Chapter 21 : Developmental Cycle of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Developmental Cycle of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap21-2.gif


Recent advances in the cloning of variant specific proteins has led to a new appreciation of the developmental cycle. This chapter summarizes the current state of research in this area and draws upon several recent reviews to present a more defined and testable model of development for this unusual pathogen. The moderate relatedness of and , revealed by 16S rRNA comparison, has proven consistent when sesuch as CbMveral cloned proteins, ip and LpMip, were compared and may prove valuable in understanding the similarities between and interactions with host cells. The first class of proteins that was identified consisted of basic DNA binding proteins. Heinzen and coworkers provide both single-and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of small-cell variants (SCV) and large-cell variants (LCV) proteins, noting several differences beyond PI, Hql, ScvA, EF-Ts, and EF-Tu. One of the observations that appear to distinguish a developmental cycle from that of is that a mixture of SCV and LCV appears in all vacuoles, whether newly occupied with a few organisms or containing hundreds of organisms. There are superficial similarities between the developmental cycles of and , since both are obligate intracellular bacterial pathogens that undergo an infectious cycle inside a membrane-bound vacuole. Cellular differentiation in prokaryotes is an adaptive response that involves alterations in gene expression.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Transmission electron micrograph of bacteria in a vacuole and separated into SCV and LCV. (A) Persistently infected L929 cells were prepared for ТЕМ. Note a membrane-bound vacuole with multiple cells with pleo-morphic morphology, including large cells with diffuse nucleoids (LCV) and small cells with compact nucleoids (SCV). Purified ? cells were separated into LCV (B) and SCV (C) by cesium chloride equilibrium gradient centrifugation. Bars, 1 μm.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Differential protein expression or proteins detected with monoclonal antibodies. LCV and SCV were separated by cesium chloride equilibrium gradient centrifugation, and proteins were subsequently separated by SDS-PAGE. Monoclonal antibodies specific for each antigen were reacted on Western blots. (A) Monoclonal antibody specific for Com-1 (27 kDa); (B) monoclonal antibody specific for CbMip (25 kDa); (C) monoclonal antibody specific for EF-Ts (32 kDa); (D) monoclonal antibody specific for EF-Tu (45 kDa).

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Surface-labeled proteins. LCV and SCV were surface iodinated with Iodogen beads, and proteins were separated by SDS-PAGE followed by auto-radiographic detection of labeled proteins. The major outer membrane protein, PI, is identified. An apparent SVC upregulated surface protein at ∼34 kDa is noted.

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Model of LCV, SCV, SDC, and SLP. A working model of developmental stages derived from studies summarized in this review. A single infected cell is represented containing a phagolysosome with all four forms. SLP have only been observed infrequently. The ability of each form to develop into one of the alternate forms is unconfirmed. The functional properties assigned to each form and the level of expression of specific proteins is indicated for high (↑↑), medium (↑), relatively low (↓), and not detected (ND).

Citation: Samuel J. 2000. Developmental Cycle of , p 427-440. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abshire, K. Z.,, and F. C. Neidhardt. 1993. Growth rate paradox of Salmonella typhimurium within host macrophages. J. Bacteriol. 175: 3744 3748.
2. Akporiaye, E. T.,, and O. G. Baca. 1983. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella bumetii. J. Bacteriol. 154: 520 523.
3. Amano, K.,, J. C. Williams,, T. E. McCaul,, and M. G. Peacock. 1984. Biochemical and immuno-logical properties of Coxiella bumetii cell wall and peptidoglycan-protein complex fractions. J. Bacteriol. 160: 982 988.
4. Anacker, R. L.,, K. Fukushi,, E. G. Pickens,, and D. B. Lackman. 1964. Electron microscopic observations of the development of Coxiella bumetii in the chick yolk sac. J Bacteriol. 88: 1130 1138.
5. Babudieri, C. 1959. Q fever: a zoonosis. Adv. Vet. Sci. 5: 81 84.
6. Baca, O. G.,, and D. Paretsky. 1983. Q fever and Coxiella bumetii: a model for host-parasite interactions. Microbiol. Rev. 47: 127 149.
7. Baca, O. G.,, D. A. Klassen,, and A. S. Aragon. 1993a. Entry of Coxiella bumetii into host cells. Acta Virol. 37: 143 155.
8. Baca, O. G.,, M. J. Roman,, R. H. Glew,, R. F. Christner,, J. E. Buhler,, and A. S. Aragon. 1993b. Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect. Immun. 61: 4232 4239.
9. Banerjee-Bhatnagar, N.,, C. R. Bolt,, and J. C. Williams. 1996. Pore-forming activity of Coxiella bumetii outer membrane protein oligomer comprised of 29.5 and 31-kDa polypeptides. Ann. N.Y. Acad. Sci. 791: 378 401.
10. Barth, M.,, C. Marshall,, A. Muffler,, S. Fischer,, and R. Hengge-Aronis. 1995. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σ 5 and many σ 5 -dependent genes in Escherichia coli. J. Bacteriol. 177: 3455 3464.
11. Brickman, T. J.,, C. E. Barry,, and T. Hackstadt. 1993. Molecular cloning and expression oikctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol. 175: 4274 4281.
12. Burton, P. R.,, J. Stueckemann,, R. M. Welsh,, and D. Paretsky. 1978. Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect. Immun. 21: 556 566.
13. Canonicao, P. G.,, M. J. Van Zwieten,, and W. A. Christmas. 1972. Purification oflarge quantities of Coxiella bumetii rickettsia by density gradient zonal centrifugation. Appl. Microbiol. 23: 1015 1022.
14. Cianciotto, N. P.,, W. O'Connell,, G. A. Dasch,, and L. P. Mallavia. 1995. Detection of mip-like sequences and Mip-related proteins within the family Rickettsiaceae. Curr. Microbiol. 30: 149 153.
15. Claret, L.,, and J. Rouviere-Yaniv. 1997. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J. Mol. Biol. 273: 93 104.
16. Cousineau, R.,, C. Cerpa,, J. Lefebvre,, and R. Cedergren. 1992. The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. Gene 120: 33 41.
17. Davis, G. E.,, and H. R. Cox. 1938. A filter-passing infectious agent isolated from ticks. I. Isolation from Dermacentor andersonii, reactions in animals, and filtration. Public Health Rep. 53: 2259.
18. De Groote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NAPDH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94: 13997 14001.
19. Founder, P.-E.,, T. J. Marrie,, and D. Raoult. 1998. Diagnosis of Q fever. J. Clin. Miaobiol. 36: 1823 1834.
20. Hackstadt, T. 1983. Estimation of the cytoplasmic pH of Coxiella bumetii and effect of substrate oxidation on proton motive force. J. Bacteriol. 154: 591 597.
21. Hackstadt, T.,, and J. C. Williams. 1981. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella bumetii. Proc. Natl. Acad. Sci. 78: 3240 3244.
22. Hackstadt, T.,, and J. C. Williams. 1983. pH dependence of the Coxiella bumetii glutamate transport system. J. Bacteriol. 154: 598 603.
23. Hackstadt, T.,, and J. C. Williams,. 1984. Metabolic adaptations of Coxiella bumetii to intraphagolysosomal growth, p. 266 268. In L. Lieve, and D. Schlessinger (ed.), Microbiology —1984. American Society for Microbiology, Washington, D.C.
24. Hackstadt, T.,, W. Baehr,, and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 88: 3937 3941.
25. Heinzen, R. A., 1997. Intracellular development of Coxiella bumetii, p. 99 129. In B. Anderson,, M. Bendinelli,, and H. Friedman (ed.), Rickettsial Infection and Immunity. Plenum Press, New York, N.Y.
26. Heinzen, R. A.,, and T. Hackstadt. 1996. A developmental-stage-specific histone HI homolog of Coxiella bumetii. J. Bacteriol. 178: 5049 5052.
27. Heinzen, R. A.,, M. E. Frazier,, and L. P. Mallavia. 1992. Coxiella bumetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia colt. Infect. Immun. 60: 3814 3823.
28. Heinzen, R. A.,, D. Howe,, L. P. Mallavia,, D. D. Rockey,, and T. Hackstadt. 1996a. Developmentally regulated synthesis of an unusually small, basic peptide by Coxiella bumetii. Mol. Microbiol. 22: 9 19.
29. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996b. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella bumettii and Chlamydia trachomatis. Infect. Immun. 64: 796 809.
30. Heinzen, R. A.,, T. Hackstadt,, and J. E.. Samuel. 1999. Developmental biology of Coxiella bumetii. Trends Microbiol. 7: 149 154.
31. Hendrix, L.,, and P. Mallavia. 1984. Active transport of proline by Coxiella bumetti.J . Gen. Microbiol. 130: 2857 2863.
32. Hendrix, L. R.,, J. E. Samuel,, and L. P. Mallavia. 1991. Differentiation of Coxiella bumetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J. Gen. Microbiol. 137: 269 276.
33. Hendrix, L. R.,, L. P. Mallavia,, and J. E. Samuel. 1993. Cloning and sequencing of Coxiella bumetii outer membrane protein gene com1. Infect. Immun. 61: 470 477.
34. Hengge-Aronis, R. 1996. Back to log phase: Sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21: 887 893.
35. Htwe, K. K.,, T. Yoshida,, S. Hayashi,, T. Miyake,, K.-I. Amano,, C. Morita,, T. Yamaguchi,, H. Fukushi,, and K. Hirai. 1993. Prevalence of antibodies to Coxiella bumetii in Japan. J. Clin. Microbiol. 31: 722 723.
36. Kordova, N. 1960. Study of antigenicity and immunogenicity of filterable particles of Coxiella bumetii. Ada Virol. 4: 56 62.
37. Kordova, N.,, and E. Kocacova. 1968. Appearance of antigens in tissue culture cells inoculated with filterable particles of Coxiella bumetii as revealed by fluorescent antibodies. Acta Virol. 12: 40 463.
38. Lennette, E. H.,, W. H. Clark,, M. M. Abinanti,, O. Burnetti,, and J. M. Covert. 1952. Q fever studies. XIII. The effect of pasteurization of Coxiella bumetii in naturally infected milk. Am.J. Hyg. 55: 246.
39. Li, Y. P.,, G. Curley,, M. Lopez,, M. Chavez,, R. Glew,, A. Aragon,, H. Kumar,, and O. G. Baca. 1996. Protein-tyrosine phosphatase activity of Coxiella bumetii that inhibits human neutrophils. Acta Virol. 40: 163 172.
40. Mallavia, L. P. 1991. Genetics of rickettsiae. Eur.J. Epidemiol. 7: 213 221.
41. Marrie, T. J., 1990. Epidemiology of Q fever, p. 49 70. In T. J. Marrie (ed.), Q Fever, vol. 1. The Disease. CRC Press, Boca Raton, Fla.
42. McCaul, T. F., 1991. The developmental cycle of Coxiella bumetii, p. 223 258. In J. C. Williams, and H. A. Thompson (éd.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
43. McCaul, T. F.,, and J. C. Williams. 1981. Developmental cycle of Coxiella bumetii: structure and morphogenesis of vegetative and sporogenic differentiations. J. Bacteriol. 147: 1063 1076.
44. McCaul, T. F.,, T. Hackstadt,, and J. C.,. Williams. 1981. Ultrastructural and biological aspects of Coxiella bumetii under physical disruptions, p. 267. In W. Burgdorfer, and R. L. Anacker (ed.), Rickettsiae and Rickettsial Diseases. Academic Press, New York, N.Y.
45. McCaul, T. F.,, N. Banerjee-Bhatnagar,, and J. C. Williams. 1991a. Antigenic differences between Coxiella bumetii cells revealed by postembedding immunoelectron microscopy and immunoblotting. Infect. Immun. 59: 3243 3253.
46. McCaul, T. F.,, J. C. Williams,, and H. A. Thompson. 1991b. Electron microscopy of Coxiella burnetii in tissue culture induction of cell types as products of developmental cycle. Acta Virol. 35: 545 556.
47. McCaul, T. F.,, A. J. Dare,, J. P. Gannon,, and J. J. Galbraith. 1994. In vivo endogenous spore formation by Coxiella bumetii in Q fever endocarditis. J. Clin. Pathol. 47: 978 981.
48. Meconi, S.,, V. Jacomo,, P. Boquet,, D. Raoult,, J. Mege,, and C. Capo. 1998. Coxiella bumetii induces reorganization of the actin cytoskeleton in human monocytes. Infect. Immun. 66: 5527 5533.
49. Mo, Y. Y.,, N. P. Cianciotto,, and L. P. Mallavia. 1995. Molecular cloning of a Coxiella bumetii gene encoding a macrophage infectivity potentiator (Mip) analogue. Microbiology 141: 2861 2871.
50. Moulder, J. W. 1991. Interaction of Chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190.
51. Nermut, M. V.,, S. Schramek,, and R. Brezina. 1968. Electron microscopy of Coxiella bumetii phase I and phase II. Acta Virol. 12: 446 452.
52. Raoult, D.,, and T. Marrie. 1995. Q fever. Clin. Infect. Dis. 20: 489 496.
53. Redd, T.,, and H. A. Thompson. 1995. Secretion of proteins by Coxiella bumetii. Microbiology 141: 363 369.
54. Rosenberg, M.,, and N. Kordova. 1960. Study of intracellular forms of Coxiella bumetii in the electron microscope. Acta Virol. 4: 52 61.
55. Samuel, J. E.,, M. E. Frazier,, and L. P. Mallavia. 1985. Correlation of plasmid type and disease caused by Coxiella bumetii. Infect. Immun. 49: 775 779.
56. Schaal, F.,, H. Krauss,, N. Jekov,, and L. Rantamaki. 1987. Electron micrographie observations on the morphogenesis of "spore-like particles" of Coxiella bumetii in cell culture. Ada Medit. Patol. Inf. Trop. 6: 329 338.
57. Seshadri, R.,, L. R. Hendrix,, and J. E. Samuel. Differential expression of translational elements by lifecycle variants of Coxiella bumetii. Submitted for publication.
58. Setlow, P. 1988. Small, acid soluble spore proteins of Bacillus species: structure, synthesis, genetics, and degradation. J. Bacteriol. 42: 319 338.
59. Snyder, C. E. J.,, and J. C. Williams. 1986. Purification and chemical characterization of a major outer membrane protein from Coxiella bumetii, p. 193. In Abstracts of the Annual Meeting of the American Society for Microbiology, 1986. American Society for Microbiology, Washington, D.C.
60. Snyder, C. E.,, R. F. Wachter,, and J. D. White,. 1984. Identification of Coxiella bumetii antigens and attempts at envelope fractionation, p. 263 265. In L. Lieve, and D. Schlessinger (eds.), Microbiology — 1984. American Society for Microbiology, Washington, D.C.
61. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koo-nin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759.
62. St. John, G.,, and H. M. Steinman. 1996. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J. Bacteriol. 178: 1578 1584.
63. Stocker, M. P.,, K. M. Smith,, and P. Fiset. 1956. Internal structure of Rickettsia bumetii as shown by electron microscopy of thin sections. J. Gen. Microbiol. 15: 632 635.
64. Suhan, M. L.,, C. Shu-Yin,, and H. A. Thompson. 1996. Transformation of Coxiella bumetii to ampi-cillin resistance. J. Bacteriol. 178: 2701 2708.
65. Thompson, H. A.,, R. L. Zuerner,, and T. Tedd,. 1984. Protein synthesis in Coxiella bumetii, p. 288 291. In L. Lieve, and D. Schlessinger (éd.), Microbiology—1984. American Society for Microbiology, Washington, D.C.
66. Varghees, S.,, K. Kiss,, and J. E. Samuel. 1998. Characterization of the Major Outer Membrane Protein from Coxiella bumetii. Texas Branch of the American Society for Microbiology.
67. Wachter, R. F.,, G. P. Briggs,, J. D. Gangemi,, and C. E. Pedersen. 1975. Changes in buoyant density relationships of two cell types of Coxiella bumetii phase I. Infect. Immun. 12: 433 436.
68. Watarai, M.,, T. Tobe,, M. Yoshikawa, and C. Sasakawa. 1995. Disulfide oxidoreductase activity of Shigellaflexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc. Natl. Acad. Sri. USA 92: 4927 4931.
69. Weisburg, W. G.,, C. R. Woese,, M. E. Dobson,, and E. Weiss. 1985. A common origin of rickettsiae and certain plant pathogens. Science 2230: 556 558.
70. Weisburg, W. G.,, M. E. Dobson,, J. E. Samuel,, G. A. Dasch,, L. P. Mallavia,, O. G. Baca,, L. Mandelco,, J. E. Sechrest,, E. Weiss,, and C. R. Woese. 1989. Phylogenetic diversity of the rickett-siae. J. Bacteriol. 171: 4202 4206.
71. Wiebe, M. E.,, P. R. Burton,, and D. M. Shankel. 1972. Isolation and characterization of two cell types of Coxiella bumetii. J. Bacteriol. 110: 368 377.
72. Willems, H.,, C. Jager,, and G. Bajer. 1998. Physical and genetic map of the obligate intracellular bacterium Coxiella bumetii. J. Bacteriol. 180: 3816 3822.
73. Williams, J. C., 1991. Infectivity, virulence, and pathogenicity of Coxiella bumetii for various hosts, p. 21 72. In J. C. Williams, and H. A. Thompson (éd.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
74. Williams, J. C.,, and D. M. Waag,. 1991. Antigens, virulence factors and biological response modifiers of Coxiella bumetii: strategies for vaccine development, p. 175 222. In J. C. Williams, and H. A. Thompson (ed.), Q Fever: The Biology of Coxiella bumetii. CRC Press, Boca Raton, Fla.
75. Williams, J. C.,, M. R. Johnston,, M. G. Peacock,, L. A. Thomas,, S. Stewart,, and J. L. Portis. 1984. Monoclonal antibodies distinguish phase variants of Coxiella bumetii. Infect. Immun. 43: 421 428.
76. Zhang, Y.,, Y. Shi,, M. Zhou,, and G. A. Petsko. 1994. Cloning, sequencing, and expression in Esch-erichia coli of the gene encoding a 45-kDa protein, elongation factor Tu, from Chlamydia trachomatis serovar F. J. Bacteriol. 176: 1184 1187.
77. Zuerner, R. L.,, and H. A. Thompson. 1983. Protein synthesis by intact Coxiella bumetii cells. J. Bacteriol. 156: 186 191.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error