Chapter 6 : The Role of Siderophores in Iron Oxide Dissolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Role of Siderophores in Iron Oxide Dissolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818098/9781555811952_Chap06-2.gif


For over 50 years microbiologists have been aware of a class of compounds, produced by microorganisms, called siderophores. This chapter examines the type of Iron(Fe) to which siderophores bind and the location where they do so. The assumption in the literature has been that the purpose of siderophores is to supply Fe to the cell-so often stated that this quote is rarely referenced. Even though the dissolution of Fe oxides has been reviewed extensively in the literature, it is worthwhile to briefly review dissolution mechanisms, since they apply to the potential involvement of siderophores. In a study, Fe release and siderophore production by (a gram-negative, asymbiotic nitrogen-fixing soil bacterium with an absolute requirement for Fe) was investigated by using several Fe oxide minerals as sources of Fe. Undoubtedly, siderophores are used by microorganisms to acquire Fe and are produced by microorganisms in response to a limited availability of Fe. These two observations are supported by hundreds of publications in the open literature. However, the results discussed in the chapter suggest that siderophores may not be entirely responsible for Fe oxide dissolution, that the role that siderophores play in the dissolution of Fe oxides remains unclear, and thus that the microbial dissolution of Fe oxides merits further investigation.

Citation: Hersman L. 2000. The Role of Siderophores in Iron Oxide Dissolution, p 145-157. In Lovley D (ed), Environmental Microbe-Metal Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555818098.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ackers, H. A. 1981. The effect of waterlogging on the quantity of microbial iron chelators (siderophores) in soils. Soil Sci 132: 150 152.
2. Ackers, H. A. 1983. Multiple hydroxamic acid microbial chelators (siderophores) in soils. Soil Sci. 135: 156 160.
3. Ackers, H. A. 1983. Isolation of the siderophore schizokinen from soil of rice field. Appl. Environ. Microbiol. 45: 1704 1706.
4. Adams, J. B.,, F. Palmer,, and J. T. Staley. 1992. Rock weathering in deserts: Mobilization and concentration of ferric iron by microorganisms. Geomicrobiol. J. 10: 99 114.
5. Archibald, F. 1983. Micrococcus lysodeikticus, an organism not requiring iron. FEMS Microbiol. Lett. 19: 29 32.
6. Bar-Ness, E.,, Y. Hadar,, Y. Chen,, V. Romheld,, and H. Marschner. 1992. Short-term effects of rhizosphere microorganisms on the Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100: 451 456.
7. Barton, L. L.,, and B. C. Hemming. 1993. Iron Chelation in Plants and Soil Microorganisms. Academic Press, Inc., San Diego, Calif.
8. Bennett, P. C.,, and W. Casey,. 1994. Chemistry and mechanisms of low-temperature dissolution of silicates by organic acids, p. 162 200. In E. D. Pittman, and M. D. Lewan (ed.), Organic Acids in Geochemical Processes. Springer-Verlag, New York, N.Y.
9. Bossier, P.,, M. Hoft,, and W. Verstraete. 1988. Ecological significance of siderophores in soil. Adv. Microb. Ecol. 10: 385 414.
10. Briat, J.-F. 1992. Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138: 2475 2483.
11. Buyer, J. S.,, M. G. Kratzke,, and L. J. Sikora. 1993. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Appl. Environ. Microbiol. 59: 677 681.
12. Buyer, J. S.,, and J. Leong. 1986. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J. Biol. Chem. 261: 791 794.
13. Buyer, J. S.,, and L. J. Sikora. 1990. Rhizosphere interactions and siderophores. Plant Soil 129: 101 107.
14. Buysens, S.,, K. Heungens,, K. Poppe,, and M. Hofte. 1996. Involvement of pyrochelin and pyroverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865 871.
15. Carson, K. C.,, A. R. Glen,, and M. J. Dilworth. 1994. Specificity of siderophore-mediated transport of iron in rhizobia. Arch. Microbiol. 161: 333 339.
16. Casey, W. H.,, and C. Ludwig. 1996. The mechanism of dissolution of oxide minerals. Nature 381: 506 509.
17. Crowley, D. E.,, V. Romheld,, H. Marschner,, and P. J. Szanislo. 1992. Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142: 1 7.
18. De Weger, L. A.,, J. J. C. M. van Arendonk,, K. Recourt,, J. A. J. M. van der Hofstad,, P. J. Weisbeek,, and B. Lugtenberg. 1988. Siderophore-mediated uptake of Fe 3+ by plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J. Bacteriol. 170: 4693 4698.
19. DuijfF, B. J.,, W. J. de Kogel,, P. A. H. M. Bakker,, and B. Schippers. 1994. Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol. Biochem. 26: 1681 1688.
20. Furrer, G.,, and W. Stumm. 1986. The coordination chemistry of weathering. I. Dissolution of delta-Al 2O3 and BeO. Geochim. Cosmochim. Acta 50: 1847 1860.
21. Grantham, M. C.,, and P. M. Dove. 1996. Investigation of bacterial-mineral interactions using fluid tapping mode atomic force microscopy. Geochim. Comochim. Acta 60: 2473 2480
22. Guerinot, M. L. 1994. Microbial iron transport. Annu. Rev. Microbiol. 48: 743 772.
23. Guerinot, M. L.,, and Y. Yi. 1994. Iron: nutritious, noxious and not readily available. Plant Physiol. 104: 815 820.
24. Handelsman, J.,, and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855 1869.
25. Hersman, L.,, T. Lloyd,, and G. Sposito. 1995. Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59: 3327 3330.
26. Hersman, L.,, P. Maurice,, and G. Sposito. 1996. Iron acquisition from hydrous Fe(III) oxides by an aerobic Pseudomonas sp. Chem. Geol. 132: 25 31.
27. Hersman, L. E.,, P. D. Palmer,, and D. E. Hobart 1993. The role of siderophores in the transport of radionuclides. Mater. Res. Soc. Proc. 294: 765 770.
28. Hillel, D. 1980. Fundamentals of Soil Physics, p. 12. John Wiley & Sons, Inc., New York, N.Y.
29. Holmen, B. A.,, and W. H. Casey. 1996. Hydroxymate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)]. Geochim. Cosmochim. Acta 60: 4403 4416.
30. Holmen, B. A.,, M. I. Tejedor-Tejedor,, and W. H. Casey. 1997. Hydroxymate complexes in solution and at the goethite-water interface: a cylindrical internal reflection Fourier transform infrared spectroscopy study. Langmuir 13: 2197 2206.
31. Jurkevitch, E.,, Y. Hadar,, and Y. Chen. 1992. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58: 119 124.
32. Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78: 166 172.
33. Loper, J. E.,, and J. S. Buyer. 1991. Siderophores in microbial interactions on plant species. Mol. Plant-Microbe Interac. 4: 5 13.
34. Loper, J. E.,, and M. D. Henkels 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63: 99 105.
35. Loper, J. E.,, and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in the habitats on plant surfaces. Appl. Environ. Microbiol. 60: 1934 1941.
36. Manthey, J. A.,, D. E. Crowley,, and D. G. Luster. 1994. Biochemistry of Metal Nutrients on the Rhizosphere. Lewis Publishers, Boca Raton, Fla.
37. Marschner, H.,, and D. S. Crowley. 1997. Iron stress and pyroverdin production by a fluorescent pseudomonad in the rhizosphere of white lupin (Lupinus albus L.) and barley (Hordeum vulgare L.). Appl. Environ. Microbiol. 63: 277 281.
38. Marschner, H., and V. Romheld. 1994. Strategies of plants for acquisition of iron. Plant Soil 165: 261 274.
39. Matzanke, B. F., 1991. Structures, coordination chemistry and functions of microbial iron chelates, p. 15 60. In G. Winkelmann (ed.), Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
40. Matzanke, B. F.,, G. Muller-Matzanke,, and K. N. Raymond,. 1989. Siderophore mediated iron transport, p. 1 121. In T. M. Loehr (ed.). Iron Carriers and Proteins. VCH Publishers, New York, N.Y.
41. Meyer, J. M.,, and M. A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties. J. Gen. Microbiol. 107: 321 331.
42. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715 732.
43. Neilands, J. B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723 26726.
44. Neilands, J. B.,, and K. Nakamura,. 1991. Detection, determination, isolation, characterization and regulation of microbial chelates, p. 1 14. In G. Winkelmann (ed.), Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
45. Nelson, M.,, C. R. Cooper,, D. E. Crowley,, C. P. P. Reid,, and P. J. Szaniszlo. 1988. An Escherichia coli bioassay of individual siderophores in soil. J. Plant Nutr. 11: 915 924.
46. O'Sullivan, D. J.,, and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662 676.
47. Page, W. J.,, and M. Huyer, 1984. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit repletion. J. Bacteriol. 158: 496 502.
48. Payne, S. M. 1988. Iron and virulence in the family Enterobacteriaceae. Crit. Rev. Microbiol. 16: 81 111.
49. Raaijmakers, J. M.,, I. Van der Sluis,, M. Koster,, P. A. H. M. Bakker,, P. J. Weisbeek,, and B. Schippers. 1995. Utilization of heterologous siderophore and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol. 41: 126 135.
50. Raaijmakers, J. M.,, D. M. Weller,, and L. S. Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881 887.
51. Schwertmann, U. 1991. Stability and dissolution of iron oxides. Plant Soil 129: 1 25.
52. Schwertmann, U.,, and R. M. Cornell. 1991. Iron Oxides in the Laboratory: Preparation and Characterization. VCH Publishers, Weinheim, Germany.
53. Schwertmann, U.,, and R. M. Taylor. 1989. Minerals in Soil Environments, 2nd ed. Soil Science Society of America, Madison, Wis.
54. Stumm W.,, and B. Sulzberger. 1992. The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochem. Cosmochim. Acta 56: 3233.
55. Szaniszlo, P. J.,, P. E. Powell,, C. P. P. Reid,, and G. R. Cline. 1981. Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73: 1158 1175.
56. van der Helm, D.,, M. A. F. Jahal,, and M. B. Hossain,. 1987. The crystal structure, conformations, and configurations of siderophores, p. 135 165. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH Publishers, Weinheim, Germany.
57. Watteau, F.,, and J. Berthelin. 1994. Microbial dissolution of iron and aluminum from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur. J. Soil Biol. 30: 1 9.
58. Wehrli, B., 1990. Redox reactions of metal ions at mineral surfaces, p. 311 336. In W. Stumm (ed.), Aquatic Chemical Kinetics. John Wiley & Sons, Inc., New York, N.Y.
59. Weinberg, E. D. Cellular regulation of iron assimilation. Q. Rev. Biol. 63: 261 290.
60. Winkelmann, G. 1991. CRC Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla.
61. Winkelmann, G.,, D. vanderHelm,, and J. B. Neilands (ed.). 1987. Iron Transport in Microbes, Plants and Animals. VCH Publishers, Weinheim, Germany.
62. Yehuda, Z.,, M. Shenker,, V. Romheld,, H. Marschner,, Y. Hadar,, and Y. Chen. 1996. The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol. 112: 1273 1280.
63. Yeoman, K. H.,, M.-J. Delgado,, M. Wexler,, J. A. Downie,, and W. B. Johnston. 1996. High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL peron and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143: 127 134.
64. Zinder, B.,, G. Furrer,, and W. Stumm. 1986. The coordination chemistry of weathering. II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50: 1861 1869.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error