1887

Chapter 25 : Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap25-2.gif

Abstract:

This chapter concentrates on pre-steady-state kinetic work, and provides evidence on how much the interpretation of kinetic results in molecular-mechanistic terms owes to structural information obtained from crystallography and cryo-electron microscopy. Our studies of elongation factor (EF-Tu) function address two main issues: (i) the elucidation of the reaction pathway to identify intermediate steps of A-site binding and (ii) the quantitative evaluation of the pathway in order to understand specificity. Based on measured rates of GTP hydrolysis and peptide bond formation, Thompson and colleagues proposed that the rate of GTP hydrolysis by EF-Tu is independent of the tRNA, thereby providing an internal kinetic standard for translational accuracy. Binding of thiostrepton to the 1070 region of 23S rRNA interferes with translocation, as it strongly inhibits P release, translocation, and subsequent turnover of EF-G; in contrast, EF-G binding and GTP hydrolysis are not affected. The GTPase activities of EF-Tu and EF-G intrinsically are very low and are strongly enhanced on the ribosome. Recently, the ability of isolated L12 protein to stimulate GTP hydrolysis by either EF-Tu or EF-G, has been studied. In the fusidic acid-stabilized complex of EF-G with the ribosome, the α- sarcin stem is close to position 196 in the G domain of EF-G, which lies just above the GTP binding site, while the α-sarcin loop region is in the vicinity of position 650 in domain 5 of the factor.

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25

Key Concept Ranking

Elongation Factor Tu
0.431861
0.431861
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Mechanism of EF-Tu-dependent binding of aa-tRNA to the ribosomal A site. EF-Tu is depicted in three conformations: the GTP-bound form (gray), the transient GTPase-activated form on the ribosome (white), and the GDP-bound form (gray) that dissociates from the ribosome. The kinetic parameters are summarized in ( Table 1 .

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Reaction scheme of translocation as discussed in the text. EF-G is depicted in three conformations: the GTP-bound form, an intermediate GDP-bound form on the ribosome, and the GDP-bound form that dissociates from the ribosome. The transition state of the ribosome, formed in step 3, is symbolized by an altered conformation of the small ribosomal subunit. A, P (P*), and E denote the tRNA binding sites on the two subunits and are indicated when occupied. The kinetic parameters are summarized in Table 3 .

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap25
1. Agrawal, R. K.,, P. Penczek,, R. A. Grassucci,, and J. Frank. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95: 6134 6138.
2. Ahmadian, M. R.,, P. Stege,, K. Scheffzek,, and A. Wittinghofer. 1997. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat. Struct. Biol. 4: 686 689.
3. Baca, O. G.,, M. S. Rohrbach,, and J. W. Bodley. 1976. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome. Biochemistry 15: 4570 4574.
4. Bilgin, N.,, and M. Ehrenberg. 1994. Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J. Mol. Biol. 235: 813 824
5. Bilgin, N.,, F. Claesens,, H. Pahverk,, and M. Ehrenberg. 1992. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J. Mol. Biol. 224: 1011 1027.
6. Borowski, C.,, M. V. Rodnina,, and W. Wintermeyer. 1996. Truncated elongation factor G lacking the G domain promotes translocation of the 3′ end but not of the anticodon domain of peptidyl-tRNA. Proc. Natl. Acad. Sci. USA 93: 4202 4206.
7. Brink, M. F.,, G. Brink,, M. P. Verbeet,, and H. A. de Boer. 1994. Spectinomycin interacts specifically with the residues G1064 and C1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. Nucleic Acids Res. 22: 325 331.
8. Brune, M.,, J. L. Hunter,, J. E. Corrie,, and M. R. Webb. 1994. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33: 8262 8271.
9. Czworkowski, J.,, and P. B. Moore. 1997. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36: 10327 10334.
10. Davies, J.,, and B. D. Davis. 1968. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J. Biol. Chem. 243: 3312 3316.
11. De Vries, L.,, and M. G. Farquhar. 1999. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell. Biol. 9: 138 144.
12. Donner, D.,, R. Villems,, A. Liljas,, and C. G. Kurland. 1978. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/ L12. Proc. Natl. Acad. Sci. USA 75: 3192 3195.
13. Doublié, S.,, S. Tabor,, A. M. Long,, C. C. Richardson,, and T. Ellenberger. 1998. Crystal structure of bacteriophage T7 DNA replication complex at 2.2 Å. Nature 391: 251 259.
14. Draper, D. E.,, and Y. Xing. 1995. Protein recognition of a ribosomal RNA tertiary structure. Nucleic Acids Symp. Ser. 33: 5 7.
15. Eccleston, J. F.,, D. B. Dix,, and R. C. Thompson. 1985. The rate of cleavage of GTP on the binding of Phe-tRNA•elongation factor Tu•GTP to poly(U)-programmed ribosomes of Escherichia coli. J. Biol. Chem. 260: 16237 16241.
16. Erie, D. A.,, O. Hajiseyedjavadi,, M. C. Young,, and P. H. von Hippel. 1993. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262: 867 873.
17. Fourmy, D.,, M. I. Recht,, S. C. Blanchard,, and J. D. Puglisi. 1996. Structure of the A site of Escherichia coli 16S RNA complexed with an aminoglycoside antibiotic. Science 274: 1367 1371.
18. Gale, E. F.,, E. Cundliffe,, P. E. Reynolds,, M. H. Richmond,, and M. Waring. 1981. Antibiotic Inhibitors of Ribosomal Function, p. 402 457. Wiley, London, England.
19. Gnirke, A.,, U. Geigenmuller,, H. J. Rheinberger,, and K. H. Nierhaus. 1989. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. J. Biol. Chem. 264: 7291 7301.
20. Grosjean, H.,, D. G. Soll,, and D. M. Crothers. 1976. Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J. Mol. Biol. 103: 499 519.
21. Grosjean, H. J.,, S. de Henau,, and D. M. Crothers. 1978. On the physical basis for ambiguity in genetic coding interactions. Proc. Natl. Acad. Sci. USA 75: 610 614.
22. Heilek, G. M.,, R. Marusak,, C. F. Meares,, and H. F. Noller. 1995. Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc. Natl. Acad. Sci. USA 92: 1113 1116.
23. Herschlag, D. 1988. The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorg. Chem. 16: 62 96.
24. Hopfield, J. J. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71: 4135 4139.
25. Hornig, H.,, P. Woolley,, and R. Lührmann. 1987. Decoding at the ribosomal A site: antibiotics, misreading and energy of aminoacyl-tRNA binding. Biochimie 69: 803 813.
26. Johnson, A. E.,, H. J. Adkins,, E. A. Matthews,, and C. R. Cantor. 1982. Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome. J. Mol. Biol. 156: 113 140.
27. Johnson, K. A. 1992. Conformational coupling in DNA polymerase fidelity. Annu. Rev. Biochem. 62: 685 713.
28. Joseph, S.,, and H. F. Noller. 1998. EF-G-catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome. EMBO J. 17: 3478 3483.
29. Karim, A. M.,, and R. C. Thompson. 1986. Guanosine 5′-O-(3-thiotriphosphate) as an analog of GTP in protein biosynthesis. J. Biol. Chem. 261: 3238 3243.
30. Karimi, R.,, and M. Ehrenberg. 1994. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and errorprone ribosomes. Eur. J. Biochem. 226: 355 360.
31. Kiefer, J. R.,, C. Mao,, J. C. Braman,, and L. S. Beese. 1998. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391: 304 307.
32. Kischa, K.,, W. Möller,, and G. Stöffler. 1971. Reconstitution of a GTPase activity by a 50S ribosomal protein from E. coli. Nat. New. Biol. 233: 62 63.
33. Kurland, C. G.,, and M. Ehrenberg. 1984. Optimization of translational accuracy. Prog. Nucleic Acids Res. Mol. Biol. 31: 191 219.
34. Kurland, C. G.,, and M. Ehrenberg. 1987. Growth-optimizing accuracy of gene expression. Annu. Rev. Biophys. Biophys. Chem. 16: 291 318.
35. Li, Y.,, S. Korolev,, and G. Waksman. 1998. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17: 7514 7525.
36. Lill, R.,, J. M. Robertson,, and W. Wintermeyer. 1986. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry 25: 3245 3255.
37. Lill, R.,, J. M. Robertson,, and W. Wintermeyer. 1989. Binding of the 3′ terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. EMBO J. 8: 3933 3938.
38. Moazed, D.,, and H. F. Noller. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47: 985 994.
39. Moazed, D.,, and H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389 394.
40. Moazed, D.,, and H. F. Noller. 1989a. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57: 585 597.
41. Moazed, D.,, and H. F. Noller. 1989b. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342: 142 148.
42. Moazed, D.,, J. M. Robertson,, and H. F. Noller. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334: 362 364.
43. Modolell, J.,, and D. Vazquez. 1977. The inhibition of ribosomal translocation by viomycin. Eur. J. Biochem. 81: 491 497.
44. Munishkin, A.,, and I. G. Wool. 1997. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin / ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl. Acad. Sci. USA 94: 12280 12284.
45. Neal, S. E.,, J. F. Eccleston,, and M. R. Webb. 1990. Hydrolysis of GTP by p21N-ras, the N-ras protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc. Natl. Acad. Sci. USA 87: 3562 3565.
46. Neubig, R. R.,, M. P. Connolly,, and A. E. Remmers. 1994. Rapid kinetics of G protein subunit association: a rate-limiting conformational change? FEBS Lett. 355: 251 253.
47. Nierhaus, K. H. 1990. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29: 4997 5008.
48. Nierhaus, K. H.,, R. Junemann,, and C. M. T. Spahn. 1997. Are the current three-site models valid descriptions of the ribosomal elongation cycle? Proc. Natl. Acad. Sci. USA 94: 10499 10500.
49. Ninio, J. 1975. Kinetic amplification of enzyme discrimination. Biochimie 57: 587 595.
50. O’Connor, M.,, C. A. Brunelli,, M. A. Firpo,, S. T. Gregory,, K. R. Lieberman,, J. S. Lodmell,, H. Moine,, D. I. Van Ryk,, and A. Dahlberg. 1995. Genetic probes of ribosomal RNA functions. Biochem. Cell Biol. 73: 859 868.
51. Pape, T.,, W. Wintermeyer,, and M. V. Rodnina. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17: 7490 7497.
52. Pape, T.,, W. Wintermeyer,, and M. V. Rodnina. 1999. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18: 3800 3807.
53. Pape, T.,, W. Wintermeyer,, and M. V. Rodnina. Conformational switch in the decoding region of 16S rRNA during aminoacyltRNA selection on the ribosome. Nat. Struct. Biol., in press.
54. Paulsen, H.,, and W. Wintermeyer. 1986. tRNA topography during translocation: steady-state and kinetic fluorescence energytransfer studies. Biochemistry 25: 2749 2756.
55. Paulsen, H.,, J. M. Robertson,, and W. Wintermeyer. 1983. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNA Phe. J. Mol. Biol. 167: 411 426.
56. Porse, B. T.,, I. Leviev,, A. S. Mankin,, and R. A. Garrett. 1998. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J. Mol. Biol. 276: 391 404.
57. Post, C. B.,, and W. J. Ray. 1995. Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry 34: 15881 15890.
58. Powers, T.,, and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203 2214.
59. Powers, T.,, and H. F. Noller. 1995. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1: 194 209.
60. Purohit, P.,, and S. Stern. 1994. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370: 659 662.
61. Remmers, A. E.,, and R. R. Neubig. 1996. Partial G protein activation by fluorescent guanine nucleotide analogs. Evidence for a triphosphate-bound but inactive state. J. Biol. Chem. 271: 4791 4797.
62. Remmers, A. E.,, R. Posner,, and R. R. Neubig. 1994. Fluorescent guanine nucleotide analogs and G protein activation. J. Biol. Chem. 269: 13771 13778.
63. Rensland, H.,, A. Lautwein,, A. Wittinghofer,, and R. S. Goody. 1991. Is there a rate-limiting step before GTP cleavage by H-ras p21? Biochemistry 30: 11181 11185.
64. Rittinger, K.,, G. Divita,, and R. S. Goody. 1995. Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc. Natl. Acad. Sci. USA 92: 8046 8049.
65. Robertson, J. M.,, and W. Wintermeyer. 1987. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J. Mol. Biol. 196: 525 540.
66. Robertson, J. M.,, H. Paulsen,, and W. Wintermeyer. 1986. Presteady-state kinetics of ribosomal translocation. J. Mol. Biol. 192: 351 360.
67. Rodnina, M. V.,, R. Fricke,, L. Kuhn,, and W. Wintermeyer. 1995a. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14: 2613 2619.
68. Rodnina, M. V.,, T. Pape,, R. Fricke,, and W. Wintermeyer. 1995b. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem. Cell Biol. 73: 1221 1227.
69. Rodnina, M. V.,, T. Pape,, R. Fricke,, L. Kuhn,, and W. Wintermeyer. 1996. Initial binding of the elongation factor Tu•GTP•aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271: 646 652.
70. Rodnina, M. V.,, A. Savelsbergh,, V. I. Katunin,, and W. Wintermeyer. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385: 37 41.
71. Rodnina, M. V.,, A. Savelsbergh,, N. B. Matassova,, V. I. Katunin,, Y. P. Semenkov,, and W. Wintermeyer. 1999. Thiostrepton inhibits turnover but not GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA 96: 9586 9590.
72. Rose, S. J.,, P. T. Lowary,, and O. C. Uhlenbeck. 1983. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. J. Mol. Biol. 167: 103 117.
73. Sablin, E. P.,, F. J. Kull,, R. Cooke,, R. D. Vale,, and R. J. Fletterick. 1996. Crystal structure of the motor domain of the kinesinrelated motor ncd. Nature 380: 555 559.
74. Sander, G.,, R. Ivell,, J. B. Crechet,, and A. Parmeggiani. 1980. Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin. Biochemistry 19: 865 870.
75. Savelsbergh, A.,, D. Mohr,, W. Wintermeyer,, and M. V. Rodnina. Ribosomal protein L7/12 stimulates GTP hydrolysis on elongation factor G by an RGS-type mechanism. J. Biol. Chem., in press.
76. Semenkov, Y. P.,, M. V. Rodnina,, and W. Wintermeyer. 1996. The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherischia coli. Proc. Natl. Acad. Sci. USA 93: 12183 12188.
77. Spahn, C. M. T.,, and K. H. Nierhaus. 1998. Models of the elongation cycle: an evaluation. Biol. Chem. 379: 753 772.
78. Spence, R. A.,, W. M. Kati,, K. S. Anderson,, and K. A. Johnson. 1995. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267: 988 992.
79. Spirin, A. S. 1985. Ribosomal translocation: facts and models. Prog. Nucleic Acid. Res. Mol. Biol. 32: 75 114.
80. Sprang, S. R. 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66: 639 678.
81. Stark, H.,, E. V. Orlova,, J. Rinke-Appel,, N. Jünke,, F. Mueller,, M. V. Rodnina,, W. Wintermeyer,, R. Brimacombe,, and M. van Heel. 1997a. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88: 19 28.
82. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997b. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403 406.
83. Stark, H.,, M. V. Rodnina,, M. van Heel,, and W. Wintermeyer. Large-scale movement of elongation factor G and extensive conformational changes of the ribosome during translocation. Submitted for publication.
84. Taylor, E. W., 1992. Mechanism and energetics of actomyosin ATPase, p. 1281 1293. In H. A. Fozzard (ed.), The Heart and Cardiovascular System, Raven Press, Ltd., New York, N.Y.
85. Thompson, R. C. 1988. EF-Tu provides an internal kinetic standard for translational accuracy. Trends Biochem. Sci. 13: 91 93
86. Thompson, R. C.,, and D. B. Dix. 1982. Accuracy of protein biosynthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl-tRNA 2-elongation factor Tu-GTP complex. J. Biol. Chem. 257: 6677 6682.
87. Thompson, R. C.,, and A. M. Karim. 1982. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP γS. Proc. Natl. Acad. Sci. USA 79: 4922 4926.
88. Thompson, R. C.,, D. B. Dix,, and A. M. Karim. 1986. The reaction of ribosomes with elongation factor Tu•GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. J. Biol. Chem. 261: 4868 4874.
89. Traut, R. R.,, D. Dey,, D. E. Bochkariov,, A. V. Oleinikov,, G. G. Jokhadze,, B. Hamman,, and D. Jameson. 1995. Location and domain structure of Escherichia coli ribosomal protein L7/L12: Site specific cysteine cross-linking and attachment of fluorescent probes. Biochem.Cell Biol. 73: 949 958.
90. Uhlenbeck, O. C.,, F. H. Martin,, and P. Doty. 1981. Selfcomplementary nucleotides: effects of helix defects and guanylic acid-cytidilyc acid base pairs. J. Mol. Biol. 57: 217 229.
91. Vale, R. D. 1996. Switches, latches and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135: 291 302.
92. VanLoock, M. S.,, T. R. Easterwood,, and S. C. Harvey. 1999. Major groove binding of the tRNA/mRNA complex to the 16S ribosomal RNA decoding center. J. Mol. Biol. 285: 2069 2078.
93. Wei, J.,, and T. S. Leyh. 1998. Conformational change rate-limits GTP hydrolysis: the mechanism of the ATP sulfurylase-GTPase. Biochemistry 37: 17163 17169.
94. Wilson, K. S.,, and H. F. Noller. 1998a. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92: 131 139.
95. Wilson, K. S.,, and H. F. Noller. 1998b. Molecular movement inside the translational engine. Cell 92: 337 349.
96. Wintermeyer, W.,, R. Lill,, H. Paulsen,, and J. M. Robertson,. 1986. Mechanism of ribosomal translocation, p. 523 540. In B. Hardesty, and G. Kramer (ed.), Structure, Function, and Genetics of Ribosomes. Springer-Verlag, New York, N.Y.
97. Zeidler, W.,, C. Egle,, S. Ribeiro,, A. Wagner,, V. Katunin,, R. Kreutzer,, M. Rodnina,, W. Wintermeyer,, and M. Sprinzl. 1995. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. Eur. J. Biochem. 2295: 596 604.

Tables

Generic image for table
Table 1

Elemental rate constants of cognate, near-cognate, and noncognate aa-tRNA binding to the A site

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25
Generic image for table
Table 2

Effect of paromomycin on the elemental rate constants of A-site binding of near-cognate aa-tRNA

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25
Generic image for table
Table 3

Kinetic parameters of translocation

Citation: Rodnina M, Savelsbergh A, Mohr D, Matassova N, Wintermeyer W, Pape T. 2000. Mechanisms of Partial Reactions of the Elongation Cycle Catalyzed by Elongation Factors Tu and G, p 301-318. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error