1887

Chapter 27 : Ternary Complex of EF-Tu and Its Action on the Ribosome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Ternary Complex of EF-Tu and Its Action on the Ribosome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818142/9781555811846_Chap27-2.gif

Abstract:

This chapter describes the advances made in the structural studies of elongation factor EF-Tu during the last decade, and shows that the structural transition between the active, aa-tRNA binding form and the inactive form of EF-Tu is surprisingly large. Most of the various functional states of EF-Tu have been illustrated by structural results over the last few years. Very recently the authors had finished the refinement of the structure of bovine mitochondrial EF-Tu·GDP at a resolution of 1.94 Å in a collaboration with Linda Spremulli, University of North Carolina. The modes by which EF-G and the ternary complex of EF-Tu interact with the ribosome have been elegantly demonstrated by cryo-electron microscopy (EM) reconstructions. The structure of the ternary complex on the ribosome is blocked with kirromycin. The mechanism of the GTPase reaction of EF-Tu has been exceedingly difficult to pin down. The nucleotide exchange mechanism of EF-Ts is not well understood in structural terms. We know the structure of the nucleotide-free complex of EF-Tu·EF-Ts, but we do not know the structure of the intact free form of EF-Ts, although the structure of a fragment of EF-Ts from has been determined. The GTP hydrolysis reactions of the G proteins of translation are all highly stimulated during interaction with the ribosome.

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of EF-Tu. To the left is shown EF-Tu•GDP, in the middle EF-Tu in the EF-Tu•EF-Ts complex, and to the right EF-Tu•GDPNP. Domain 1 is yellow, domains 2 and 3 are green, and switch region I is red. The magnesium ion is shown as a gray ball. Note the differences in the relative orientations of the two parts of EF-Tu and of the structural change of switch region I as a function of the nature of the nucleotide. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Details of nucleotide binding to mitochondrial EFTu •GDP. The electron density of the coordination of the Mg ion of this 1.94-Å-resolution structure is shown, which indicates the quality of the structural model obtained. (The figure was produced with the program O [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The EF-Tu•EF-Ts complexes from (a) and (b). EF-Ts is shown in magenta, while the coloring of EF-Tu is as in Fig. 1 . The structure is shown with a vertical pseudo-twofold symmetry axis in the plane of the paper. Note that the two molecules of EF-Tu are on the same side of the pseudodimer of EF-Ts. The structure is shown with a twofold symmetry axis perpendicular to the plane of the paper. Here the two molecules of EF-Tu are on opposite sides of the true homodimer of EF-Ts. Note also that the homodimer of this complex is about half the size of the pseudodimer of EF-Ts in the structure. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Ternary complexes of EF-Tu. Shown are the ternary complexes of Phe-tRNA, EF-Tu, and GDPNP (left) and of Cys-tRNA, EF-Tu, and GDPNP (right). The coloring of EF-Tu is the same as in Fig. 1 , and tRNAs are shown in magenta. Note the overall similarity of the structures of the two ternary complexes. However, in the structure of Cys-tRNA the angle between the two parts of the L-shape is slightly larger, and the major groove of the helix in contact with EF-Tu is a little wider. (The figure was produced with the program MOLSCRIPT [ ].)

Citation: Andersen G, Stepanov V, Kjeldgaard M, Thirup S, Nyborg J. 2000. Ternary Complex of EF-Tu and Its Action on the Ribosome, p 337-345. In Garett R, Douthwaite S, Liljas A, Matheson A, Moore P, Noller H (ed), The Ribosome. ASM Press, Washington, DC. doi: 10.1128/9781555818142.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818142.chap27
1. Abdulkarim, F.,, L. Liljas,, and D. Hughes. 1994. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu•GTP. FEBS Lett. 352: 118 122.
2. Abel, K.,, and F. Jurnak. 1996. A complex profile of protein elongation: translating chemical energy into molecular movement. Structure 4: 229 238.
3. Abel, K.,, M. D. Yoder,., R. Hilgenfeld, , and F. Jurnak. 1996. An α to β conformational switch in EF-Tu. Structure 4: 1153 1159.
4. Ævarsson, A. 1995. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J. Mol. Evol. 41: 1096 1104.
5. Agrawal, R. K.,, P. Penczek,, R. A. Grassucci,, and J. Frank. 1998. Visualization of the elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95: 6134 6138.
6. Andersen, G. R. 1999. Unpublished data.
7. Ban, N.,, B. Freeborn,, P. Nissen,, P. Penczek,, R. A. Grassucci,, R. Sweet,, J. Frank,, P. B. Moore,, and T. A. Steitz. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93: 1105 1115.
8. Berchtold, H.,, L. Reshetnikova,, C. O. A. Reiser,, N. K. Schirmer,, M. Sprinzl,, and R. Hilgenfeld. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126 132.
9. Bilgin, N.,, M. Ehrenberg,, C. Ebel,, G. Zaccai,, Z. Sayers,, M. H. J. Koch,, D. Svergun,, C. Barberato,, V. Volkov,, P. Nissen,, and J. Nyborg. 1998. The solution structure of the ternary complex between aminoacyl-tRNA, EF-Tu and GTP. Biochemistry 37: 8163 8172.
10. Cavarelli, J.,, and D. Moras. 1993. Recognition of tRNAs by aminoacyl- tRNA synthetases. FASEB J. 7: 79 86.
11. Coleman, D. E., , A. M. Berghuis, , E. Lee, , M. E. Linder, , A. G. Gilman, , and S. R. Sprang. 1994. Structures of active conformations of G i α1 and the mechanism of GTP hydrolysis. Science 265: 1405 1412.
12. Cool, R. H.,, and A. Parmeggiani. 1990. Substitution of His84 and the GTPase mechanism of elongation factor Tu. Biochemistry 30: 362 366.
13. Ito, K.,, K. Ebihara,, M. Uno,, and Y. Nakamura. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93: 5443 5448.
14. Jack, A.,, J. E. Ladner,, and A. Klug. 1976. Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5Å resolution. J. Mol. Biol. 108: 619 649.
15. Jiang, Y.,, S. Nock,, M. Nesper,, M. Sprinzl,, and P. B. Sigler. 1996. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Biochemistry 35: 10269 10278.
16. Jones, T. A.,, S. Cowan,, J.-Y. Zou,, and M. Kjeldgaard. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Sect. A 47: 110 119.
17. Kawashima, T.,, C. Berthet-Colominas,, M. Wulff,, S. Cusack,, and R. Leberman. 1996. The structure of the Escherichia coli EFTu: EF-Ts complex at 2.5 Å resolution. Nature 379: 511 518.
18. Kjeldgaard, M.,, P. Nissen,, S. Thirup,, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1: 35 50.
19. Kjeldgaard, M.,, J. Nyborg,, and B. F. C. Clark. 1996. The GTPbinding motif—variations on a theme. FASEB J. 10: 1347 1368.
20. Kraal, B.,, L. A. Zeef,, J. R. Mesters,, K. Boon,, E. L. Vorstenbosch,, L. Bosch,, P. H. Anborgh,, A. Parmeggiani,, and R. Hilgenfeld. 1995. Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli. Biochem. Cell Biol. 73: 1167 1177.
21. Krab, I. M.,, and A. Parmeggiani. 1998. EF-Tu, a GTPase odyssey. Biochim. Biophys. Acta 1443: 1 22.
22. Krásny, L.,, J. R. Mesters,, L. N. Tieleman,, B. Kraal,, V. Fucík,, R. Hilgenfeld,, and J. Jonák. 1998. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J. Mol. Biol. 283: 371 381.
23. Kraulis, P. J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946 950.
24. Kristensen, O.,, L. Reshetnikova,, P. Nissen,, G. Siboska,, S. Thirup,, and J. Nyborg. 1996. Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNA Phe, EF-Tu, a GTP analog and kirromycin. FEBS Lett. 399: 59 62.
25. Liljas, A. 1996. Protein synthesis: imprinting through molecular mimicry. Curr. Biol. 6: 247 249.
26. Liljas, A.,, and S. Al-Karadaghi. 1997. Structural aspects of protein synthesis. Nat. Struct. Biol. 4: 767 771.
27. Liljas, A.,, and M. Garber. 1995. Ribosomal proteins and elongation factors. Curr. Opin. Struct. Biol. 5: 721 727.
28. Moazed, D.,, and H. F. Noller. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342: 142 148.
29. Moore, P. B. 1995. Molecular mimicry in protein synthesis? Science 270: 1453 1454.
30. Mueller, F.,, and R. Brimacombe. 1997a. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J. Mol. Biol. 271: 524 544.
31. Mueller, F.,, and R. Brimacombe. 1997b. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J. Mol. Biol 271: 545 565.
32. Mueller, F.,, H. Stark,, M. van Heel,, J. Rinke-Appel,, and R. Brimacombe. 1997. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J. Mol. Biol. 271: 566 587.
33. Nissen, P.,, M. Kjeldgaard,, S. Thirup,, G. Polekhina,, L. Reshetnikova,, B. F. C. Clark,, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNA Phe, EF-Tu, and a GTP analog. Science 270: 1464 1472.
34. Nissen, P.,, S. Thirup,, M. Kjeldgaard,, and J. Nyborg. 1999. The crystal structure of Cys-tRNA Cys:EF-Tu:GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7: 143 156.
35. Nyborg, J.,, and M. Kjeldgaard. 1996. Elongation in bacterial protein biosynthesis. Curr. Opin. Biotechnol. 7: 369 375.
36. Nyborg, J.,, and A. Liljas. 1998. Protein biosynthesis: structural studies of the elongation cycle. FEBS Lett. 430: 95 99.
37. Pérez, J. M. J.,, G. Siegal,, J. Kriek,, K. Hård,, J. Dijk,, G. W. Canters,, and W. Möller. 1999. The solution structure of the guanine nucleotide exchange domain of elongation factor 1 β reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure 7: 217 226.
38. Pingoud, A.,, W. Block,, A. Wittinghofer,, H. Wolf,, and E. Fischer. 1982. The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. J. Biol. Chem. 257: 11261 11267.
39. Polekhina, G.,, S. Thirup,, M. Kjeldgaard,, P. Nissen,, C. Lippmann,, and J. Nyborg. 1996. Helix unwinding in the effector region of elongation factor EF-Tu:GDP. Structure 4: 1141 1151.
40. Ramakrishnan, V.,, and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23: 208 212.
41. Scheffzek, K.,, M. R. Ahmadian,, W. Kabsch,, L. Wiesmüller,, A. Lautwein,, F. Schmitz,, and A. Wittinghofer. 1997. The RasGAP complex: structural basis for the GTPase activation and its loss in oncogenic mutants. Science 277: 333 338.
42. Schweins, T.,, M. Geyer,, K. Scheffzek,, A. Warshel,, H. R. Kalbitzer,, and A. Wittinghofer. 1995. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of ras-p21 and other GTPbinding proteins. Nat. Struct. Biol. 2: 36 44.
43. Sondek, J.,, D. G. Lambright,, J. P. Noel,, H. E. Hamm,, and P. B. Sigler. 1994. GTPase mechanism of G-proteins from the 1.7 Å crystal structure of transducin α•GDP•AlF 4 . Nature 372: 276 279.
44. Song, H.,, M. R. Parsons,, S. Rowsell,, G. Leonard,, and S. E. V. Philips. 1999. Crystal structure of intact elongation factor EFTu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285: 1245 1256.
45. Stark, H.,, M. V. Rodnina,, J. Rinke-Appel,, R. Brimacombe,, W. Wintermeyer,, and M. van Heel. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403 406.
46. Thirup, S. 1999. Unpublished data.
47. Wang, Y.,, Y. Jiang,, M. Meyering-Voss,, M. Sprinzl,, and P. B. Sigler. 1997. Crystal structure of the EF-Tu:EF-Ts complex from Thermus thermophilus. Nat. Struct. Biol. 4: 650 656.
48. Watanabe, Y.,, H. Tsurui,, T. Ueda,, R. Furushima,, S. Takamiya,, K. Kita,, K. Nishikawa,, and K. Watanabe. 1994. Primary and higher order structures of nematode ( Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J. Biol. Chem. 269: 22902 22906
49. Yonath, A.,, and F. Franceschi. 1998. Functional universality and evolutionary diversity: insights from the structure of the ribosome. Structure 6: 679 684.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error