Chapter 9 : Mechanisms of Resistance to NO-Related Antibacterial Activity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mechanisms of Resistance to NO-Related Antibacterial Activity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818111/9781555811747_Chap09-2.gif


Little more than a decade ago, it was discovered that an array of physiological processes ranging from vascular homeostasis to neurotransmission and immunity are regulated by endogenously produced nitric oxide (NO). This chapter focuses on some of the recently elucidated strategies by which bacteria cope with the cytotoxic effects of NO and its redox congeners. Microbes, particularly pathogenic species, have coapted previously existing mechanisms and evolved novel strategies to avoid NO exposure or detoxify nitrogen oxides. The SoxRS and OxyR regulons are well characterized regarding their roles in resistance of enteric bacteria to oxidative stress, but both appear to be involved in resistance to reactive nitrogen species as well. Certain genes belonging to the SoxRS or OxyR regulons such as (glucose-6-phosphate dehydrogenase) and (alkyl hydroperoxide reductase) do appear to play a role in the resistance of and to NO-dependent cytotoxicity, but this may reflect the incomplete dependence of these loci on SoxRS or OxyR for expression. The reducing potential of thioredoxin reductase is regenerated at the expense of thioredoxin and NADPH. Although a theoretically attractive defense mechanism, the role of thioredoxin reductase in the resistance of pathogenic organisms to NO-related cytotoxicity remains to be tested experimentally. A more complete comprehension of mechanisms of resistance to NO-related antibacterial activities will shed new light in understanding infectious processes and lead to the discovery and application of new therapies.

Citation: Vazquez-Torres A, Fang F. 2000. Mechanisms of Resistance to NO-Related Antibacterial Activity, p 131-142. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Microbial defenses against reactive oxygen and nitrogen intermediates. Abbreviations: SOD, superoxide dismutase; Hmp, flavohemoprotein; GSH, glutathione; HC, homocysteine; FumC, resistant fumarase; Ftn, ferritin; Kat, catalase; Ahp, alkyl hydroperoxide reductase; Gor, glutathione reductase; Zwf, glucose-6-phosphate dehydrogenase; Nfo, endonuclease IV; OxyR, HO response regulator; SoxS, superoxide response regulator; RecBC, exonuclease V. Adapted from reference 31 with copyright permission by the .

Citation: Vazquez-Torres A, Fang F. 2000. Mechanisms of Resistance to NO-Related Antibacterial Activity, p 131-142. In Brogden K, Roth J, Stanton T, Bolin C, Minion F, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818111.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Andrews, S. C.,, D. Shipley,, J. N. Keen,, J. B. Findlay,, P. M. Harrison,, and J. R. Guest. 1992. The haemoglobin-like protein (HMP) of Escherichia coli has ferrisiderophore reductase activity and its C-terminal domain shares homology with ferredoxin NADP + reductases. FEBS Lett. 302: 247 252.
2. Anstey, N. M.,, J. B. Weinberg,, M. Y. Hassanali,, E. D. Mwaikambo,, D. Manyenga,, M. A. Misukonis,, D. R. Arnelle,, D. Hollis,, M. I. McDonald,, and D. L. Granger. 1996. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J. Exp. Med. 184: 557 567.
3. Assreuy, J.,, F. Q. Cunha,, M. Epperlein,, A. Noronha-Dutra,, C. A. O’Donnell,, F. Y. Liew,, and S. Moncada. 1994. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur. J. Immunol. 24: 672 676.
4. Balazy, M.,, P. M. Kamiski,, K. Mao,, J. Tan,, and M. S. Wolin. 1998. S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. J. Biol. Chem. 273: 32009 32015.
5. Bellamy, M. F.,, and I. F. McDowell. 1997. Putative mechanisms for vascular damage by homocysteine. J. Inher. Metab. Dis. 20: 307 315.
6. Benjamin, N.,, and R. Dykhuizen,. 1999. Nitric oxide and epithelial host defense, p. 215 230. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
7. Bliska, J. B.,, K. L. Guan,, J. E. Dixon,, and S. Falkow. 1991. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci. USA 88: 1187 1191.
8. Bogdan, C.,, Y. Vodovotz,, J. Paik,, Q.-W. Xie,, and C. Nathan. 1993. Traces of bacterial lipolysaccharide suppress IFN-γ-induced nitric oxide synthase gene expression in primary mouse macrophages . J. Immunol. 151: 301 309.
9. Boockvar, K. S.,, D. L. Granger,, R. M. Poston,, M. Maybodi,, M. K. Washington,, J. B. Hibbs, Jr.,, and R. L. Kurlander. 1994. Nitric oxide produced during murine listeriosis is protective . Infect. Immun. 62: 1089 1100.
10. Buchmeier, N. A.,, S. J. Libby,, Y. Xu,, P. C. Loewen,, J. Switala,, D. G. Guiney,, and F. C. Fang. 1995. DNA repair is more important than catalase for Salmonella virulence in mice . J. Clin. Invest. 95: 1047 1053.
11. Bulut, V.,, A. Severn,, and F. Y. Liew. 1993. Nitric oxide production by murine macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem. Biophys. Res. Commun. 195: 1134 1138.
12. Castro, L.,, M. Rodriguez,, and R. Radi. 1994. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 269: 29409 29415.
13. Chen, L.,, Q.-W. Xie,, and C. Nathan. 1998. Alkyl hydroperoxidase reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1: 795 805.
14. Chen, Y.,, and J. P. Rosazza. 1995. Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J. Bacteriol. 177: 5122 5128.
15. Choi, W.-S.,, J. W. Chang,, S.-Y. Han,, S. -Y Hong,, and H.-W. Lee. 1997. Identification of nitric oxide synthase in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 237: 554 558.
16. Cowley, S. C.,, S. V. Myltseva,, and F. E. Nano. 1996. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20: 867 874.
17. Crawford, M. J.,, and D. E. Goldberg. 1998. Regulation of the Salmonella typhimurium flavohemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide. J. Biol. Chem. 273: 34028 34032.
18. Crawford, M. J.,, and D. E. Goldberg. 1998. Role for the Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem. 273: 12543 12547.
19. Cunha, F. Q.,, J. Assreuy,, D. Xu,, I. Charles,, F. Y. Liew,, and S. Moncada. 1993. Repeated induction of nitric oxide synthase and leishmanicidal activity in murine macrophages. Eur. J. Immunol. 23: 1385 1388.
20. DeGroote, M. A.,, and F. C. Fang,. 1999. Antimicrobial properties of nitric oxide, p. 231 261. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
21. DeGroote, M. A.,, D. Granger,, Y. Xu,, G. Campbell,, R. Prince,, and F. C. Fang. 1995. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model . Proc. Natl. Acad. Sci. USA 92: 6399 6403.
22. DeGroote, M. A.,, T. Testerman,, Y. Xu,, G. Stauffer,, and F. C. Fang. 1996. Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272: 414 417.
23. DeGroote, M. A.,, U. A Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94: 13997 14001.
24. Diaz-Guerra, M. J.,, A. Castrillo,, P. Martin- Sanz,, and L. Bosca. 1999. Negative regulation by protein tyrosine phosphatase of IFN-gammadependent expression of inducible nitric oxide synthase. J. Immunol. 162: 6776 6783.
25. Duncan, C.,, H. Dougall,, P. Johnston,, S. Green,, R. Brogan,, C. Leifert,, L. Smith,, M. Golden,, and N. Benjamin. 1995. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1: 546 551.
26. Dykhuizen, R. S.,, J. Masson,, G. McKnight,, A. N. Mowat,, C. C. Smith,, L. M. Smith,, and N. Benjamin. 1996. Plasma nitrate concentration in infective gastroenteritis and inflammatory bowel disease. Gut 39: 393 395.
27. Ehrt, S.,, M. U. Shiloh,, J. Ruan,, M. Choi,, S. Gunzburg,, C. Nathan,, Q.-W. Xie,, and L. W. Riley. 1997. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186: 1885 1896.
28. Eschenbrenner, M.,, J. Coves,, and M. Fontecave. 1994. Ferric reductases in Escherichia coli: the contribution of the haemoglobin-like protein. Biochem. Biophys. Res. Commun. 198: 127 131.
29. Evans, T. G.,, L. Thai,, D. L. Granger,, and J. B. Hibbs, Jr. 1993. Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J. Immunol. 151: 907 915.
30. Fahey, R. C.,, W. C. Brown,, W. B. Adams,, and M. B. Worsham. 1978. Occurrence of glutathione in bacteria. J. Bacteriol. 133: 1126 1129.
31. Fang, F. C. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 99: 2818 2825.
32. Fang, F. C.,, A. Vazquez-Torres,, and Y. Xu. 1997. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice. Infect. Immun. 65: 5371 5375.
33. Fang, F. C.,, M. A. DeGroote,, J. W. Foster,, A. J. Baumler,, U. Ochsner,, T. Testerman,, S. Bearson,, J. C. Giard,, Y. Xu,, G. Campbell,, and T. A. Laessig. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl. Acad. Sci. USA 96: 7502 7507.
34. Funatogawa, K.,, M. Matsuura,, M. Nakano,, M. Kiso,, and A. Hasegawa. 1998. Relationship of structure and biological activity of monosaccharide lipid A analogues to induction of nitric oxide production by murine macrophage RAW264.7 cells. Infect. Immun. 66: 5792 5798.
35. Garbe, T. R.,, N. S. Hibler,, and V. Deretic. 1999. Response to reactive nitrogen intermediates in Mycobacterium tuberculosis: induction of the 16-kilodalton alpha-crystallin homologue by exposure to nitric oxide donors. Infect. Immun. 67: 460 465.
36. Gardner, P. R.,, G. Costantino,, C. Szabo,, and A. L. Salzman. 1997. Nitric oxide sensitivity of the aconitases. J. Biol. Chem. 272: 25071 25076.
37. Gardner, P. R.,, A. M. Gardner,, L. A. Martin,, and A. L. Salzman. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 10378 10383.
38. Gardner, P. R.,, G. Costantino,, and A. L. Salzman. 1998. Constitutive and adaptive detoxification of nitric oxide in Escherichia coli. Role of nitric-oxide dioxygenase in the protection of aconitase. J. Biol. Chem. 273: 26528 26533.
39. Gaston, B.,, and J. S. Stamler,. 1999. Biochemistry of nitric oxide, p. 37 55. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/ Plenum, New York, N.Y.
40. Gazzinelli, R. T.,, I. Eltoum,, T. A. Wynn,, and A. Sher. 1993. Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF- α and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J. Immunol. 151: 3672 3681.
41. Gonzalez-Flecha, B.,, and B. Demple,. 1999. Biochemistry of redox signaling in the activation of oxidative stress genes, p. 133 153. In D. L. Gilbert, and C. A. Colton (ed.), Reactive Oxygen Species in Biological Systems. Kluwer Academic/ Plenum, New York, N.Y.
42. Gow, A. J.,, R. Foust III,, S. Malcolm,, M. Gole,, and H. Ischiropoulos,. 1999. Biochemical regulation of nitric oxide cytotoxicity, p. 175 186. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
43. Granger, D. L.,, J. B. Hibbs, Jr.,, J. R. Perfect,, and D. T. Durack. 1988. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J. Clin. Invest. 81: 1129 1136.
44. Granger, D. L.,, M. L. Cameron,, K. Lee-See,, and J. B. Hibbs, Jr., 1993. Role of macrophagederived nitrogen oxides in antimicrobial function, p. 7 30. In G. Lopez Berenstein, and J. Klostergaard (ed.), Mononuclear Phagocytes in Cell Biology. CRC Press, Boca Raton, Fla.
45. Griffith, O. W.,, and D. J. Stuehr. 1995. Nitric oxide synthases: properties and catalytic mechanism. Annu. Rev. Physiol. 57: 707 736.
46. Guo, L.,, K. B. Kim,, J. S. Gunn,, B. Bainbridge,, R. P. Darveau,, M. Hackett,, and S. I. Miller. 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276: 250 253.
47. Hausladen, A.,, and I. Fridovich. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269: 29405 29408.
48. Hausladen, A.,, C. T. Privalle,, T. Keng,, J. DeAngelo,, and J. S. Stamler. 1996. Nitrosative stress: activation of the transcription factor OxyR. Cell 86: 719 729.
49. Hausladen, A.,, A. J. Gow,, and J. S. Stamler. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 14100 14105.
50. Hemmens, B.,, and B. Mayer,. 1999. Enzymology of nitric oxide biosynthesis, p. 57 76. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
51. Hidalgo, E.,, H. Ding,, and B. Demple. 1997. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem. Sci. 22: 207 210.
52. Hu, Y.,, P. D. Butcher,, J. A. Mangan,, M. A. Rajandream,, and A. R. Coates. 1999. Regulation of hmp gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative and oxidative stress. J. Bacteriol. 181: 3486 3493.
53. Incze, K.,, J. Farkas,, V. Mihalys,, and E. Zukal. 1974. Antibacterial effect of cysteinenitrosothiol and possible precursors thereof. Appl. Microbiol. 27: 202 205.
54. Juedes, M. J.,, and G. N. Wogan. 1996. Peroxynitrite- induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat. Res. 349: 51 61.
55. Keyer, K.,, and J. A. Imlay. 1997. Inactivation of dehydratase (4Fe-4S) clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J. Biol. Chem. 272: 27652 27659.
56. Kim, S. O.,, Y. Orii,, D. Lloyd,, M. N. Hughes,, and R. K. Poole. 1999. Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Lett. 445: 389 394.
57. Kosaka, H.,, Y. Oda,, and M. Uozumi. 1985. Induction of umuC gene expression by nitrogen dioxide in Salmonella typhimurium. Mutat. Res. 142: 99 102.
58. Liew, F. Y.,, S. Millott,, C. Parkinson,, R. M. Palmer,, and S. Moncada. 1990. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol. 144: 4794 4797.
59. Liochev, S. I.,, and I. Fridovich. 1994. The role of O2• _ in the production of HO• in vitro and in vivo. Free Radical Biol. Med. 16: 29 33.
60. Lowenstein, C. J.,, S. L. Hill,, A. Lafond- Walker,, J. Wu,, G. Allen,, M. Landavere,, N. R. Rose,, and A. Herskowitz. 1996. Nitric oxide inhibits viral replication in murine myocarditis. J. Clin. Invest. 97: 1837 1843.
61. Lundberg, B. E.,, R. E. Wolf, Jr.,, M. C. Dinauer,, Y. Xu,, and F. C. Fang. 1999. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immun. 67: 436 438.
62. MacMicking, J.,, Q.-W. Xie,, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323 350.
63. MacMicking, J. D.,, R. J. North,, R. La- Course,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94: 5243 5248.
64. Maragos, C. M.,, A. W. Andrews,, L. K. Keefer,, and R. K. Elespuru. 1993. Mutagenicity of glyceryl trinitrate (nitroglycerin) in Salmonella typhimurium. Mutat. Res. 298: 187 195.
65. McInnes, I. B.,, and F. Y. Liew,. 1999. Immunomodulatory actions of nitric oxide, p. 199 213. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
66. Membrillo-Hernandez, J.,, N. Ioannidis,, and R. K. Poole. 1996. The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 382: 141 144.
67. Membrillo-Hernandez, J.,, S. O. Kim,, G. M. Cook,, and R. K. Poole. 1997. Paraquat regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12 is SoxRS independent but modulated by sigma S. J. Bacteriol. 179: 3164 3170.
68. Membrillo-Hernandez, J.,, M. D. Coopamah,, A. Channa,, M. N. Hughes,, and R. K. Poole. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyAhmp intergenic region. Mol. Microbiol. 29: 1101 1112.
69. Membrillo-Hernandez, J.,, M. D. Coopamah,, M. F. Anjum,, T. M. Stevanin,, A. Kelly,, M. N. Hughes,, and R. K. Poole. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a ‘‘nitric oxide releaser,’’ and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274: 748 754.
70. Moncada, S.,, R. M. J. Palmer,, and E. A. Higgs. 1991. Nitric oxide—physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109 142.
71. Morris, S. L.,, and J. N. Hansen. 1981. Inhibition of Bacillus cereus spore outgrowth by covalent modification of a sulfhydryl group by nitrosothiol and iodoacetate. J. Bacteriol. 148: 465 471.
72. Mühl, H.,, and C. A. Dinarello,. 1999. Cytokine regulation of nitric oxide production, p. 77 94. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
73. Nathan, C. F.,, and Q. W. Xie. 1994. Nitric oxide synthase: roles, tolls, and controls. Cell 79: 915 918.
74. Newton, G. L.,, K. Arnold,, M. S. Price,, C. Sherrill,, S. B. Delcardayre,, Y. Aharonowitz,, G. Cohen,, J. Davies,, R. C. Fahey,, and C. E. Davis. 1996. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol. 178: 1990 1995.
75. Nicholson, S.,, M. da G. Bonecini-Almeida,, J. R. Lapa e Silva,, C. Nathan,, Q.-W. Xie,, R. Mumford,, J. R. Weidner,, J. Calaycay,, J. Geng,, N. Boechat,, C. Linhares,, W. Rom,, and J. L. Ho. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183: 2293 2302.
76. Nikitovic, D.,, and A. Holmgren. 1996. Snitrosoglutatione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol Chem. 271: 19180 19185.
77. Nozaki, Y.,, Y. Hasegawa,, S. Ichiyama,, I. Nakashima,, and K. Shimokata. 1997. Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect. Immun. 65: 3644 3647.
78. Nunoshiba, T.,, T. deRojas-Walker,, J. S. Wishnok,, S. R. Tannenbaum,, and B. Demple. 1993. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl. Acad. Sci. USA 90: 9993 9997.
79. Nunoshiba, T,, T. deRojas-Walker,, S. R. Tannenbaum,, and B. Demple. 1995. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect. Immun. 63: 794 798.
80. Ochoa, J. B.,, A. O. Udekwu,, T. R. Billiar,, R. D. Curran,, F. B. Cerra,, R. L. Simmons,, and A. B. Peitzman. 1991. Nitrogen oxide levels in patients after trauma and during sepsis. Ann. Surg. 214: 621 626.
81. Pacelli, R.,, D. A. Wink,, J. A. Cook,, M. C. Krishna,, W. DeGraff,, N. Friedman,, M. Tsokos,, A. Samuni,, and J. B. Mitchell. 1995. Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182: 1469 1479.
82. Poole, R. K.,, M. F. Anjum,, J. Membrillo- Hernandez,, S. O. Kim,, M. N. Hughes,, and V. Stewart. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J. Bacteriol. 178: 5487 5492.
83. Rees, D., 1999. Cardiovascular actions of nitric oxide, p. 151 174. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
84. Robbins, J. D.,, and J. B. Robbins. 1984. Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J. Infect. Dis. 150: 436 449.
85. Ruan, J.,, G. St. John,, S. Ehrt,, L. Riley,, and C. Nathan. 1999. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect. Immun. 67: 3276 3283.
86. Severn, A.,, D. Xu,, J. Koyle,, L. M. C. Leal,, C. A. O’Donnell,, S. J. Brett,, D. W. Moss,, and F. Y. Liew. 1993. Pre-exposure of murine macrophages to lipopolysaccharide inhibits the induction of nitric oxide synthase and reduces leishmanicidal activity. Eur. J. Immunol. 23: 1711 1714.
87. Shiloh, M. U.,, J. D. MacMicking,, S. Nicholson,, J. E. Brause,, S. Potter,, M. Marino,, F. Fang,, M. Dinauer,, and C. Nathan. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29 38.
88. Singh, S. P.,, J. S. Wishnok,, M. Keshive,, W. M. Deen,, and S. R. Tannenbaum. 1996. The chemistry of the S-nitroglutathione/glutathione system. Proc. Natl. Acad. Sci. USA 93: 14428 14433.
89. Stachura, J.,, J. W. Konturek,, A. Karczewska,, W. Domschke,, T. Popiela,, and S. J. Konturek. 1996. Helicobacter pylori from duodenal ulcer patients expresses inducible nitric oxide synthase immunoreactivity in vivo and in vitro. J. Physiol. Pharmacol. 47: 131 135.
90. Stenger, S.,, N. Donhauser,, H. Thuring,, M. Rollinghoff,, and C. Bogdan. 1996. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183: 1501 1514.
91. Storz, G.,, and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188 194.
92. Stuehr, D. J.,, and M. A. Marletta. 1985. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 82: 7738 7742.
93. Tarr, H. L. A. 1941. Bacteriostatic action of nitrates. Nature 147: 417 418.
94. Taylor, P. D.,, C. J. Inchley,, and M. P. Gallagher. 1998. The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect. Immun. 66: 3208 3217.
95. Tilney, L. G.,, and D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109: 1597 1608.
96. Tsikas, D.,, J. Sandmann,, S. Rossa,, F. M. Gutzki,, and J. C. Frolich. 1999. Investigations of S-transnitrosylation reactions between lowand high-molecular-weight S-nitroso compounds and their thiols by high-performance liquid chromatography- mass spectrometry. Anal. Biochem. 270: 231 241.
97. Van derVliet, A.,, P. A. Chr.’t Hoen,, P. S.- Y. Wong,, A. Bast,, and C. E. Cross. 1998. Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J. Biol. Chem. 273: 30155 30162.
98. Vazquez-Torres, A.,, J. Jones-Carson,, and E. Balish. 1996. Peroxynitrite contributes to the candidacidal activity of nitric oxideproducing macrophages. Infect. Immun. 64: 3127 3133.
99. Vodovotz, Y.,, N. S. Kwon,, M. Pospischil,, J. Manning,, J. Paik,, and C. Nathan. 1994. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-γ and bacterial lipopolysaccharide. J. Immunol. 152: 4110 4118.
100. Warren, J. B.,, R. Loi,, N. B. Rendell,, and G. W. Taylor. 1990. Nitric oxide is inactivated by the bacterial pigment pyocyanin. Biochem. J. 266: 921 923.
101. Weinberg, J. B., 1999. Human mononuclear phagocyte nitric oxide production and inducible nitric oxide synthase expression, p. 95 150. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum, New York, N.Y.
102. Wink, D. A.,, K. S. Kasprzak,, C. M. Maragos,, R. K. Elespuru,, M. Misra,, T. M. Dunams,, T. A. Cebula,, W. H. Koch,, A. W. Andrews,, J. S. Allen,, and L. K. Keefer. 1991. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001 1003.
103. Wink, D. A.,, M. Feelisch,, Y. Vodovotz,, J. Fukuto,, and M. B. Grisham,. 1999. The chemical biology of nitric oxide, p. 245 291. In D. L. Gilbert, and C. A. Colton (ed.), Reactive Oxygen Species in Biological Systems. Kluwer Academic/ Plenum, New York, N.Y.
104. Xiao-Bing, J.,, and T. C. Hollocher. 1988. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem. Biophys. Res. Commun. 157: 106 108.
105. Zheng, M.,, F. Aslund,, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718 1721.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error