1887

Chapter 18 : Regulation of the Cell Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of the Cell Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap18-2.gif

Abstract:

This chapter focuses on the aquatic bacterium , which divides asymmetrically during each cell division cycle, yielding progeny cells that differ both structurally and functionally. The initially motile swarmer cell progeny sheds its flagellum and differentiates into a nonmotile stalked cell. In addition to morphological differences, the stalked- and swarmer cell progeny inherit different competencies for chromosome replication. A central component of any cell cycle is the initiation of chromosome replication coupled with strict controls to prevent repeated rounds of DNA replication without intervening cell divisions. The origin of replication was identified and cloned by taking advantage of the observation that replication is always initiated in the stalked cell. Microbial cells are able to monitor changes in their environment, detect changes in cell density, and communicate with each other and with other organisms through signals. The DnaA protein is a likely candidate for a positive regulator of the initiation of DNA replication. The generation of dissimilar progeny cells in both prokaryotes and eukaryotes frequently depends on asymmetric localization of regulatory factors prior to division. The periodicity of DNA replication, cell division, and, in , cell cycle-dependent morphological and behavioral differences contrasts with the continuous nature of most metabolic reactions that produce cellular growth. Repression is relieved in time to initiate DNA replication when origin repression by CtrA is eliminated in the stalked cell.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Control of the G-to-S-phase transition and the asymmetric regulation of replication initiation in the predivisional cell. The shaded areas indicate the presence of CtrA. Dark circles indicate localization of McpA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

chromosome origin of replication. The −10 and − 35 regions of the weak promoter (Pw) and the strong promoter (Ps) are indicated by hatched bars. The shaded regions in the predivisional cells indicate the presence of CtrA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Relative timing of multiple cell cycle events during the swarmer and stalked-cell cycles. The synthesis of the CtrA, CcrM, and FtsZ proteins is indicated by solid bars, and the induction of transcription of and the gene encoding the FliQ class II flagellar gene is indicated by shaded bars.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Spatial and temporal deposition of cell cycle determinants during the and budding yeast cell cycles. The shaded areas in the cell cycle indicate the presence of CtrA, and the dot at the cell pole represents the McpA chemoreceptor. The shaded areas in the yeast cell cycle indicate the presence of the Sic1 replication inhibitor. Neither the swarmer cell progeny nor the yeast daughter cell (which is two-thirds the size of the mother cell) is competent for replication initiation (entry into S phase) until later in the cell cycle.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

A portion of the regulatory circuit that controls the cell cycle.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Temporal and spatial regulation of the CcrM DNA methyltransferase by the CtrA∼P response regulator. The shaded areas indicate the presence of CtrA.

Citation: Hung D, McAdams H, Shapiro L. 2000. Regulation of the Cell Cycle, p 361-378. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818166.chap18
1. Agabian-Keshishian, N.,, and L. Shapiro. 1971. Bacterial differentiation and phage infection. Virology 44: 46 53.
2. Alley, M. R.,, J. R. Maddock,, and L. Shapiro. 1992. Polar localization of a bacterial chemorecep-tor. Genes Dev. 6: 825 836.
3. Alley, M. R.,, J. R. Maddock,, and L. Shapiro. 1993. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis [see comments]. Science 259: 1754 1757.
4. Amon, A. 1998. Controlling cell cycle and cell fate: common strategies in prokaryotes and eukaryotes. Proc. Nat. Acad. Sci. USA 95: 85 86.
5. Appleby, J. L.,, J. S. Parkinson,, and R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86: 845 848.
6. Bakker, A.,, and D. W. Smith. 1989. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 171: 5738 5742.
7. Barrett, J. T.,, R. H. Croft,, D. M. Ferber,, C. J. Gerardot,, P. V. Schoenlein,, and B. Ely. 1982a. Genetic mapping with Tn J-derived auxotrophs of Caulobacter crescentus. J. Bacteriol. 151: 888 898.
8. Barrett, J. T.,, C. S. Rhodes,, D. M. Ferber,, B. Jenkins,, S. A. Kuhl,, and B. Ely. 1982b. Construction of a genetic map for Caulobacter crescentus. J. Bacteriol. 149: 889 896.
9. Berdis, A. J.,, I. Lee,, J. K. Coward,, C. Stephens,, R. Wright,, L. Shapiro,, and S. J. Benkovic. 1998. A cell cycle-regulated adenine DNA methyl-transferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. Proc. Natl. Acad. Sci. USA 95: 2874 2879.
10. Bobola, N.,, R. P. Jansen,, T. H. Shin,, and K. Nasmyth. 1996. Asymmetric accumulation of Ashlp in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699 709.
11. Boye, E.,, and A. Lobner-Olesen. 1990. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62: 981 989.
12. Braaten, B. A.,, X. Nou,, L. S. Kaltenbach,, and D. A. Low. 1994. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76: 577 588.
13. Bramhill, D.,, and A. Kornberg. 1988. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52: 743 755.
14. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
15. Crooke, E. 1995. Regulation of chromosomal replication in E. coli: sequestration and beyond. Cell 82: 877 880.
16. Degnen, S. T.,, and A. Newton. 1972. Dependence of cell division on the completion of chromosome replication in Caulobacter. J. Bacteriol. 110: 852 856.
17. Devos, D.,, and J. J. Letesson. Unpublished data.
18. Dingwall, A.,, and L. Shapiro. 1989. Rate, origin, and bidirectionahty of Caulobacter chromosome replication as determined by pulsed-field gel electrophoresis. Proc. Natl. Acad. Sci. USA 86: 119 123.
19. Domian, I.,, A. Reisenauer, andL. Shapiro. 1999. Feedback control of a master bacterial cell-cycle regulator. Proc. Natl. Acad. Sci. USA 96: 6648 6653.
20. Domian, I.J.,, K. C. Quon, andL. Shapiro. 1997. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the Gl-to-S transition in a bacterial cell cycle. Cell 90: 415 424.
21. Ely, B.,, and C. J. Gerardot. 1988. Use of pulsed-field-gradient gel electrophoresis to construct a physical map of the Caulobacter crescentus genome. Gene 68: 323 333.
22. Evinger, M.,, and N. Agabian. 1977. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132: 294 301.
23. Gegner, J. A.,, D. R. Graham,, A. F. Roth,, and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70: 975 982.
24. Golden, J. W.,, and H.-S. Yoon. 1998. Heterocyst formation in Anabaena. Curt. Opin. Microbiol. 1: 623 629.
25. Gomes, S. L.,, J. W. Gober,, and L. Shapiro. 1990. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures. J. Bacteriol. 172: 3051 3059.
26. Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29: 477 508.
27. Guo, S.,, and K. J. Kemphues. 1996. Molecular genetics of asymmetric cleavage in the early Caeno-rhabditis elegans embryo. Curr. Opin. Genet. Dev. 6: 408 415.
28. Hartwell, L., 1995. Introduction to cell cycle controls, p. 1 15. In C. Hutchison (ed.), Cell Cycle Control. Oxford University Press, New York, N.Y.
29. Hecht, G. B.,, T. Lane,, N. Ohta,, J. M. Sommer,, and A. Newton. 1995. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J. 14: 3915 3924.
30. Hecht, G. B.,, and A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177: 6223 6229.
31. Helmstetter, C. E.,, and A. C. Leonard. 1987. Coordinate initiation of chromosome and minichromosome replication in E. coli. J. Bacteriol. 169: 3489 3494.
32. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47: 441 465.
33. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
34. Horvitz, H. R.,, and I. Herskowitz. 1992. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68: 237 255.
35. Hultgren, S. J.,, and S. Normark. 1991. Biogenesis of the bacterial pilus. Curr. Opin. Genet. Dev. 1: 313 318.
36. Hung, D.,, M. Barnett,, R. M. Long,, and L. Shapiro. Unpublished data.
37. Jacobs, C.,, I. Domian,, J. Maddock,, and L. Shapiro. 1999. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111 120.
38. Jacobs, C.,, and L. Shapiro. 1998. Microbial asymmetric cell division: localization of cell fate determinants. Curr. Opin. Genet. Dev. 8: 386 391.
39. Jenal, U.,, and T. Fuchs. 1998. An essential protease involved in bacterial cell-cycle control. EMBOJ. 17: 5658 5669.
40. Jenal, U.,, and L. Shapiro. 1996. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter pre-divisional cell. EMBOJ. 15: 2393 2406.
41. Keller, K.,, and L. Shapiro. Unpublished data.
42. Kelly, A. J.,, M. J. Sackett,, N. Din,, E. Quardokus,, and Y. V. Brun. 1998. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12: 880 893.
43. Laachouch, J. E.,, L. Desmet,, V. Geuskens,, R. Grimaud,, and A. Toussaint. 1996. Bacterio-phage Mu repressor as a target for the Escherichia coli ATP-dependent Clp protease. EMBOJ. 15: 437 444.
44. Levchenko, I.,, C. K. Smith,, N. P. Walsh,, R. T. Sauer,, and T. A. Baker. 1997. PDZ-like domains mediate binding specificity in the Clp/HsplOO family of chaperones and protease regulatory subunits. Cell 91: 939 947.
45. Long, R. M.,, R. H. Singer,, X. Meng,, I. Gonzales,, K. Nasmyth,, and R. Jensen. 1997. Mating-type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277: 383 387.
46. Lu, B.,, L. Y. Jan,, and Y. N. Jan. 1998. Asymmetric cell division: lessons from flies and worms [in process citation]. Curr. Opin. Genet. Dev. 8: 392 399.
47. Lu, M.,, J. L. Campbell,, E. Boye,, and N. Kleck-ner. 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77: 413 426.
48. Maddock, J. R.,, and L. Shapiro. 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717 1723.
49. Marczynski, G. T.,, A. Dingwall,, and L. Shapiro. 1990. Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle. J. Mol. Biol. 212: 709 722.
50. Marczynski, G. T.,, K. Lentine,, and L. Shapiro. 1995. A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev. 9: 1543 1557.
51. Marczynski, G. T.,, and L. Shapiro. 1992. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J. Mol. Biol. 226: 959 977.
52. Mendenhall, M. D. 1993. An inhibitor of p34CDC28 protein kinase activity from Saccharo-myces cerevisiae. Science 259: 216 219.
53. Messer, W.,, and M. Noyer-Weidner. 1988. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54: 735 737.
54. Modrich, P. 1989. Methyl-directed DNA mismatch correction. J. Biol. Chem. 264: 6597 6600.
55. Ohta, N.,, and A. Newton. 1996. Signal transduction in the cell cycle regulation of Caulobacter differentiation. Trends Microbiol. 4: 326 332.
56. Osley, M. A.,, and A. Newton. 1974. Chromosomes segregation and development in Caulobacter crescentus. J. Mol. Biol. 90: 359 370.
57. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73: 857 871.
58. Posas, F.,, and H. Saito. 1998. Activation of the yeast SSK2 MAP kinase by the SSK1 two-component response regulator. EMBOJ. 17: 1385 1394.
59. Posas, F.,, S. M. Wurgler-Murphy,, T. Maeda,, E. A. Witten,, T. C. Thai,, and H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86: 865 875.
60. Quon, K. C.,, G. T. Marczynski,, and L. Shapiro. 1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83 93.
61. Quon, K. C.,, B. Yang,, I. J. Domian,, L. Shapiro,, and G. T. Marczynski. 1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA 95: 120 125.
62. Reisenauer, A.,, K. Quon,, and L. Shapiro. 1999. The CtrA response regulator mediates temporal control gene expression during the Caulobacter cell cycle. J. Bacteriol. 181: 2430 2439.
63. Rizzo, M. F.,, L. Shapiro,, and J. Gober. 1993. Asymmetric expression of the gyrase B gene from the replication-competent chromosome in the Caulobacter crescentus predivisional cell. J. Bacteriol. 175: 6970 6981.
64. Roberts, R. C.,, and L. Shapiro. 1997. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J. Bacteriol. 179: 2319 2330.
65. Schmidt, J. M. 1966. Observations on the adsorption of Caulobacter bacteriophages containing ribonucleic acid. J. Gen. Microbiol. 45: 347 353.
66. Schwob, E.,, T. Bohm,, M. D. Mendenhall,, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SICl controls the Gl to S transition in S. cerevisiae. Cell 79: 233 244. ( Erratum, 84:175, 1996.)
67. Shapiro, L.,, N. Agabian-Keshishian,, and I. Bendis. 1971. Bacterial differentiation. Science 173: 884 892.
68. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276: 712 718.
69. Sil, A.,, and I. Herskowitz. 1996. Identification of asymmetrically localized determinant, Ashlp, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711 722.
70. Skarstad, K.,, and E. Boye. 1994. The initiator protein DnaA: evolution, properties and function. Bio-chim. Biophys. Ada 1217: 111 130.
71. Slater, S.,, S. Wold,, M. Lu,, E. Boye,, K. Skarstad,, and N. Kleckner. 1995. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82: 927 936.
72. Smit, J.,, and N. Agabian. 1982. Caulobactercrescentus pili: analysis of production during development. Dev. Biol. 89: 237 247.
73. Sommer, J. M.,, and A. Newton. 1988. Sequential regulation of developmental events during polar morphogenesis in Caulobacter crescentus; assembly of pili on swarmer cells requires cell separation. J Bacteriol. 170: 409 415.
74. Stephens, C.,, A. Reisenauer,, R. Wright,, and L. Shapiro. 1996. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc. Natl. Acad. Sci. USA 93: 1210 1214.
75. Stephens, C. M.,, G. Zweiger,, and L. Shapiro. 1995. Coordinate cell cycle control of a Caulobacter DNA methyltransferase and the flagellar genetic hierarchy. J. Bacteriol. 177: 1662 1669.
76. Takizawa, P. A.,, A. Sil,, J. R. Swedlow,, I. Herskowitz,, and R. D. Vale. 1997. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389: 90 93.
77. Uhl, M. A.,, and J. F. Miller. 1996a. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J. Biol. Chem. 271: 33176 33180.
78. Uhl, M. A.,, and J. F. Miller. 1996b. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBOJ. 15: 1028 1036.
79. Winzeler, E.,, and L. Shapiro. 1996. A novel promoter motif for Caulobacter cell cycle-controlled DNA replication genes. J. Mol. Biol. 264: 412 425.
80. Winzeler, E.,, R. Wheeler,, and L. Shapiro. 1997. Transcriptional analysis of the Caulobacter 4.5 S RNA ffi gene and the physiological basis of an ffs mutant with a Ts phenotype. J. Mol. Biol. 272: 665 676.
81. Wright, R.,, C. Stephens,, and L. Shapiro. 1997. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meli-loti and Caulobacter crescentus. J. Bacteriol. 179: 5869 5877.
82. Wu, J.,, N. Ohta,, and A. Newton. 1998. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. Proc. Natl. Acad. Sci. USA 95: 1443 1448.
83. Zweiger, G.,, G. Marczynski,, and L. Shapiro. 1994. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J. Mol. Biol. 235: 472 485.
84. Zweiger, G.,, and L. Shapiro. 1994. Expression of Caulobacter dnaA as a function of the cell cycle. J. Bacteriol. 176: 401 408.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error