1887

Chapter 14 : The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap14-2.gif

Abstract:

This chapter reviews the general structure of type III secretion systems in gram-negative bacterial pathogens and the means by which these systems may have arisen and spread. It describes the present state of knowledge regarding the structural details of type III secretion in the system (referred to as Mxi-Spa). By presenting both the common features ascribed to the type III pathway and the specific structural details of one such system, the chapter illustrates how bacterial pathogens may exploit one basic mechanism for adaptation to a broad range of host interactions. Features of each secretion pathway are discussed, and major attributes that are either pathway-specific or conserved are highlighted. The net result of this work is an abundance of new insights into both the evolution of pathogenic bacteria and the mechanisms by which they interact with and manipulate basic cellular processes of a host to promote their survival. While issues regarding type III-dependent protein injection are discussed, it is worth noting that enteropathogenic (EPEC), , , and probably the plant pathogens also inject effector proteins into target host cells. The chapter presents an abridged description of the type III secretion pathway, including details of its evolution and distinguishing characteristics. Future research should be directed toward defining the true architecture of this structure and the means by which it physically transfers virulence proteins.

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) The ∼20 kb Mxi-Spa locus of the virulence plasmid. With the exception of at least IpgD and IpgE (which are predicted to be a secreted effector protein and its chaperone, respectively), the products of these loci are predicted to assemble as the transmembrane Mxi-Spa type III apparatus. The known or putative location of each of these proteins is denoted within the indicated box: , cytoplasmic or peripherally associated with the IM; , mobile secretory elements; , IM-anchored; , spanning the IM and OM; , OM-anchored; S, secreted; P, periplasmic. (B) Model for Ipa secretion through Mxi-Spa. Subunit shading corresponds to the gene shading above. The Ipa proteins are shown as black bullets.

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818111.chap14
1. Allaoui, A.,, P. J. Sansonetti,, and C. Parsot. 1992. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J. Bacteriol. 174: 7661 7669.
2. Allaoui, A.,, P. J. Sansonetti,, and C. Parsot. 1993. MxiD: an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins. Mol. Microbiol. 7: 59 68.
3. Allaoui, A.,, P. J. Sansonetti,, R. Ménard,, S. Barzu,, J. Mounier,, A. Phalipon,, and C. Parsot. 1995. MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol. Microbiol. 17: 461 470.
4. Allaoui, A.,, R. Ménard,, P. J. Sansonetti,, and C. Parsot. 1993. Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect. Immun. 61: 1707 1714.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers,, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403 410.
6. Andrews, G. P.,, A. E. Hromockyj,, C. Coker,, and A. T. Maurelli. 1991. Two novel virulence loci, mxiA and mxiB, in Shigella flexneri 2a facilitate excretion of invasion plasmid antigens. Infect. Immun. 59: 1997 2005.
7. Andrews, G. P.,, and A. T. Maurelli. 1992. mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium response protein, LcrD, of Yersinia pestis. Infect. Immun. 60: 3287 3295.
8. Bavoil, P. M.,, and R.-C. Hsia. 1998. Type III secretion in Chlamydia : a case of déjà vu? Mol. Microbiol. 28: 859 862.
9. Beinke, C.,, S. Laarmann,, C. Wachter,, H. Karch,, L. Greune,, and M. A. Schmidt. 1998. Diffusely adhering Escherichia coli strains induce attaching and effacing phenotypes and secrete homologs of Esp proteins. Infect. Immun. 66: 528 539.
10. Bitter, W.,, and J. Tommassen. 1999. Ushers and other doorkeepers. Trends Microbiol. 7: 4 6.
11. Bitter, W.,, M. Koster,, M. Latijnhouwers,, H. de Cock,, and J. Tommassen. 1998. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol. 27: 209 219.
12. Charkowski, A. O.,, H.-C. Huang,, and A. Collmer. 1997. Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggest that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gramnegative bacteria. J. Bacteriol. 179: 3866 3874.
13. Collazo, C. M.,, and J. E. Galan. 1996. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect. Immun. 64: 3524 3531.
14. Cornelis, G. R. 1998. The Yersinia deadly kiss. J. Bacteriol. 180: 5495 5504.
15. Crago, A. M.,, and V. Koronakis. 1998. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30: 47 56.
16. Daefler, S. 1999. Type III secretion by Salmonella typhimurium does not require contact with a eukaryotic host. Mol. Microbiol. 31: 45 51.
17. Daefler, S.,, I. Guilvout,, K. R. Hardie,, A. P. Pugsley,, and M. Russel. 1997. The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol. Microbiol. 24: 465 475.
18. Daefler, S.,, and M. Russel. 1998. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol. 28: 1367 1380.
19. De Geyter, C.,, B. Vogt,, Z. Benjelloun- Touimi,, P. J. Sansonetti,, J.-M. Ruysschaert,, C. Parsot,, and V. Cabiaux. 1997. Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Lett. 400: 149 154.
20. Demers, B.,, P. J. Sansonetti,, and C. Parsot. 1998. Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. EMBO J. 17: 2894 2903.
21. Deng, W.-L.,, and H.-C. Huang. 1999. Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. J. Bacteriol. 181: 2298 2301.
22. Dorman, C. J.,, and M. E. Porter. 1998. The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol. Microbiol. 29: 677 684.
23. Economou, A. 1999. Following the leader: bacterial protein secretion through the Sec pathway. Trends Microbiol. 7: 315 320.
24. Fekkes, P.,, and A. J. M. Driessen. 1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63: 161 173.
25. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61: 136 169.
26. Frithz-Lindsten, E.,, Y. Du,, R. Rosqvist, and Å Forsberg. 1997. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25: 1125 1139.
27. Galan, J. E. 1998. Interactions of Salmonella with host cells: encounters of the closest kind. Proc. Natl. Acad. Sci. USA 95: 14006 14008.
28. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322 1328.
29. Galyov, E. E.,, M. W. Wood,, R. Rosqvist,, P. B. Mullan,, P. R. Watson,, S. Hedges,, and T. S. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25: 903 912.
30. Ginocchio, C. C.,, and J. E. Galan. 1995. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect. Immun. 63: 729 732.
31. Ginocchio, C. C,, S. B. Olmsted,, C. L. Wells,, and J. E. Galan. 1994. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76: 717 724.
32. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
33. Hardie, K. R.,, A. Seydel,, I. Guilvout,, and A. P. Pugsley. The secretin-specific, chaperone- like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol. Microbiol. 22: 967 976.
34. He, S. Y. 1997. Hrp-controlled interkingdom protein transport: learning from flagellar assembly? Trends Microbiol. 5: 489 495.
35. Hobbs, M.,, and J. S. Mattick. 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage, and protein-secretion: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10: 233 243.
36. Hsia, R.-C.,, P. L. C. Small,, and P. M. Bavoil. 1993. Characterization of virulence genes of enteroinvasive Escherichia coli by Tn phoA mutagenesis: identification of invX, a gene required for entry into HEp-2 cells. J. Bacteriol. 175: 4817 4823.
37. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
38. Kaniga, K.,, D. Trollinger,, and J. E. Galan. Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J. Bacteriol. 177: 7078 7085.
39. Kenny, B.,, and B. B. Finlay. 1995. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc. Natl. Acad. Sci. USA 92: 7991 7995.
40. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511 520.
41. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspAassociated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17: 2166 2176.
42. Koster, M.,, W. Bitter,, H. de Cock,, A. Allaoui,, G. R. Cornelis,, and J. Tommassen. 1997. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26: 789 797.
43. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S.-I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
44. Lehnherr, H.,, A.-M. Hansen,, and T. Ilyina. 1998. Penetration of the bacterial cell wall: a family of lytic transglycosylases in bacteriophages and conjugative plasmids. Mol. Microbiol. 30: 453 457.
45. Lory, S. 1998. Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Curr. Opin. Microbiol. 1: 27 35.
46. Lupas, A.,, M. Van Dyke,, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252: 1162 1164.
47. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg,, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 1664 1668.
48. Mecsas, J.,, and E. J. Strauss. 1996. Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerg. Infect. Dis. 2: 271 288.
49. Ménard, R.,, M.-C. Prévost,, P. Gounon,, P. J. Sansonetti,, and C. Dehio. 1996. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad. Sci. USA 93: 1254 1258.
50. Ménard, R.,, P. J. Sansonetti,, and C. Parsot. 1994. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 13: 5293 5302.
51. Ménard, R.,, P. J. Sansonetti,, C. Parsot,, and T. Vasselon. 1994. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79: 515 525.
52. Michiels, T.,, P. Wattiau,, R. Brasseur,, J. M. Ruysschaert,, and G. Cornelis. 1990. Secretion of Yop proteins by yersiniae. Infect. Immun. 58: 2840 2849.
53. Nouwen, N.,, N. Ranson,, H. Saibil,, B. Wolpensinger,, A. Engel,, A. Ghaze,, and A. P. Pugsley. 1999. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. USA 96: 8173 8177.
54. Pallen, M. J.,, G. Dougan,, and G. Frankel. Coiled-coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25: 423 425.
55. Parsot, C.,, R. Ménard,, P. Gounon,, and P. J. Sansonetti. 1995. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol. Microbiol. 16: 291 300.
56. Payne, P. L.,, and S. C. Straley. 1998. YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J. Bacteriol. 180: 3882 3890.
57. Payne, P. L.,, and S. C. Straley. 1999. YscP of Yersinia pestis is a secreted component of the Yop secretion system. J. Bacteriol. 181: 2852 2862.
58. Pope, L. M.,, K. E. Reed,, and S. M. Payne. 1995. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect. Immun. 63: 3642 3648.
59. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50 108.
60. Roine, E.,, W. Wei,, J. Yuan,, E.-L. Nurmiaho- Lassila,, N. Kalkkinen,, M. Romantschuk,, and S.-Y. He. 1997. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94: 3459 3464.
61. Rosqvist, R.,, K.-E. Magnusson,, and H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13: 964 972.
62. Salmond, G. P.,, and P. J. Reeves. 1993. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci. 18: 7 12.
63. Sasakawa, C.,, K. Komatsu,, T. Tobe,, T. Suzuki,, and M. Yoshikawa. 1993. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J. Bacteriol. 175: 2334 2346.
64. Schuch, R.,, and A. T. Maurelli. 1999. The Mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. Infect. Immun. 67: 1982 1991.
65. Schuch, R.,, R. C. Sandlin,, and A. T. Maurelli. 1999. A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol. Microbiol. 34: 675 689.
66. Shevchik, V. E.,, J. Robert-Baudouy,, and G. Condemine. 1997. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J. 16: 3007 3016.
67. Skrzypek, E.,, C. Cowan,, and S. C. Straley. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30: 1051 1065.
68. Stephens, C.,, and L. Shapiro. 1996. Bacterial pathogenesis: delivering the payload. Curr. Biol. 6: 927 930.
69. Thanabalu, T.,, E. Koronakis,, C. Hughes,, and V. Koronakis. 1998. Substrate-induced assembly of a contiguous channel for protein export from E. coli : reversible bridging of an innermembrane translocase to an outer membrane pore. EMBO J. 17: 6487 6496.
70. Tran VanNhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18: 3249 3262.
71. Ueno, T.,, K. Oosawa,, and S.-I. Aizawa. 1994. Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 236: 546 555.
72. Van derDoes, C.,, T. den Blaauwen,, J. G. de Wit,, E. H. Manting,, N. A. Groot,, P. Fekkes,, and A. J. M. Driessen. 1996. SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol. Microbiol. 22: 619 629.
73. Van Gijsegem, F.,, S. Genin,, and C. Boucher. 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1: 175 180.
74. Watarai, M.,, T. Tobe,, M. Yoshikawa,, and C. Sasakawa. 1995. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 14: 2461 2470.
75. Williams, A. W.,, S. Yamaguchi,, F. Togashi,, S.-I. Aizawa,, I. Kawagishi,, and R. M. Macnab. 1996. Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J. Bacteriol. 178: 2960 2970.
76. Winstanley, C.,, B. A. Hales,, and C. A. Hart. 1999. Evidence for the presence in Burkholderia pseudomallei of a type III secretion systemassociated gene cluster. J. Med. Microbiol. 48: 649 656.

Tables

Generic image for table
TABLE 1

Type III virulence protein secretion systems

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14
Generic image for table
TABLE 2

Products of the Mxi-Spa locus of

Citation: Schuch R, Maurelli A. 2000. The Type III Secretion Pathway: Dictating the Outcome of Bacterial-Host Interactions, p 203-224. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error