1887

Chapter 10 : DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap10-2.gif

Abstract:

This chapter discusses methyl-directed mismatch repair (MMR) mutators in the context of the evolution of bacterial pathogens. It is inevitable that any discussion of bacterial evolution ultimately focuses on mutation rate. Errors introduced by the DNA polymerase are circumvented both by its proofreading function and by the various DNA repair enzymes, primarily the MMR system, which monitor and repair lesions in the DNA. This underscores why DNA repair is essential to any discussion of bacterial evolution. The chemostat studies, as well as two independent reports that detected mutators among hospital isolates of , suggested that mutators could persist in natural populations of bacteria. The authors have proposed that the persistence of mutator alleles in nature is the consequence of selection for new gene functions gained from promiscuous exchange, since the mutators observed are notably MMR phenotypes. The roles that MutS, MutH, MutL, or UvrD deficiency play in the development of antigenic variation and virulence may be even more varied and subtle, due to the multiple ways these mutator phenotypes are expressed and act to affect gene structure.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effect of defective MMR on the time frame for evolutionary change. Defects in the MMR pathway increase mutations from errors in DNA replication and repair and enhance recombination of diverged DNA among and between bacterial species. The increased rates of spontaneous mutation and homeologous recombination observed in MMR-defective strains suggest that MMR mutators may act to cause rapid evolutionary change.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Estimates of fidelity during the course of DNA replication. Bar graphs represent the additive effect of each step that controls the fidelity of DNA replication and show the decrease in error rate, given as error per DNA nucleotide replicated.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mutator loci in . Mutant loci that increase the spontaneous mutation rate are shown on the outside of the genetic map of . Preferential mutations induced in each mutant strain are given, except for the pleiotropic MMR mutators, which are highlighted in gray. Genetic loci shown inside the map are antibiotic resistance determinants used to screen the mutator phenotype (see text). The circular genetic map is shown with centisome intervals indicated for the 100-minute map and 1,000-kb (K) intervals indicated for the 4,639-kb genome.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phenotypes associated with mutant strains carrying defects in the MMR pathway.

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap10
1. Aoyama, K.,, A. M. Haase,, and P. R. Reeves. 1994. Evidence for effect of random genetic drift on G+C content after lateral transfer of fucose pathway genes to Escherichia coli K-12. Mol. Biol. Evol. 11: 829 838.
2. Ash, C. P. J. 1999. Mutation and adaption from the Great Lakes to the Rocky Mountains. Trends Microbiol. 7: 395 398.
3. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Periodic selection of Escherichia coli. Proc. Natl. Acad. Sci. USA 37: 146 155.
4. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16: 345 355.
5. Bastin, D. A.,, and P. R. Reeves. 1995. Sequence and analysis of the O antigen gene ( rfb) cluster of Escherichia coli O111. Gene 164: 17 23.
6. Bisercic, M.,, J. Y. Feutier,, and P. R. Reeves. 1991. Nucleotide sequence of the gnd gene from nine natural isolates of Escherichia coli: evidence of intragenic recombination as contributing factor in the evolution of the polymorphic gnd locus. J. Bacteriol. 173: 3894 3900.
7. Bucci, C.,, A. Lavitola,, P. Salvatore,, L. Del Giudici,, D. R. Massardo,, C. B. Bruni,, and P. Alifano. 1999. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol. Cell 3: 435 445.
8. Bzymek, M.,, C. J. Saveson,, V. V. Feschenko,, and S. T. Lovett. 1999. Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. J. Bacteriol. 181: 477 482.
9. Cebula, T. A.,, and J. E. LeClerc. 1997. Hypermutability and homeologous recombination: ingredients for rapid evolution. Bull. Inst. Pasteur 95: 97 106.
10. Cebula, T. A.,, and J. E. LeClerc. 1997. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly (discussion). Trends Microbiol. 5: 428 429.
11. Cebula, T. A.,, B. Li,, W. L. Payne,, and J. E. LeClerc. 1998. Mutators among Escherichia coli and Salmonella enterica: adaptation and emergence of bacterial pathogens. Am. Soc. Microbiol. Conference on Small Genomes, abstr. SA-22, p. 16.
12. Cebula, T. A.,, D. D. Levy,, and J. E. Le-Clerc,. 1999. Mutator bacteria and resistance development. In D. Hughes, and D. Andersson (ed.). Antibiotic Resistance and Antibiotic Development. Harwood, Amsterdam, in press.
13. Chao, L.,, and E. C. Cox. 1983. Competition between high and low mutating strains of Escherichia coli. Evolution 37: 125 134.
14. Cox, E. C. 1973. Mutator gene studies in Escherichia coli: the mutT gene. Genetics (suppl.) 73: 67 80.
15. Cox, E. C. 1995. Recombination, mutation and the origin of species. Bioessays 17: 747 749.
16. Cox, E. C.,, and T. C. Gibson. 1974. Selection for high mutation rates in chemostats. Genetics 77: 169 184.
17. Cox, M. M. 1997. Recombinational crossroads: eukaryotic enzymes and the limits of bacterial precedents. Proc. Natl. Acad. Sci. USA 94: 11764 11766.
18. Craig, R. J.,, J. A. Araj,, and M. G. Marinus. 1984. Induction of damage inducible (SOS) repair in dam mutants of Escherichia coli exposed to 2-aminopurine. Mol. Gen. Genet. 194: 539 540.
19. Deitsch, K. W.,, E. R. Moxon,, and T. E. Wellems. 1997. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev. 61: 281 293.
20. de Visser, J. A. G. M.,, C. W. Zeyl,, P. J. Gerrish,, J. L. Blanchard,, and R. E. Lenski. 1999. Diminishing returns from mutation supply rate in asexual populations. Science 283: 404 406.
21. Domingo, E.,, and J. J. Holland. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51: 151 178.
22. Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160 7164.
23. Drake, J. W. 1993. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90: 4171 4175.
24. Drake, J. W.,, B. Charlesworth,, D. Charlesworth,, and J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148: 1667 1686.
25. Dykhuizen, D. E.,, and L. Green. 1991. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173: 7257 7268.
26. Feng, G.,, H. C. Tsui,, and M. E. Winkler. 1996. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K- 12 cells. J. Bacteriol. 178: 2388 2396.
27. Field, D.,, M. O. Magnasco,, E. R. Moxon,, D. Metzgar,, M. M. Tanaka,, C. Wills,, and D. S. Thaler. 1999. Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann. N. Y. Acad. Sci. 870: 378 382.
28. Garcia-Del Portillo, F.,, M. G. Pucciarelli,, and J. Casadesus. 1999. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96: 11578 11583.
29. Gross, M. D.,, and E. C. Siegel. 1981. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat. Res. 91: 107 110.
30. Heithoff, D. M.,, R. L. Sinsheimer,, D. A. Low,, and M. J. Mahan. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284: 967 970.
31. Horst, J. P.,, T. H. Wu,, and M. G. Marinus. 1999. Escherichia coli mutator genes. Trends Microbiol. 7: 29 36.
32. Iriarte, M.,, I. Stainier,, and G. R. Cornelis. 1995. The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect. Immun. 63: 1840 1847.
33. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96: 3801 3806.
34. Jyssum, K. 1960. Observations on two types of genetic instability in Escherichi coli. Acta Pathol. Microbiol. Scand. 48: 113 120.
35. Karaolis, D. K.,, R. Lan,, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J. Bacteriol. 177: 191 198.
36. Kehoe, M. A.,, V. Kapur,, A. M. Whatmore,, and J. M. Musser. 1996. Horizontal gene transfer among group A streptococci: implications for pathogenesis and epidemiology. Trends Microbiol. 4: 436 443.
37. Kibota, T. T.,, and M. Lynch. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694 696.
38. Kirchner, C. E. J.,, and M. J. Rudden. 1966. Localization of a mutator gene in Salmonella typhimurium by cotransduction. J. Bacteriol. 92: 1453 1456.
39. Kolstø, A.-B. 1999. Time for a fresh look at the bacterial chromosome. Trends Microbiol. 7: 223 226.
40. Kroll, J. S.,, K. E. Wilks,, J. L. Farrant,, and P. R. Langford. 1998. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl. Acad. Sci. USA 95: 12381 12385.
41. Lawrence, J. G.,, and H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383 397.
42. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 9413 9417.
43. Lawrence, J. G.,, and J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843 1860.
44. LeClerc, J. E.,, and T. A. Cebula. 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 227: 1834. (Response.)
45. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1999. Promiscuous origin of a chimeric sequence in the Escherichia coli O157:H7 genome. J. Bacteriol. 181: 7614 7617.
46. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208 1211.
47. LeClerc, J. E.,, W. L. Payne,, E. Kupchella,, and T. A. Cebula. 1998. Detection of mutator subpopulations in Salmonella typhimurium LT2 by reversion of his alleles. Mutat. Res. 400: 89 97.
48. Leigh, E. G. 1970. Natural selection and mutability. Am. Nat. 104: 301 305.
49. Leigh, E. G. 1973. The evolution of mutation rates. Genetics 73: 1 18.
50. Levin, B. R.,, M. Lipsitch,, and S. Bonhoeffer. 1999. Population biology, evolution, and infectious disease: convergence and synthesis. Science 283: 806 809.
51. Levinson, G.,, and G. A. Gutman. 1987. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15: 5323 5338.
52. Levy, D. D.,, and T. A. Cebula. 1999. Mutagenesis patterns in a tRNA mutation marker gene altered to include repetitive sequence replicated in mutS E. coli. Ann. N. Y. Acad. Sci. 870: 392 395.
53. Lundblad, V.,, and N. Kleckner. 1982. Mutants of Escherichia coli K12 which affect excision of transposon Tn 10. Basic Life Sci. 20: 245 258.
54. Lundblad, V.,, and N. Kleckner. 1985. Mismatch repair mutations of Escherichia coli K12 enhance transposon excision. Genetics 109: 3 19.
55. Maas, W. K.,, C. Wang,, T. Lima,, A. Hach,, and D. Lim. 1996. Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol. Microbiol. 19: 505 509.
56. Magnasco, M. O.,, and D. S. Thaler. 1996. Changing the pace of evolution. Physics Lett. 221: 287 292.
57. Mao, E. F.,, L. Lane,, J. Lee,, and J. H. Miller. 1997. Proliferation of mutators in a cell population. J. Bacteriol. 179: 417 422.
58. Martin, K.,, G. Morlin,, A. Smith,, A. Nordyke,, A. Eisenstark,, and M. Golomb. 1998. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J. Bacteriol. 180: 107 118.
59. Matic, I.,, C. Rayssiguier,, and M. Radman. 1995. Gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507 515.
60. Matic, I.,, F. Taddei,, and M. Radman. 1996. Genetic barriers among bacteria. Trends Microbiol. 4: 69 73.
61. Matic, I.,, M. Radman,, F. Taddei,, B. Picard,, C. Doit,, E. Bingen,, E. Denamur,, and J. Elison. 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 227: 1833 1834.
62. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode,, and A. Fasano. 1998. ‘‘Black holes’’ and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 3943 3948.
63. Médigue, C.,, T. Rouxel,, P. Vigier,, A. Hénaut,, and A. Danchin. 1991. Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222: 851 856.
64. Milkman, R. 1997. Recombination and population structure in Escherichia coli. Genetics 146: 745 750.
65. Miller, J. H.,, A. Suthar,, J. Tai,, A. Yeung,, C. Truong,, and J. L. Stewart. 1999. Direct selection for mutators in Escherichia coli. J. Bacteriol. 181: 1576 1584.
66. Mills, D. M.,, V. Bajaj,, and C. A. Lee. 1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K- 12 chromosome. Mol. Microbiol. 15: 749 759.
67. Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25: 229 253.
68. Modrich, P.,, and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101 133.
69. Moxon, E. R. 1995. Whole genome sequencing of pathogens: a new era in microbiology. Trends Microbiol. 3: 335 337.
70. Moxon, E. R.,, and D. S. Thaler. 1997. Microbial genetics. The tinkerer’s evolving toolbox. Nature 387: 659 662.
71. Moxon, E. R.,, R. B. Rainey,, M. A. Nowak,, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4: 24 33.
72. Nestman, E. R.,, and R. F. Hill. 1973. Population changes in continuously growing mutator cultures of Escherichia coli. Genetics 73( Suppl.): 41 44.
73. Ninio, J. 1991. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 129: 957 962.
74.Pang T. 1998. Genetic dynamics of Salmonella typhi—diversity in clonality. Trends Microbiol. 6: 339342.
75. Petit, M. A.,, J. Dimpfl,, M. Radman,, and H. Echols. 1991. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129: 327 332.
76. Pupo, G. M.,, D. K. Karaolis,, R. Lan,, and P. R. Reeves. 1997. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect. Immun. 65: 2685 2692.
77. Radman, M.,, I. Matic,, and F. Taddei. 1999. Evolution of evolvability. Ann. N. Y. Acad. Sci. 870: 146 155.
78. Rainey, P. B. 1999. The economics of mutation. Curr. Biol. 9: R371 R373.
79. Raposa, S.,, and M. S. Fox. 1987. Some features of base pair mismatch and heterology repair in Escherichia coli. Genetics 117: 381 390.
80. Rayssiguier, C.,, D. S. Thaler,, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396 401.
81. Reeves, P. R. 1992. Variation in O-antigens, niche-specific selection and bacterial populations. FEMS Microbiol. Lett. 79: 509 516.
82. Roca, A. I.,, and M. M. Cox. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56: 129 223.
83. Rosenberg, S. M.,, C. Thulin,, and R. S. Harris. 1998. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148: 1559 1566.
84. Sanderson, K. E.,, A. Hessel,, and B. A. D. Stocker,. 1987. Strains of Salmonella typhimurium and other Salmonella species used in genetic analysis, p. 2496 2503. In F. C. Neidhardt,, J. L. Ingraham,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
85. Schaaper, R. M. 1993. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J. Biol. Chem. 268: 23762 23765.
86. Schaaper, R. M.,, and R. L. Dunn. 1991. Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129: 317 326.
87. Siegel, E. C.,, and F. Kamel. 1974. Reversion of frameshift mutations by mutator genes in Escherichia coli. J. Bacteriol. 117: 994 1001.
88. Sniegowski, P. D.,, P. J. Gerrish,, and R. E. Lenski. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703 705.
89. Sokurenko, E. V.,, D. L. Hasty,, and D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7: 191 195.
90. Taddei, F.,, I. Matic,, B. Godelle,, and M. Radman. 1997. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 5: 427 428.
91. Taddei, F.,, M. Radman,, J. Maynard- Smith,, B. Toupance,, P. H. Gouyon,, and B. Godelle. 1997. Role of mutator alleles in adaptive evolution. Nature 387: 700 702.
92. Tenaillon, O.,, B. Toupance,, H. Le Nagard,, F. Taddei,, and B. Godelle. 1999. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152: 485 493.
93. Tröbner, W.,, and R. Piechoki. 1984. Selection against hypermutability in Escherichia coli during long term evolution. Mol. Gen. Genet. 198: 177 178.
94. Tsui, H. C.,, G. Feng,, and M. E. Winkler. 1997. Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179: 7476 7487.
95. Tsui, H. C.,, G. Zhao,, G. Feng,, H. C. Leung,, and M. E. Winkler. 1994. The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol. Microbiol. 11: 189 202.
96. van Belkum, A.,, S. Scherer,, L. van Alphen,, and H. Verbrugh. 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62: 275 293.
97. Van Valen, L. 1973. A new evolutionary law. Evol. Theory 1: 1 30.
98. Vulic, M.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763 9767.
99. Vulic, M.,, R. E. Lenski,, and M. Radman. 1999. Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc. Natl. Acad. Sci. USA 96: 7348 7351.
100. Worth, L., Jr.,, T. Bader,, J. Yang,, and S. Clark. 1998. Role of MutS ATPase activity in MutS,L-dependent block of in vitro strand transfer. J. Biol. Chem. 273: 23176 23182.
101. Worth, L.,, S. Clark,, M. Radman,, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91: 3238 3241.
102. Yildiz, F. H.,, and G. K. Schoolnik. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180: 773 784.
103. Zahrt, T. C.,, and S. Maloy. 1997. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc. Natl. Acad. Sci. USA 94: 9786 9791.
104. Zahrt, T. C.,, G. C. Mora,, and S. Maloy. 1994. Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. J. Bacteriol. 176: 1527 1529.
105. Zhang, Q.,, and K. S. Wise. 1997. Localized reversible frameshift mutation in an adhesin gene confers a phase-variable adherence phenotype in mycoplasma. Mol. Microbiol. 25: 859 869.

Tables

Generic image for table
TABLE 1

Number of total, deleterious, lethal, and favorable mutations per genome, gene, and base pair replication

Citation: Cebula T, LeClerc J. 2000. DNA Repair and Mutators: Effects on Antigenic Variation and Virulence of Bacterial Pathogens, p 143-159. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error