Macaskie L. 2000. Bioremediation of Radionuclide-Containing Wastewaters, p 277-327. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error