Chapter 18 : Persistence of Infective Endocarditis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Persistence of Infective Endocarditis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818104/9781555811594_Chap18-2.gif


Infective endocarditis describes a family of persistent microbial infections of the heart valves. This chapter explores their ability to behave as endogenous pathogens and is instructive as we try to understand persistence of the larger constellation of endocarditis-associated pathogens. Infective endocarditis generally occurs in individuals with previously diseased or damaged heart valves, most frequently after bacteremia containing viridans streptococci or . Many of the most common microorganisms associated with infective endocarditis are considered to be of low virulence, often causing no known disease in their native niches. Patients with infective endocarditis show elevated anti-phospholipid antibodies associated with endothelial-cell activation, thrombin generation, and impairment of fibrinolysis. Adhesion to platelets and preformed platelet-fibrin clots would appear intuitively to be associated with the ability of microbes to infect platelet vegetations and cause infective endocarditis. Dextran synthesis by viridans streptococci has been suggested to be a virulence factor in infective endocarditis, promoting adhesion and persistence. The ability of microbes to induce platelet aggregation in vitro may be associated with the pathogenicity of those strains in infective endocarditis. The host distinguishes the commensals from exogenous pathogens. When commensals breach the mucosa and infect the heart valves in infective endocarditis, the host immune repertoire against these endogenous pathogens is programmed for systemic tolerance.

Citation: Herzberg M. 2000. Persistence of Infective Endocarditis, p 357-374. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Tripartite model of infective endocarditis. The persistence of endocarditis reflects the balance between the host's ability to repair an injured valve and promote or support a bland nonbacterial thrombotic vegetation and the virulence of the infecting microbe.

Citation: Herzberg M. 2000. Persistence of Infective Endocarditis, p 357-374. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Mechanisms of microbial persistence in infective endocarditis.

Citation: Herzberg M. 2000. Persistence of Infective Endocarditis, p 357-374. In Nataro J, Blaser M, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818104.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adderson, E.E.,, A. R. Shikhman,, K. E. Ward,, and M. W. Cunningham. 1998. Molecular analysis ofpolyreactive monoclonal antibodies from rheumatic carditis: humananti-N-acetylglucosamine/anti-myosin antibody V region genes. J. Immunol. 161: 2020 2031.
2. Allison, D. G.,, B. Ruiz,, C. Sanjose,, A. Jaspe,, and P. Gilbert. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167: 179 184.
3. Arning, M.,, A. Gehrt,, C. Aul,, V. Runde,, U. Hadding,, and W. Schneider. 1990. Septicemia due to Streptococcus mitis in neutropenic patients with acute leukemia. Blut 61: 364 368.
4. Asada, Y.,, K. Marutsuka,, K. Hatakeyama,, Y. Sato,, S. Hara,, A. Kisanuki,, and S. Sumiyoshi. 1998. The role of tissue factor in the pathogenesis of thrombosis and atherosclerosis. J. Atheroscler. Thromb. 4: 135 139.
5. Bancsi, M. J.,, J. Thompson,, and R. M. Bertina. 1994. Stimulation of monocyte tissue factor expression in an in vitro model of bacterial endocarditis. Infect. Immun. 62: 5669 5672.
6. Bancsi, M. J.,, M. H. Veltrop,, R. M. Bertina,, and J. Thompson. 1996. Influence of monocytes and antibiotic treatment on tissue factor activity o f endocardial vegetations in rabbits infected with Streptococcus sanguis. Infect. Immun. 64: 448 451.
7. Bancsi, M. J.,, M. H. Veltrop,, R. M. Bertina,, and J. Thompson. 1996. Role of phagocytosis in activation of the coagulation system in Streptococcus sanguis endocarditis. Infect. Immun. 64: 5166 5170.
8. Bayer, A. S.,, P. M. Sullam,, M. Ramos,, C. Li,, A. L. Cheung,, and M. R. Yeaman. 1995. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein Ilb/IIIa fibrinogen-binding domains. Infect. Immun. 63: 3634 3641.
9. Bayer, A. S.,, M. D. Ramos,, B. E. Menzies,, M. R. Yeaman,, A. J. Shen,, and A. L. Cheung. 1997. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect. Immun. 65: 4652 4660.
10. Bayer, A. S.,, D. Cheng,, M. R. Yeaman,, G. R. Corey,, M. S. McClelland,, L.J. Harrel,, and V. G. Fowler, Jr. 1998. In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob. Agents Chemother. 42: 3169 3172.
11. Bayer, A. S.,, A. F. Bolger,, K. A. Taubert,, W. Wilson,, J. Steckelberg,, A. W. Karchmer,, M. Levison,, H. F. Chambers,, A. S. Dajani,, M. H. Gurwitz,, J. W. Newburger, et al. 1998. Diagnosis and management of infective endocarditis. Circulation 98: 2936 2948.
12. Bayer, A. S.,, S. N. Coulter,, C. K. Stover,, and W. R. Schwan. 1999. Impact of the highaffinity proline permease gene ( putP) on the virulence of Staphylococcus aureus in experimental endocarditis. Infect. Immun. 67: 740 744.
13. Bochud, P. Y.,, T. Calandra,, and P. Francioli. 1994. Bacteremia due to viridans streptococci in neutropenic patients: a review. Am. J. Med. 97: 256 264.
14. Buiting, A. G.,, J. Thompson,, J. J. Emeis,, H. Mattie,, E. J. Brommer,, and R. van Furth. 1987. Effects of tissue-type plasminogen activator on Staphylococcus epidermidis-infected plasma clots as a model of infected endocardial vegetations. J. Antimicrob. Chemother. 19: 771 780.
15. Burne, R. A.,, Y. Y. Chen,, and J. E. Penders. 1997. Analysis of gene expression in Streptococcus mutans in biofilms in vitro. Adv. Dent. Res. 11: 100 109.
16. Byers, H. L.,, K. A. Homer,, and D. Beighton. 1996. Utilization of sialic acid by viridans streptococci. J. Dent. Res. 75: 1564 1571.
17. Casadevall, A.,, and L.-A. Pirofski. 1999. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67: 3703 3713.
18. Cheung, A. L.,, C. C. Nast,, and A. S. Bayer. 1998. Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect. Immun. 66: 5988 5993.
19. Clawson, C. C.,, J. G. White,, and M. C. Herzberg. 1980. Platelet interaction with bacteria. VI. Contrasting the role of fibrinogen and fibronectin. Am. J. Hematol. 9: 43 53.
20. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
21. Coulter, S. N.,, W. R. Schwan,, E. Y. Ng,, M. H. Langhorne,, H. D. Ritchie,, S. Westbrock-Wadman,, W. O. Hufhagle,, K. R. Folger,, A. S. Bayer,, and C. K. Stover. 1998. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30: 393 404.
22. Cowles, J. W.,, S. L. Spitalnik,, and N. Blumberg. 1989. The fine specificity of Lewis blood group antibodies. Evidence for maturation of the immune response. Vox Sang. 56: 107 111.
23. Crawford, I.,, and C. Russell. 1986. Comparative adhesion of seven species of streptococci isolated from the blood of patients with sub-acute bacterial endocarditis to fibrin-platelet clots in vitro. J. Appl. Bacteriol. 60: 127 133.
24. Danforth, J. M.,, R. M. Strieter,, S. L. Kunkel,, D. A. Arenberg,, G. M. VanOtteren,, and T. J. Standiford. 1995. Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin. Immunol. Immunopathol. 74: 77 83.
25. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295 298.
26. Demuth, D. R.,, Y. Duan,, W. Brooks,, A. R. Holmes,, R. McNab,, and H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol. Microbiol. 20: 403 413.
27. Derre, I.,, G. Rapoport,, and T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31: 117 131.
28. Dhawan, V. K.,, A. S. Bayer,, and M. R. Yeaman. 1998. In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect. Immun. 66: 3476 3479.
29. Douglas, C. W.,, P. R. Brown,, and F. E. Preston. 1990. Platelet aggregation by oral streptococci. FEMS Microbiol. Lett. 60: 63 67.
30. Douglas, C. W.,, J. Heath,, K. K. Hampton,, and F. E. Preston. 1993. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 39: 179 182.
31. Drake, T. A.,, G. M. Rodgers,, and M. A. Sande. 1984. Tissue factor is a major stimulus for vegetation formation in enterococcal endocarditis in rabbits. J. Clin. Investig. 73: 1750 1753.
32. Drake, T. A.,, and M. Pang. 1988. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J. Infect. Dis. 157: 749 756.
33. Drake, T. A.,, and M. Pang. 1989. Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infect. Immun. 57: 507 512.
34. Drake, T. A.,, J. H. Morrissey,, and T. S. Edgington. 1989. Selective cellular expression of tissue factor in human tissues. Implications for disorders ofhemostasis and thrombosis. Am. J. Pathol. 134: 1087 1097.
35. Drangsholt, M. T. 1998. A new causal model of dental diseases associated with endocarditis. Ann. Periodontol. 3: 184 196.
36. Durack, D. T. 1975. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J. Pathol 115: 81 89.
37. Durack, D. T. 1995. Prevention of infective endocarditis. N. Engl J. Med. 332: 38 44.
38. Dyson, C.,, R. A. Barnes,, and G. A. Harrison. 1999. Infective endocarditis: an epidemiological review of 128 episodes. J. Infect. 38: 87 93.
39. Edoute, Y.,, N. Haim,, D. Rinkevich,, B. Brenner,, and S. A. Reisner. 1997. Cardiac valvular vegetations in cancer patients: a prospective echocardiographic study of 200 patients. Am. J. Med. 102: 252 258.
40. Elting, L. S.,, G. P. Bodey,, and B. H. Keefe. 1992. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clin. Inject. Dis. 14: 1201 1207.
41. Erickson, P. R.,, and M. C. Herzberg. 1987. A collagen-like immunodeterminant on the surface of Streptococcus sanguis induces platelet aggregation. J. Immunol 138: 3360 3366.
42. Erickson, P. R.,, and M. C. Herzberg. 1990. Purification and partial characterization of a 65-kDa platelet aggregation-associated protein antigen from the surface o f Streptococcus sanguis. J. Biol Chem. 265: 14080 14087.
43. Erickson, P. R.,, and M. C. Herzberg. 1993. Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. J. Biol Chem. 268: 23780 23783.
44. Erickson, P. R.,, and M. C. Herzberg. 1993. The Streptococcus sanguis platelet aggregation-associated protein. Identification and characterization of the minimal platelet-interactive domain. J. Biol Chem. 268: 1646 1649.
45. Erickson, P. R.,, and M. C. Herzberg. 1995. Altered expression of the platelet aggregation-associated protein from Streptococcus sanguis after growth in the presence of collagen. Infect. Immun. 63: 1084 1088.
46. Erickson, P. R.,, and M. C. Herzberg. 1999. Emergence of antibiotic resistant Streptococcus sanguis in dental plaque o f children after frequent antibiotic therapy. Pediatr. Dent. 21: 181 185.
47. Erickson, P. R.,, M. C. Herzberg,, and G. Tierney. 1992. Cross-reactive immunodeterminants on Streptococcus sanguis and collagen. Predicting a structural motif of platelet-interactive domains. J. Biol Chem. 267: 10018 10023.
48. Ferguson, D. J.,, A. A. McColm,, D. M. Ryan,, and P. Acred. 1988. A morphological study of the effect of treatment with the antibiotic ceftazidime on experimental staphylococcal endocarditis and aortitis. Br. J. Exp. Pathol 69: 551 561.
49. Ford, I.,, C. W. Douglas,, F. E. Preson,, A. Lawless,, and K. K. Hampton. 1993. Mechanisms of platelet aggregation by Streptococcus sanguis, a causative organism in infective endocarditis. Br. J. Haematol 84: 95 100.
50. Ford, I.,, C. W. Douglas,, J. Heath,, C. Rees,, and F. E. Preston. 1996. Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863. Br. J. Haematol. 94: 729 739.
51. Ford, I.,, C. W. Douglas,, D. Cox,, D. G. Rees,, J. Heath,, and F. E. Preston. 1997. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br. J. Haematol. 97: 737 746.
52. Fukuda, Y.,, Y. Kuroiwa,, H. Tabuchi,, T. Ohshige,, J. Sanada,, Y. Minami,, S. Takaoka,, H. Kataoka,, S. Furukawa,, K. Miyahara,, K. Nakamura,, and S. Hashimoto. 1982. A thrombotic tendency in patients with infective endocarditis. Jpn. Circ. J. 46: 460 467.
53. Gong, K.,, D. Y. Wen,, T. Ouyang,, A. T. Rao,, and M. C. Herzberg. 1995. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by antiidiotypical monoclonal antibodies. Infect. Immun. 63: 3628 3633.
54. Gong, K.,, T. Ouyang,, and M. C. Herzberg. 1998. A streptococcal adhesion system for salivary pellicle and platelets. Infect. Immun. 66: 5388 5392.
55. Gutschik, E.,, S. Moller,, and N. Christensen. 1979. Experimental endocarditis in rabbits. 3. Significance of the proteolytic capacity of the infecting strains of Streptococcus faecalis. Acta Pathol. Microbiol Scand. Sect. B 87: 353 362.
56. Hausner, M.,, and S. Wuertz. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ. Microbiol. 65: 3710 3713.
57. Havarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol Microbiol. 21: 863 869.
58. Havarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol 179: 6589 6594.
59. Hazlett, K. R. O.,, J. E. Mazurkiewicz,, and J. A. Banas. 1999. Inactivation of the gbpA gene of Streptococcus mutans alters structural and functional aspects of plaque biofilm which are compensated by recombination of the gtJB and gtJC genes. Infect. Immun. 67: 3909 3914.
60. Herzberg, M. C.,, and K. L. Brintzenhofe. 1983. ADP-like platelet aggregation activity generated by viridans streptococci incubated with exogenous ATP. Infect. Immun. 40: 120 125.
61. Herzberg, M. C.,, K. L. Brintzenhofe,, and C. C. Clawson. 1983. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect. Immun. 39: 1457 1469.
62. Herzberg, M. C.,, K. L. Brintzenhofe,, and C. C. Clawson. 1983. Cell-free released components of Streptococcus sanguis inhibit human platelet aggregation. Infect. Immun. 42: 394 401.
63. Herzberg, M. C.,, K. Gong,, G. D. MacFarlane,, P. R. Erickson,, A. H. Soberay,, P. H. Krebsbach,, G. Manjula,, K. Schilling,, and W. H. Bowen. 1990. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect. Immun. 58: 515 522.
64. Herzberg, M. C.,, P. R. Erickson,, P. K. Kane,, D. J. Clawson,, C. C. Clawson,, and F. A. Hoff. 1990. Platelet-interactive products of Streptococcus sanguis protoplasts. Infect. Immun. 58: 4117 4125.
65. Herzberg, M.C.,, G. D. MacFarlane,, K. Gong,, N. N. Armstrong,, A. R. Witt,, P. R. Erickson,, and M. W. Meyer. 1992. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect. Immun. 60: 4809 4818.
66. Herzberg, M. C.,, L. K. Krishnan,, and G. D. MacFarlane. 1993. Involvement of alpha 2-adrenoreceptors and G proteins in the modulation of platelet secretion in response to Streptococcus sanguis. Crit. Rev. Oral Biol. Med. 4: 435 442.
67. Herzberg, M. C. 1996. Platelet-streptococcal interactions in endocarditis. Crit. Rev. Oral Biol Med. 7: 222 236.
68. Herzberg, M. C.,, M. W. Meyer,, A. Kilic,, and L. Tao. 1997. Host-pathogen interactions in bacterial endocarditis: streptococcal virulence in the host. Adv. Dent. Res. 11: 69 74.
69. Hienz, S. A.,, T. Schennings,, A. Heimdahl,, and J. I. Flock. 1996. Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J. Inject. Dis. 174: 83 88.
70. Hirota, K.,, H. Kanitani,, K. Nemoto,, T. Ono,, and Y. Miyake. 1995. Cross-reactivity between human sialyl Lewis(x) oligosaccharide and common causative oral bacteria of infective endocarditis. FEMS Immunol. Med. Microbiol. 12: 159 164.
71. Homer, K. A.,, S. Kelley,, J. Hawkes,, D. Beighton,, and M. C. Grootveld. 1996. Metabolism of glycoprotein-derived sialic acid and N-acetylglucosamine by Streptococcus oralis. Microbiology 142: 1221 1230.
72. Huebner, J.,, and D. A. Goldmann. 1999. Coagulase-negative staphylococci: role as pathogens. Annu. Rev. Med. 50: 223 236.
73. Ikeda, K.,, K. Nagasawa,, T. Horiuchi,, T. Tsuru,, H. Nishizaka,, and Y. Niho. 1997. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 77: 394 398.
74. Jenkinson, H. F.,, R. A. Baker,, and G. W. Tannock. 1996. A binding-lipoprotein-dependent oligopeptide transport system in Streptococcus gordonii essential for uptake of hexa-and heptapeptides. J. Bacteriol. 178: 68 77.
75. Jiang, Y.,, L. Magli,, and M. Russo. 1999. Bacterium-dependent induction of cytokines in mononuclear cells and their pathologic consequences in vivo. Infect. Immun. 67: 2125 2130.
76. Juarez, Z. E.,, and M. W. Stinson. 1999. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect. Immun. 67: 271 278.
77. Kessler, C. M.,, E. Nussbaum,, and C. U. Tuazon. 1987. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis. J. Lab. Clin. Med. 109: 647 652.
78. Kilic, A. O.,, M. C. Herzberg,, M. W. Meyer,, X. Zhao,, and L. Tao. 1999. Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes. Plasmid 42: 67 72.
79. Kleerebezem, M.,, L. E. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895 904.
80. Kupferwasser, I.,, H. Darius,, A. M. Muller,, S. Mohr-Kahaly,, T. Westermeier,, H. Oelert,, R. Erbel,, and J. Meyer. 1998. Clinical and morphological characteristics in Streptococcus bovis endocarditis: a comparison with other causative microorganisms in 177 cases. Heart 80: 276 280.
81. Kupferwasser, L. I.,, G. Hafher,, S. Mohr-Kahaly,, R. Erbel,, J. Meyer,, and H. Darius. 1999. The presence of infection-related antiphospholipid antibodies in infective endocarditis determines a major risk factor for embolic events. J. Am. Coll. Cardiol. 33: 1365 1371.
82. Kupferwasser, L. I.,, M. R. Yeaman,, S. M. Shapiro,, C. C. Nast,, P. M. Sullam,, S. G. Filler,, and A. S. Bayer. 1999. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99: 2791 2797.
83. Kurland, S.,, E. EnghofF,, J. Landelius,, S. O. Nystrom,, A. Hambraeus,, and G. Friman. 1999. A 10-year retrospective study of infective endocarditis at a university hospital with special regard to the timing of surgical evaluation in S. viridans endocarditis. Scand. J. Infect. Dis. 31: 87 91.
84. Lawson, C. A.,, S. D. Yan,, S. F. Yan,, H. Liao,, Y. S. Zhou,, J. Sobel,, W. Kisiel,, D. M. Stern,, and D. J. Pinsky. 1997. Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J. Clin. Investig. 99: 1729 1738.
85. Lee, J. C.,, J. S. Park,, S. E. Shepherd,, V. Carey,, and A. Fattom. 1997. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immun. 65: 4146 4151.
86. Levi, M.,, and H. ten Cate. 1999. Disseminated intravascular coagulation. N. Engl. J. Med. 341: 586 592.
87. Libman, H.,, and R. D. Arbeit. 1984. Complications associated with Staphylococcus aureus bacteremia. Arch. Intern. Med. 144: 541 545.
88. Lunsford, R. D.,, and J. London. 1996. Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain wicky. J. Bacteriol. 178: 5831 5835.
89. Lunsford, R. D.,, and A. G. Roble. 1997. comYA, a gene similar to comGA of Bacillus subtilis, is essential for competence factor-dependent DNA transformation in Streptococcus gordonii. J. Bacteriol. 179: 3122 3126.
90. MacFarlane, G. D.,, D. E. Sampson,, D. J. Clawson,, C. C. Clawson,, K. L. Kelly,, and M. C. Herzberg. 1994. Evidence for an ecto-ATPase on the cell wall of Streptococcus sanguis. Oral Microbiol. Immunol. 9: 180 185.
91. Manganelli, R.,, and I. van de Rijn. 1999. Characterization of emb, a gene encoding the major adhesin of Streptococcus defectivus. Infect. Immun. 67: 50 56.
92. Manning, J. E.,, E. B. Hume,, N. Hunter,, and K. W. Knox. 1994. An appraisal of the virulence factors associated with streptococcal endocarditis. J. Med. Microbiol. 40: 110 114.
93. Mayo, J. A.,, H. Zhu,, D. W. Harty,, and K. W. Knox. 1995. Modulation of glycosidase and protease activities by chemostat growth conditions in an endocarditis strain of Streptococcus sanguis. Oral Microbiol. Immunol. 10: 342 348.
94. McNab, R.,, H. F. Jenkinson,, D. M. Loach,, and G. W. Tannock. 1994. Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol. Microbiol. 14: 743 754.
95. McNab, R.,, and H. F. Jenkinson. 1998. Altered adherence properties of a Streptococcus gordonii hppA (oligopeptide permease) mutant result from transcriptional effects on cshA adhesin gene expression. Microbiology 144: 127 136.
96. McNab, R.,, H. Forbes,, P. S. Handley,, D. M. Loach,, G. W. Tannock,, and H. F. Jenkinson . 1999. Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181: 3087 3095.
97. Meddens, M. J.,, J. Thompson,, H. Mattie,, and R. van Furth. 1984. Role of granulocytes in the prevention and therapy of experimental Streptococcus sanguis endocarditis in rabbits. Antimicrob. Agents Chemother. 25: 263 267.
98. Meddens, M. J.,, J. Thompson,, W. C. Bauer,, and R. van Furth. 1984. Role of granulocytes and monocytes in experimental Escherichia coli endocarditis. Infect. Immun. 43: 491 496.
99. Meddens, M. J.,, J. Thompson,, H. Mattie,, and R. van Furth. 1985. Role of granulocytes and monocytes in the prevention and therapy of experimental Staphylococcus epidermidis endocarditis in rabbits. J. Infect. 11: 41 50.
100. Mercer, D. K.,, K. P. Scott,, W. A. Bruce-Johnson,, L. A. Glover,, and H. J. Flint. 1999. Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl. Environ. Microbiol. 65: 6 10.
101. Meyer, M. W.,, A. R. Witt,, L. K. Krishnan,, M. Yokota,, M. J. Roszkowski,, J. D. Rudney,, and M. C. Herzberg. 1995. Therapeutic advantage of recombinant human plasminogen activator in endocarditis: evidence from experiments in rabbits. Thromb. Haemost. 73: 680 682.
102. Michiels, M. J.,, and M. G. Bergeron. 1996. Differential increased survival of staphylococci and limited ultrastructural changes in the core of infected fibrin clots after daptomycin administration. Antimicrob. Agents Chemother. 40: 203 211.
103. Munro, C. L.,, and F. L. Macrina. 1993. Sucrose-derived exopolysaccharides of Streptococcus mutans V403 contribute to infectivity in endocarditis. Mol. Microbiol. 8: 133 142.
104. Nakanishi, K.,, F. Tajima,, Y. Nakata,, H. Osada,, K. Ogata,, T. Kawai,, C. Torikata,, T. Suga,, K. Takishima,, T. Aurues,, and T. Ikeda. 1998. Tissue factor is associated with the nonbacterial thrombotic endocarditis induced by a hypobaric hypoxic environment in rats. Virchows Arch. 433: 375 379.
105. Ni Eidhin, D.,, S. Perkins,, P. Francois,, P. Vaudaux,, M. Hook,, and T. J. Foster. 1998. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30: 245 257.
106. O'Connor, D. T.,, M. H. Weisman,, and J. Fierer. 1978. Activation of the alternate complement pathway in Staphylococcus aureus infective endocarditis and its relationship to thrombocytopenia, coagulation abnormalities, and acute glomerulonephritis. Clin. Exp. Immunol. 34: 179 187.
107. Olaison, L.,, H. Hogevik,, and K. Alestig. 1997. Fever, C-reactive protein, and other acute-phase reactants during treatment of infective endocarditis. Arch. Intern. Med. 157: 885 892.
108. O'Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295 304.
109. Parry, G. C.,, J. H. Erlich,, P. Carmeliet,, T. Luther,, and N. Mackman. 1998. Low levels of tissue factor are compatible with development and hemostasis in mice. J. Clin. Investig. 101: 560 569.
110. Pearson, J. P.,, C. Van Delden,, and B. H. Iglewski. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181: 1203 1210.
111. Rohmann, S.,, R. Erbel,, H. Darius,, G. Gorge,, T. Makowski,, R. Zotz,, S. Mohr-Kahaly,, U. NixdorfF,, M. Drexler,, and J. Meyer. 1991. Prediction of rapid versus prolonged healing of infective endocarditis by monitoring vegetation size. J. Am. Soc. Echocardiogr. 4: 465 474.
112. Rohmann, S.,, R. Erbel,, H. Darius,, T. Makowski,, P. Jensen,, T. Fischer,, and J. Meyer. 1992. Spontaneous echo contrast imaging in infective endocarditis: a predictor of complications? Int. J. Card. Imaging 8: 197 207.
113. Rosenberg, R. D.,, and W. C. Aird. 1999. Vascular-bed-specific hemostasis and hypercoagulable states. N. Engl. J. Med. 340: 1555 1564.
114. Schlievert, P. M.,, P. J. Gahr,, A. P. Assimacopoulos,, M. M. Dinges,, J. A. Stoehr,, J. W. Harmala,, H. Hirt,, and G. M. Dunny. 1998. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 66: 218 223.
115. Schwan, W. R.,, S. N. Coulter,, E. Y. Ng,, M. H. Langhorne,, H. D. Ritchie,, L. L. Brody,, S. Westbrock-Wadman,, A. S. Bayer,, K. R. Folger,, and C. K. Stover. 1998. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66: 567 572.
116. Semeraro, N.,, and M. Colucci. 1997. Tissue factor in health and disease. Thromb. Haemost. 78: 759 764.
117. Shapiro, J. A. 1998. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52: 81 104.
118. Soberay, A. H.,, M. C. Herzberg,, J. D. Rudney,, H. K. Nieuwenhuis,, J. J. Sixma,, and U. Seligsohn. 1987. Responses of platelets to strains of Streptococcus sanguis: findings in healthy subjects, Bernard-Soulier, Glanzmann's, and collagen-unresponsive patients. Thromb. Haemost. 57: 222 225.
119. Sommer, P.,, C. Gleyzal,, S. Guerret,, J. Etienne,, and J. A. Grimaud. 1992. Induction of a putative laminin-binding protein of Streptococcus gordonii in human infective endocarditis. Infect. Immun. 60: 360 365.
120. Soto, A.,, P. H. McWhinney,, C. C. Kibbler,, and j. Cohen. 1998. Cytokine release and mitogenic activity in the viridans streptococcal shock syndrome. Cytokine 10: 370 376.
121. Strom, B. L.,, E. Abrutyn,, J. A. Berlin,, J. L. Kinman,, R. S. Feldman,, P. D. Stolley,, M. E. Levison,, O. M. Korzeniowski,, and D . Kaye. 1998. Dental and cardiac risk factors for infective endocarditis. A population-based, casecontrol study. Ann. Intern. Med. 129: 761 769.
122. Sullam, P. M.,, F. H. Valone,, and J. Mills. 1987. Mechanisms of platelet aggregation by viridans group streptococci. Infect. Immun. 55: 1743 1750.
123. Sullam, P. M.,, G. A. Jarvis,, and F. H. Valone. 1988. Role of immunoglobulin G in platelet aggregation by viridans group streptococci. Infect. Immun. 56: 2907 2911.
124. Sullam, P. M.,, A. S. Bayer,, W. M. Foss,, and A. L. Cheung. 1996. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun. 64: 4915 4921.
125. Sullam, P. M.,, W. C. Hyun,, J. Szollosi,, J. F. Dong,, W. M. Foss,, and J. A. Lopez. 1998. Physical proximity and functional interplay of the glycoprotein Ib-DC-V complex and the Fc receptor FcgammaRIIA on the platelet plasma membrane. J. Biol. Chem. 273: 5331 5336.
126. Taha, T. H.,, S. Durrant,, J. Crick,, S. Bowcock,, A. Bradshaw,, and C. M. Oakley. 1991. Hemostatic studies in patients with infective endocarditis: a report on nine consecutive cases with evidence of coagulopathy. Heart Vessels 6: 102 106.
127. Valtonen, V.,, A. Kuikka,, and J. Syrjanen. 1993. Thrombo-emboliccomplications in bacteraemic infections. Eur. Heart J. 14( Suppl. K): 20 23.
128. Viscount, H. B.,, C. L. Munro,, D. Burnette-Curley,, D. L. Peterson,, and F. L. Macrina. 1997. Immunization with FimA protects against Streptococcus parasanguis endocarditis in rats. Infect. Immun. 65: 994 1002.
129. Vuille, C.,, M. Nidorf,, A. E. Weyman,, and M. H. Picard. 1994. Natural history of vegetations during successful medical treatment of endocarditis. Am. Heart J. 128: 1200 1209.
130. Watson, S. P.,, and j. Gibbins. 1998. Collagen receptor signaling in platelets: extending the role of the ITAM. Immunol. Today 19: 260 264.
131. Wells, A. U.,, C. C. Fowler,, R. B. Ellis-Pegler,, R. Luke,, S. Hannan,, and D. N. Sharpe. 1990. Endocarditis in the 80s in a general hospital in Auckland, New Zealand. Q. J. Med. 76: 753 762.
132. Whatmore, A. M.,, V. A. Barcus,, and C. G. Dowson. 1999. Genetic diversity o f the streptococcal competence ( com) gene locus. J. Bacteriol. 181: 3144 3154.
133. Wu, T.,, M. R. Yeaman,, and A. S. Bayer. 1994. In vitro resistance to platelet microbicidal protein correlates with endocarditis source among bacteremic staphylococcal and streptococcal isolates. Antimicrob. Agents Chemother. 38: 729 732.
134. Yeaman, M. R.,, D. C. Norman,, and A. S. Bayer. 1992. Staphylococcus aureus susceptibility to thrombin-induced platelet microbicidal protein is independent of platelet adherence and aggregation in vitro. Infect. Immun. 60: 2368 2374.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error