Chapter 22 : Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555818166/9781555811587_Chap22-2.gif


This chapter outlines the complexities of bacterial invasion and bacteroid differentiation. Because the early plant-bacterial signal exchange has been the subject of many excellent recent reviews the chapter emphasizes the later stages about which less is known. The strategies that both bacteria and plant use to maintain the symbiosis and prevent pathogenesis are also discussed. The formation of effective nodules containing differentiated, nitrogen-fixing bacteroids consists of a defined series of stages. In response to chemical signals secreted by plant roots, rhizobia attach to root hairs, which are cells on the root surface that project outward into the soil. Chemotaxis plays an important role in the initial attraction of rhizobia to plant root hairs. The signal transduction pathway leading to the formation of the nodule must have unique characteristics, because nodules are completely different from other normal plant structures. Mutants lacking succinoglycan were first isolated by the inability of colonies to fluoresce on plates containing the laundry whitener Calcofluor. Such mutants still complete Nod factor-dependent events, such as root hair deformation, cortical cell divisions, and infection thread initiation. Immunological studies with monoclonal antibodies have documented changes in lipopolysaccharide (LPS) structure during bacteroid differentiation and when free-living rhizobia are cultured in different media. Knockout strategies are useful because it is easy to map and clone the affected genes and because many functions in bacteroid development are probably not essential for free-living cells.

Citation: Margolin W. 2000. Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, p 441-466. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Root nodules on alfalfa induced by S. meliloti.

Citation: Margolin W. 2000. Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, p 441-466. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Scanning electron micrograph of S. meliloti bacteroids in an alfalfa nodule homogenate. The arrows highlight bacteroids, which include a Y-shaped cell in the center of the image and two other elongated cells. The other large structures visible are starch granules.

Citation: Margolin W. 2000. Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, p 441-466. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Initial interaction between S. meliloti and alfalfa root hairs. S. meliloti cells expressing GFP (appearing bright on the darker background) were photographed by confocal microscopy at different stages, including initial attachment to the root hair (A), entrapment by the curled root hair (B), and migration down the infection thread (C). (Images courtesy of Daniel J. Gage, University of Connecticut.)

Citation: Margolin W. 2000. Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, p 441-466. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Outline of bacteroid development, from release to differentiation. A 4-week-old indeterminate nodule like that formed by the S. meliloti-alfalfa symbiosis is shown, as adapted from the results of Vasse et al. (1990). The inset at the top depicts bacterial proliferation within the infection thread and subsequent endocytosis into the plant cell and engulfment by the PBM. The cells within the nodule represent a sample of each zone, denoted at the right of the nodule. Bacteroid types and zones are as described in the text and in Vasse et al., 1990.

Citation: Margolin W. 2000. Differentiation of Free-Living Rhizobia into Endosymbiotic Bacteroids, p 441-466. In Brun Y, Shimkets L (ed), Prokaryotic Development. ASM Press, Washington, DC. doi: 10.1128/9781555818166.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albrecht, C.,, R. Geurts,, and T. Bisseling. 1999. Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J. 18: 281 288.
2. Almon, L. 1933. Concerning the reproduction of bacteroids. Zentbl. Bakteriol. Parasitenkol. Infectionskr. Hyg. Abt. II 87: 289 297.
3. Ames, P.,, and K. Bergman. 1981. Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol. 148: 728 729.
4. Arcondeguy, T.,, I. Huez,, P. Tillard,, C. Gang-neux,, F. de Billy,, A. Gojon,, G. Truchet,, and D. Kahn. 1997. The Rhizobium melilotiPII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Genes Dev. 11: 1194 1206.
5. Armitage, J. P.,, and R. Schmitt. 1997. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143: 3671 3682.
6. Bal, A. K.,, S. Shantharam,, and D. P. Verma. 1980. Changes in the outer cell wall of Rhizobium during development of root nodule symbiosis in soybean. Can. J. Microbiol. 26: 1096 1103.
7. Barnett, M. J.,, and S. R. Long. 1990. DNA sequence and translational product of a new nodulation-regulatory locus: syrM has sequence similarity to NodD proteins. J. Bacteriol. 172: 3695 3700.
8. Barnett, M. J.,, and S. R. Long. 1997. Identification and characterization of a gene on Rhizobium meliloti pSyma, syrB, that negatively affects syrM expression. Mol. Plant-Microbe Interact. 10: 550 559.
9. Barnett, M. J.,, J. A. Swanson,, and S. R. Long. 1998. Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance. Genetics 148: 19 32.
10. Barsomian, G. D.,, A. Urzainqui,, K. Lohman,, and G. C. Walker. 1992. Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J. Bacteriol. 174: 4416 4426.
11. Battisti, L.,, J. C. Lara,, and J. A. Leigh. 1992. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc. Natl. Acad. Sci. USA 89: 5625 5629.
12. Batut, J.,, and P. Boistard. 1994. Oxygen control in Rhizobium. Antonie Leeuwenhoek 66: 129 150.
13. Batut, J.,, M. L. Daveran-Mingot,, M. David,, J. Jacobs,, A. M. Garnerone,, and D. Kahn. 1989. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBOJ. 8: 1279 1286.
14. Bisseling, T.,, R. C. van den Bos,, M. W. West-strate,, M. J. Hakkaart,, and A. van Kammen. 1979. Development of the nitrogen-fixing and protein-synthesizing apparatus of bacteroids in pea root nodules. Biochim. Biophys. Acta 562: 515 526.
15. Bladergroen, M. R.,, and H. P. Spaink. 1998. Genes and signal molecules involved in the rhizobia-Leguminoseae symbiosis. Curr. Opin. Plant Biol. 1: 353 359.
16. Boesten, B.,, J. Batut,, and P. Boistard. 1998. DctBD-dependent and -independent expression of the Sinorhizobium (Rhizobium) meliloti C4-dicar-boxylate transport gene (dctA) during symbiosis. Mol. Plant-Microbe Interact. 11: 878 886.
17. Bohlool, B. B.,, and E. L. Schmidt. 1976. Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin binding. J. Bacteriol. 125: 1188 1194.
18. Bowden, M. G.,, and H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30: 275 284.
19. Brewin, N. J. 1991. Development of the legume root nodule. Annu. Rev. Cell Biol. 7: 191 226.
20. Brewin, N. J.,, and I. V. Kardailsky. 1997. Legume lectins and nodulation by Rhizobium. Trends Plant Sci. 2: 92 98.
21. Brown, C. M.,, and M. J. Dilworth. 1975. Ammonia assimilation by rhizobium cultures and bacteroids. J. Gen. Microbiol. 86: 39 48.
22. Caetano-Anolles, G.,, D. K. Crist-Estes,, and W. D. Bauer. 1988. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170: 3164 3169.
23. Cheng, H.-P.,, and G. C. Walker. 1998. Succino-glycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180: 5183 5191.
24. Ching, T. M.,, S. Hedtke,, and W. Newcomb. 1977. Isolation of bacteria, transforming bacteria, and bacteroids from soybean nodules. Plant Physiol. 60: 771 774.
25. Clover, R. H., s J. Kieber,, and E. R. Signer. 1989. Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis. J. Bacteriol. 171: 3961 3967.
26. Cook, D.,, D. Dreyer,, D. Bonnet,, M. Howell,, E. Nony,, and K. VandenBosch. 1995. Transient induction of a peroxidase gene in Medicago trunculata precedes infection by Rhizobium meliloti. Plant Cell 7: 43 55.
27. Cren, M.,, A. Kondorosi,, and E. Kondorosi. 1995. NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol. Microbiol. 15: 733 747.
28. David, M.,, M. L. Daveran,, J. Batut,, A. Dedieu,, O. Domergue,, J. Ghai,, C. Hertig,, P. Boistard,, and D. Kahn. 1988. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54: 671 683.
29. Dazzo, F. B.,, G. L. Truchet,, J. E. Sherwood,, E. M. Hrabak,, M. Abe,, and S. H. Pankratz. 1984. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl. Environ. Microbiol. 48: 1140 1150.
30. de Maagd, R. A.,, C. A. Wijffelman,, E. Pees,, and B. J. Lugtenberg. 1988. Detection and subcellular localization of two Sym plasmid-dependent proteins of Rhizobium leguminosarum biovar viciae. J. Bacteriol. 170: 4424 4427.
31. Demont, N.,, M. Ardourel,, F. Maillet,, D. Promé,, M. Ferro,, J. C. Promé,, and J. Dénarié. 1994. The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors N-acylated by (omega-l)-hy-droxylated fatty acids. EMBO J. 13: 2139 2149.
32. Dénarié, J.,, F. Debelle,, and J. C. Promé. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65: 503 535.
33. D'Hooghe, I.,, J. Michiels,, and J. Vanderleyden. 1998. The Rhizobium etli FixL protein differs in structure from other known FixL proteins. Mol. Gen. Genet. 257: 576 580.
34. Dickstein, R.,, T. Bisseling,, V. N. Reinhold,, and F. M. Ausubel. 1988. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev. 2: 677 687.
35. Dilworth, M.,, and A. Glenn. 1984. How does a legume nodule work? Trends Biochem. Sci. 9: 519 523.
36. Dilworth, M.,, and D. C. Williams. 1967. Nucleic acid changes in bacteroids of Rhizobium lupini during nodule development. J. Gen. Microbiol. 48: 31 36.
37. Djordjevic, M. A.,, D. W. Gabriel,, and B. G. Rolfe. 1987. Rhizobium—the refined parasite of legumes. Annu. Rev. Phytopathol. 25: 145 168.
38. Dudley, M. E.,, T. W. Jacobs,, and S. R. Long. 1987. Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171: 289 301.
39. Durmowicz, M. C.,, and R. J. Maier. 1998. The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J. Bacteriol. 180: 3253 3256.
40. Ehrhardt, D. W.,, E. M. Atkinson,, and S. R. Long. 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998 1000.
41. Ehrhardt, D. W.,, R. Wais,, and S. R. Long. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673 681.
42. Engelke, T.,, D. Jording,, D. Kapp,, and A. Pühler. 1989. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bacteriol. 171: 5551 5560.
43. Estabrook, E. M.,, and C. Sengupta-Gopalan. 1991. Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299 308.
44. Fellay, R.,, M. Hanin,, G. Montorzi,, J. Frey,, C. Freiberg,, W. Golinowski,, C. Staehelin,, W. J. Broughton,, and S. Jabbouri. 1998. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol. Microbiol. 27: 1039 1050.
45. Felle, H. H.,, E. Kondorosi,, A. Kondorosi,, and M. Schultze. 1998. The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J. 13: 455 464.
46. Finan, T. M.,, A. M. Hirsch,, J. A. Leigh,, E. Johan-sen,, G. A. Kuldau,, S. Deegan,, G. C. Walker,, and E. R. Signer. 1985. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869 877.
47. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718 725.
48. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61: 136 169.
49. Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58: 352 386.
50. Fischer, H. M. 1996. Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol. 4: 317 320.
51. Flores, M.,, P. Mavingui,, L. Girard,, X. Perret,, W. J. Broughton,, E. Martinez-Romero,, G. Davila,, and R. Palacios. 1998. Three replicons of Rhizobium sp. strain NGR234 harbor symbiotic gene sequences. J. Bacteriol. 180: 6052 6053.
52. Fougere, F.,, and D. Le Rudulier. 1990. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J. Gen. Microbiol. 136: 157 163.
53. Foussard, M.,, A.-M. Garnerone,, F. Ni,, E. Soupéne,, P. Boistard,, and J. Batut. 1997. Negative autoregulation of the Rhizobium meliloti fixK gene is indirect and requires a newly identified regulator, FixT. Mol. Microbiol. 25: 27 37.
54. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. J. Broughton,, A. Rosenthal,, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394 401.
55. Gage, D. J.,, and S. R. Long. 1998. α-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J. Bacteriol. 180: 5739 5748.
56. Gage, D. J.,, T. Bobo,, and S. R. Long. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol. 178: 7159 7166.
57. Gilles-González, M. A.,, G. S. Ditta,, and D. R. Helinski. 1991. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170 172.
58. Glazebrook, J.,, and G. C. Walker. 1989. A novel exopolysaccharide can function in place of the cal-cofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661 672.
59. Glazebrook, J.,, A. Ichige,, and G. C. Walker. 1993. A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev. 7: 1485 1497.
60. González, J. E.,, B. L. Reuhs,, and G. C. Walker. 1996a. Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93: 8636 8641.
61. González, J. E.,, G. M. York,, and G. C. Walker. 1996b. Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179: 141 146.
62. González, J. E.,, C. E. Semino,, L. X. Wang,, L. E. Castellano-Torres,, and G. C. Walker. 1998. Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc. Natl. Acad. Sci USA 95: 13477 13482.
63. Goormachtig, S.,, S. Lievens,, W. Van de Velde,, M. Van Montagu,, and M. Holsters. 1998. Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10: 905 915.
64. Gottfert, M.,, P. Grob,, and H. Hennecke. 1990. Proposed regulatory pathway encoded by the nod V and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA 87: 2680 2684.
65. Gotz, R.,, and R. Schmitt. 1987. Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices. J. Bacteriol. 169: 3146 3150.
66. Gouffi, K.,, V. Pichereau,, J. P. Rolland,, D. Thomas,, T. Bernard,, and C. Blanco. 1998. Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti. J. Bacteriol. 180: 5044 5051.
67. Gresshoff, P. M.,, and B. G. Rolfe. 1978. Viability of Rhizobium bacteroids isolated from soybean nodule protoplasts. Planta 142: 329 333.
68. Gresshoff, P. M.,, M. L. Skotnicki,, J. F. Eadie,, and B. G. Rolfe. 1977. Viability of Rhizobium trifolii bacteroids from clover root nodules. Plant Sci. Lett. 10: 299 304.
69. Heithoff, D. M.,, C. P. Conner,, and M. J. Mahan. 1997. Dissecting the biology of a pathogen during infection. Trends Miaobiol. 5: 509 513.
70. Hirsch, A. M.,, and C. A. Smith. 1987. Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J. Bacteriol. 169: 1137 1146.
71. Hirsch, A. M.,, K.J. WilsonJ,. D. Jones,, M. Bang,, V. V. Walker,, and F. M. Ausubel. 1984. Rhizobium meliloti nodulation genes allow Agrobacterium tumefaciens and Escherichia coli to form pseudonodules on alfalfa. J. Bacteriol. 158: 1133 1143.
72. Hochman, A. 1997. Programmed cell death in pro-karyotes. Crit. Rev. Microbiol. 23: 207 214.
73. Ichige, A.,, and G. C. Walker. 1997. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J. Bacteriol. 179: 209 216.
74. Jensen, E. O.,, K. Paludan,, J. J. Hyldig-Nielsen,, P. Jorgensen,, and K. A. Marcker. 1981. The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291: 677 679.
75. Jordan, D. C.,, and W. H. Coulter. 1965. On the cytology and synthetic capacities of natural and artificially produced bacteroids of Rhizobium leguminosarum. Can. J. Microbiol. 11: 709 720.
76. Kaiser, B. N.,, P. M. Finnegan,, S. D. Tyerman,, L. F. Whitehead,, F. J. Bergersen,, D. A. Day,, and M. K. Udvardi. 1998. Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science 281: 1202 1206.
77. Kamst, E.,, H. P. Spaink,, and D. Kafetzopoulos. 1998. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell. Biochem. 29: 29 71.
78. Kaneshiro, T.,, F. L. Baker,, and D. E. Johnson. 1983. Pleomorphism and acetylene-reducing activity of free-living rhizobia. J. Bacteriol. 153: 1045 1050.
79. Kannenberg, E. L.,, and N. J. Brewin. 1989. Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH. J. Bacteriol. 171: 4543 4548.
80. Kannenberg, E. L.,, and N. J. Brewin. 1994. Host-plant invasion by Rhizobium: the role of cell-surface components. Trends Microbiol. 2: 277 283.
81. Kannenberg, E. L.,, S. Perotto,, V. Bianciotto,, E. A. Rathbun,, and N. J. Brewin. 1994. Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections. J. Bacteriol. 176: 2021 2032.
82. Kapranov, P.,, T. J. Jensen,, C. Poulsen,, F. J. de Bruijn,, and K. Szczyglowski. 1999. A protein phosphatase 2C gene, LJNPP2C1, froml Lotus japonicus induced during root nodule development. Proc. Natl. Acad. Sci. USA 96: 1738 1743.
83. Kidby, D. K.,, and D. J. Goodchild. 1966. Host influence on the ultrastructure of root nodules of Lupinus luteus and Omithopus sativus. J. Gen. Microbiol. 45: 147 152.
84. Kijne, J. W., 1992. The Rhizobium infection process, p. 349 398. In G. Stacey,, R. H. Bums,, and H. J. Evans (ed.), Biological Nitrogen Fixation. Chapman and Hall, New York, N.Y.
85. Kijne, J. W.,, M. A. Bauchrowitz,, and C. L. Diaz. 1997. Root lectins and rhizobia. Plant Physiol. 115: 869 873.
86. Klein, S.,, A. M. Hirsch,, C. A. Smith,, and E. R. Signer. 1988. Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation. Mol. Plant-Microbe Interact. 1: 94 100.
87. Kurz, W. G. W.,, and T. A. La Rue. 1975. Nitrogenase activity in rhizobia in the absence of plant host. Nature 256: 407 408.
88. Latch, J. N.,, and W. Margolin. 1997. Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J. Bacteriol. 179: 2373 2381.
89. Latchford, J. W.,, D. Borthakur,, and A. W. Johnston. 1991. The products of Rhizobium genes, psi and pss, which affect exopolysaccharide production, are associated with the bacterial cell surface. Mol. Microbiol. 5: 2107 2114.
90. Legocki, R. P.,, and D. P. Verma. 1980. Identification of "nodule-specific" host proteins (nodulins) involved in the development of rhizobium-legume symbiosis. Cell 20: 153 163.
91. Leigh, J. A.,, and D. L. Coplin. 1992. Exopolysac-charides in plant-bacterial interactions. Annu. Rev. Microbiol. 46: 307 346.
92. Leigh, J. A.,, and G. C. Walker. 1994. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 10: 63 67.
93. Leigh, J. A.,, E. R. Signer,, and G. C. Walker. 1985. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 82: 6231 6235.
94. Loh, J.,, M. Garcia,, and G. Stacey. 1997. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum. J. Bacteriol. 179: 3013 3020.
95. Loh, J.,, M. G. Stacey,, M. J. Sadowsky,, and G. Stacey. 1999. The Bradyrhizobium japonicum nolA gene encodes three functionally distinct proteins. J. Bacteriol. 181: 1544 1554.
96. Loh, J. T.,, S. C. Ho,, A. W. de Feijter,, J. L. Wang,, and M. Schindler. 1993. Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localization of the lectin BJ38 on the bacterial cell surface. Proc. Natl. Acad. Sci. USA 90: 3033 3037.
97. Long, S.,, S. McCune,, and G. C. Walker. 1988. Symbiotic loci of Rhizobium meliloti identified by random Tn phoA mutagenesis. J. Bacteriol. 170: 4257 4265.
98. Long, S. R. 1996. Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8: 1885 1898.
99. Long, S. R.,, and B. J. Staskawicz. 1993. Prokaryotic plant parasites. Cell 73: 921 935.
100. Lucas, M. M.,, J. L. Peart,, N. J. Brewin,, and E. L. Kannenberg. 1996. Isolation of monoclonal antibodies reacting with the core component of lipopolysaccharide from Rhizobium leguminosarum strain 3841 and mutant derivatives. J. Bacteriol. 178: 2727 2733.
101. Ludwig, R. A.,, and E. R. Signer. 1977. Glutamine synthetase and control of nitrogen fixation in Rhizobium. Nature 267: 245 248.
102. MacKenzie, C. R.,, W. J. Vail,, and D. C. Jordan. 1973. Ultrastructure of free-living and nitrogen-fixing forms of Rhizobium meliloti as revealed by freeze-etching. J. Bacteriol. 113: 387 393.
103. Maddock, J. R.,, M. R. Alley,, and L. Shapiro. 1993. Polarized cells, polar actions. J. Bacteriol. 175: 7125 7129.
104. Mahan, M. J.,, J. M. Slauch, andj. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688.
105. Manoil, C.,, and J. Beckwith. 1985. Tn phoA: a transposon probe for protein export. Proc. Natl. Acad. Sci. USA 82: 8129 8133.
106. Margolin, W.,, and S. R. Long. 1994. Rhizobium meliloti contains a novel second homolog of the cell division gene fisZ. J. Bacteriol. 176: 2033 2043.
107. Mateos, P. F.,, J. I. Jimenez-Zurdo,, J. Chen,, A. S. Squartini,, S. K. Haack,, E. Martinez-Molina,, D. H. Hubbell,, and F. B. Dazzo. 1992. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 58: 1816 1822.
108. McComb, J. A.,, J. Elliott,, and M. J. Dilworth. 1975. Acetylene reduction by Rhizobium in pure culture. Nature 256: 409 410.
109. McRae, D. G.,, R. W. Miller,, and W. B. Berndt. 1989. Viability of alfalfa nodule bacteroids isolated by density gradient centrifugation. Symbiosis 7: 67 80.
110. Mergaert, P.,, M. Van Montagu,, and M. Holsters. 1997. Molecular mechanisms of Nod factor diversity. Mol. Microbiol. 25: 811 817.
111. Miao, G. H.,, Z. Hong,, and D. P. Verma. 1992. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J. Cell Biol. 118: 481 490.
112. Michiels, J.,, M. Moris,, B. Dombrecht,, C. Verreth,, and J. Vanderleyden. 1998. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J. Bacteriol. 180: 3620 3628.
113. Milner, J. L.,, R. S. Araujo,, and J. Handelsman. 1992. Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Mol. Microbiol. 6: 3137 3147.
114. Moreau, S.,, M. J. Davies,, C. Mathieu,, D. Herouart,, and A. Puppo. 1996. Leghemoglobin-derived radicals. Evidence for multiple protein-derived radicals and the initiation of peribacteroid membrane damage. J. Biol. Chem. 271: 32557 32562.
115. Muñoz, J. A.,, C. Coronado,, J. Perez-Hormaeche,, A. Kondorosi,, P. Ratet,, and A. J. Palomares. 1998. MsPG3, a medicago sativa polygalacturonase gene expressed during the alfalfa- Rhizobium meliloti interaction. Proc. Natl. Acad. Sci. USA 95: 9687 9692.
116. Murphy, P. J.,, N. Heycke,, S. P. Trenz,, P. Ratet,, F. J. de Bruijn,, and J. Schell. 1988. Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA 85: 9133 9137.
117. Mylona, P.,, K. Pawlowski,, and T. Bisseling. 1995. Symbiotic nitrogen fixation. Plant Cell 7: 869 885.
118. Nellen-Anthamatten, D.,, P. Rossi,, O. Preisig,, I. Kullik,, M. Babst,, H. M. Fischer,, and H. Hennecke. 1998. Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels. J. Bacteriol. 180: 5251 5255.
119. Newcomb, W. 1981. Nodule morphogenesis and differentiation. Int. Rev. Cytol. 13( Suppl.): 247 296.
120. Niehaus, K.,, and A. Becker. 1998. The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Subcell. Biochem. 29: 73 116.
121. Niehaus, K.,, A. Lagares,, and A. Pühler. 1998. A Sinorhizobium meliloti lipopolysaccharide mutant induces effective nodules on the host plant Medicago sativa (alfalfa) but fails to establish a symbiosis with Medicago truncatula. Mol. Plant-Microbe Interact. 11: 906 914.
122. Noel, K. D.,, G. Stacey,, S. R. Tandon,, L. E. Silver,, and W. J. Brill. 1982. Rhizobium japonicum mutants defective in symbiotic nitrogen fixation. J. Bacteriol. 152: 485 494.
123. O'Brian, M. R. 1996. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J. Bacteriol. 178: 2471 2478.
124. O'Brian, M. R.,, P. M. Kirshbom,, and R. J. Maier. 1987. Bacterial heme synthesis is required for expression of the leghemoglobin holoprotein but not the apoprotein in soybean root nodules. Proc. Natl. Acad. Sci. USA 84: 8390 8393.
125. Ogawa, J.,, and S. R. Long. 1995. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev. 9: 714 729.
126. Oke, V.,, and S. R. Long. 1999. Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol. Microbiol. 32: 837 849.
127. Paau, A. S.,, J. Oro,, and J. R. Cowles. 1979. DNA content of free living rhizobia and bacteroids of various Rhizobium-legume associations. Plant Physiol. 63: 402 405.
128. Paau, A. S.,, C. B. Bloch,, and W. J. Brill. 1980. Developmental fate of Rhizobium meliloti bacteroids in alfalfa nodules. J. Bacteriol. 143: 1480 1490.
129. Pagan, J. D.,, J. J. Child,, W. R. Scowcroft,, and A. H. Gibson. 1975. Nitrogen fixation by Rhizobium cultured on a defined medium. Nature 256: 406 407.
130. Pankhurst, C. E.,, and A. S. Craig. 1978. Effect of oxygen concentration, temperature and combined nitrogen on the morphology and nitrogenase activity of Rhizobium sp. strain 32H1 in agar culture. J. Gen. Microbiol. 106: 207 219.
131. Petrovics, G.,, P. Putnoky,, B. Reuhs,, J. Kim,, T. A. Thorp,, K. D. Noel,, R. W. Carlson,, and A. Kondorosi. 1993. The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol. Microbiol. 8: 1083 1094.
132. Pingret, J. L.,, E. P. Journet,, and D. G. Barker. 1998. Rhizobium Nod factor signaling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659 672.
133. Preisig, O.,, D. Anthamatten,, and H. Hennecke. 1993. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. USA 90: 3309 3313.
134. Priefer, U. B. 1989. Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J. Bacteriol. 171: 6161 6168.
135. Putnoky, P.,, E. Grosskopf,, D. T. Ha,, G. B. Kiss,, and A. Kondorosi. 1988. Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J. Cell Biol. 106: 597 607.
136. Putnoky, P.,, G. Petrovics,, A. Kereszt,, E. Grosskopf,, D. T. Ha,, Z. Banfalvi,, and A. Kondorosi. 1990. Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction. J. Bacteriol. 172: 5450 5458.
137. Putnoky, P.,, A. Kereszt,, T. Nakamura,, G. Endre,, E. Grosskopf,, P. Kiss,, and A. Kondorosi. 1998. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol. 28: 1091 1101.
138. Rana, D.,, and H. B. Krishnan. 1995. A new root-nodulating symbiont of the tropical legume Ses-bania, Rhizobium sp. SIN-1, is closely related to R. galegae, a species that nodulates temperate legumes. FEMS Microbiol. Lett. 134: 19 25.
139. Reibach, P. H.,, P. L. Mask, andj. G. Streeter. 1981. A rapid one-step method for the isolation of bacteroids from root nodules of soybean plants, utilizing self-generating Percoll gradients. Can. J. Microbiol. 27: 491 495.
140. Relic, B.,, X. Perret,, M. T. Estrada-Garcia,, J. Kopcinska,, W. Golinowski,, H. B. Krishnan,, S. G. Pueppke,, and W. J. Broughton. 1994. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13: 171 178.
141. Reuber, T. L.,, S. Long,, and G. C. Walker. 1991. Regulation of Rhizobium meliloti exo genes in free-living cells and in planta examined by using TnphoA fusions. J. Bacteriol. 173: 426 434.
142. Reuhs, B. L.,, R. W. Carlson,, and J. S. Kim. 1993. Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J. Bacteriol. 175: 3570 3580.
143. Reuhs, B. L.,, J. S. Kim,, A. Badgett,, and R. W. Carlson. 1994. Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol. Plant-Microbe Interact. 7: 240 247.
144. Reuhs, B. L.,, M. N. Williams,, J. S. Kim,, R. W. Carlson,, and F. Cote. 1995. Suppression of the Fix - phenotype of Rhizobium meliloti exoB mutants by IpsZ is correlated to a modified expression of the K polysaccharide. J. Bacteriol. 177: 4289 4296.
145. Reyes, V. G.,, and E. L. Schmidt. 1979. Population densities of Rhizobium japonicum strain 123 estimated directly in soil and rhizospheres. Appl. Environ. Microbiol. 37: 854 858.
146. Robertson, J. G.,, and P. Lyttleton. 1984. Division of peribacteroid membranes in root nodules of white clover. J. Cell Sci. 69: 147 157.
147. Robertson, J. G.,, P. Lyttleton,, S. Bullivant,, and G. F. Grayston. 1978a. Membranes in lupin root nodules. I. The role of Golgi bodies in the biogenesis of infection threads and peribacteroid membranes. J. Cell Sci. 30: 129 149.
148. Robertson, J. G.,, M. P. Warburton,, P. Lyttleton,, A. M. Fordyce,, and S. Bullivant. 1978b. Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. J. Cell Sci. 30: 151 174.
149. Robinson, J. B.,, and W. D. Bauer. 1993. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. J. Bacteriol. 175: 2284 2291.
150. Roth, L. E.,, and G. Stacey,. 1991. Rhizobium-legume symbiosis, p. 255 302. In M. Dworkin (ed.), Microbial Cell-Cell Interactions. American Society for Microbiology, Washington, D.C.
151. Sangwan, I.,, and M. R. O'Brian. 1991. Evidence for an inter-organismic heme biosynthetic pathway in symbiotic soybean root nodules. Science 251: 1220 1222.
152. Santana, M. A.,, K. Pihakaski-Maunsbach,, N. Sandal,, K. A. Marcker,, and A. G. Smith. 1998. Evidence that the plant host synthesizes the heme moiety of leghemoglobin in root nodules. Plant Physiol. 116: 1259 1269.
153. Schell, M. A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47: 597 626.
154. Schlaman, H. R.,, B. Horvath,, E. Vijgenboom,, R. J. Okker,, and B. J. Lugtenberg. 1991. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J. Bacteriol. 173: 4277 4287.
155. Schlaman, H. R.,, B. J. Lugtenberg,, and R. J. Okker. 1992. The NodD protein does not bind to the promoters of inducible nodulation genes in extracts of bacteroids of Rhizobium leguminosarum biovar viciae. J. Bacteriol. 174: 6109 6116.
156. Schmidt, E. L. 1979. Initiation of plant root-microbe interactions. Annu. Reu. Microbiol. 33: 355 376.
157. Schultze, M.,, and A. Kondorosi. 1996. The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr. Opin. Genet. Dev. 6: 631 638. ( Erratum, 6:773.)
158. Schultze, M.,, and A. Kondorosi. 1998. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 32: 33 57.
159. Schultze, M.,, E. Kondorosi,, P. Ratet,, M. Buire,, and A. Kondorosi. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156: 1 75.
160. Sedloi-Lumbroso, R.,, L. Kleiman,, and H. M. Schulman. 1978. Biochemical evidence that leg-haemoglobin genes are present in the soybean but not the Rhizobium genome. Nature 273: 558 560.
161. Sharma, S. B.,, and E. R. Signer. 1990. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev. 4: 344 356.
162. Sindhu, S. S.,, N. J. Brewin,, and E. L. Kannen-berg. 1990. Immunochemical analysis of lipopoly-saccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum. J. Bacteriol. 172: 1804 1813.
163. Slauch, J. M.,, M. J. Mahan,, and J. J. Mekalanos. 1994. In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol. 235: 481 492.
164. Smit, G.,, J. W. Kijne,, and B. J. Lugtenberg. 1987. Involvement of both cellulose fibrils and a Ca 2 +-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol. 169: 4294 4301.
165. Smit, G.,, S. Swart,, G. Lugtenberg,, and J. Kijne. 1992. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol. 6: 2897 2903.
166. Soupéne, E.,, M. Foussard,, P. Boistard,, G. Tru-chet, andj. Batut. 1995. Oxygen as a key developmental regulator of Rhizobium meliloti N 2-fixation gene expression within the alfalfa root nodule. Proc. Natl. Acad. Sri. USA 92: 3759 3763.
167. Soupéne, E.,, L. He,, D. Yan,, and S. Kustu. 1998. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport ? (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 7030 7034.
168. Spaink, H. 1995. The molecular basis of infection and nodulation by Rhizobia: the ins and outs of sympathogenesis. Annu. Rev. Phytopathol. 33: 345 368.
169. Spaink, H. P.,, C. A. Wijffelman,, W. Pees,, R. J. H. Okker,, and B. J. J. Lugtenberg. 1987. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328: 337 340.
170. Sullivan, J. T.,, and C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci USA 95: 5145 5149.
171. Sulton, W. D. 1974. Some features of the DNA of Rhizobium bacteroids and bacteria. Biochim. Biophys. Acta 366: 1 10.
172. Sutton, W. D. 1981. The Rhizobium bacteroid state. Int. Rev. Cytol. 13( Suppl.): 149 177.
173. Sutton, W. D.,, and A. D. Paterson. 1979. The detergent sensitivity of Rhizobium bacteroids and bacteria. Plant. Sci. Lett. 16: 377 385.
174. Sutton, W. D.,, N. M. Jepsen,, and B. D. Shaw. 1977. Changes in the number, viability, and amino-acid-incorporating activity of Rhizobium bacteroids during lupin nodule development. Plant Physiol. 59: 741 744.
175. Szczyglowski, K.,, P. Kapranov,, D. Hamburger,, and F. J. de Bruijn. 1998. The Lotus japonicus LjNOD70 nodulin gene encodes a protein with similarities to transporters. Plant Mol. Biol. 37: 651 661.
176. Talibart, R.,, M. Jebbar,, G. Gouesbet,, S. Himdi-Kabbab,, H. Wroblewski,, C. Blanco,, and T. Bernard. 1994. Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bacteriol. 176: 5210 5217.
177. Tate, R.,, A. Riccio,, M. Merrick,, and E. J. Patriarca. 1998. The Rhizobium etli amtB gene coding for an NH 4 + transporter is down-regulated early during bacteroid differentiation. Mol. Plant-Microbe Interact. 11: 188 198.
178. Timmers, A. C.,, M. C. Auriac,, F. de Billy,, and G. Truchet. 1998. Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125: 339 349.
179. Truchet, G.,, P. Roche,, P. Lerouge,, J. Vasse,, S. Camut,, F. de Billy,, J.-C. Promé,, and J. Dénarié. 1991. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670 673.
180. Tsien, H. C.,, P. S. Cain,, and E. L. Schmidt. 1977. Viability of Rhizobium bacteroids. Appl. Environ. Microbiol. 34: 854 856.
181. Turgeon, B. G.,, and W. D. Bauer. 1985. Ultra-structure of infection-thread development during infection of soybean by Rhizobium japonicum. Planta 163: 328 349.
182. Tyerman, S. D.,, L. F. Whitehead,, and D. A. Day. 1995. A channel-like transporter for NH 4 + on the symbiotic interface of N 2 fixing plants. Nature 378: 629 632.
183. Urban, J. E.,, and F. B. Dazzo. 1982. Succinate-induced morphology of Rhizobium trifolii 0403 resembles that of bacteroids in clover nodules. Appl. Environ. Microbiol. 44: 219 226.
184. van Brussel, A. A.,, J. W. Costerton,, and J. J. Child. 1979. Nitrogen fixation by Rhizobium sp. 32H1. A morphological and ultrastructural comparison of asymbiotic and symbiotic nitrogen-fixing forms. Can. J. Microbiol. 25: 352 361.
185. van Brussel, A. A. N.,, R. Bakhuizen,, P. van Spronsen,, H. P. Spaink,, T. Tak,, J. J. Lug-tenberg,, and J. Kijne. 1992. Induction of pre-infection thread structures in the host plant by lipo-oligosaccharides of Rhizobium. Science 257: 70 72.
186. Vance, C. P. 1983. Rhizobium infection and nodulation: a beneficial plant disease? Annu. Rev. Microbiol. 37: 399 424.
187. van Heeswijk, W. C.,, S. Hoving,, D. Molenaar,, C. Stegeman,, D. Kahn,, and H. V. Westerhoff. 1996. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol. Microbiol. 21: 133 146.
188. van Rhijn, P.,, R. B. Goldberg,, and A. M. Hirsch. 1998. Lotus comiculatus nodulation specificity is changed by the presence of a soybean lectin gene. Plant Cell 10: 1233 1250.
189. van Spronsen, P. C.,, R. Bakhuizen,, A. A. van Brussel,, and J. W. Kijne. 1994. Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur. J. Cell Biol. 64: 88 94.
190. Vasse, J.,, F. de Billy,, S. Camut,, and G. Truchet. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172: 4295 4306.
191. Verde, F. 1998. On growth and form: control of cell morphogenesis in fission yeast. Curr. Opin. Microbiol. 1: 712 718.
192. Verma, D. P. 1998. Developmental and metabolic adaptations during symbiosis between legume hosts and rhizobia. Subcell. Biochem. 29: 1 28.
193. Verma, D. P.,, and Z. Hong. 1996. Biogenesis of the peribacteroid membrane in root nodules. Trends Microbiol. 4: 364 368.
194. Verma, D. P. S. 1992. Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373 382.
195. Verma, D. P. S.,, and S. Long. 1983. The molecular biology of Rhizobium-legume symbiosis. Int. Rev. Cytol. 14( Suppl.): 211 245.
196. Vesper, S.J.,, and W. D. Bauer. 1986. Role of pili in Rhizobium japonicum attachment to soybean roots. Appl. Environ. Microbiol. 52: 134 141.
197. Viprey, V.,, A. Del Greco,, W. Golinowski,, W. J. Broughton,, and X. Perret. 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381 1389.
198. Wang, L.-X.,, Y. Wang,, B. Pellock,, and G. C. Walker. 1999. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriol. 181, in press.
199. Waters, J. K.,, B. L. Hughes II,, L. C. Purcell,, K. O. Gerhardt,, T. P. Mawhinney,, and D. W. Emerich. 1998. Alanine, not ammonia, is excreted from N 2-fixing soybean nodule bacteroids. Proc. Natl. Acad. Sci. USA 95: 12038 12042.
200. Werner, D.,, R. B. Mellor,, M. G. Hahn,, and H. Grisebach. 1985. Glyceollin I accumulation in an ineffective type of soybean nodule with an early loss of peribacteroid membrane. Z. Naturforsch. TeilC 40: 179 181.
201. Wheatcroft, R.,, D. G. McRae,, and R. W. Miller. 1990. Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development. Mol. Plant-Microbe Interact. 3: 9 17.
202. Wright, R.,, C. Stephens,, and L. Shapiro. 1997. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J. Bacteriol. 179: 5869 5877.
203. Yang, W. C.,, C. de Blank,, I. Meskiene,, H. Hirt,, J. Bakker,, A. van Kammen,, H. Franssen,, and T. Bisseling. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule pri-mordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415 1426.
204. Yao, P. Y.,, and J. M. Vincent. 1969. Host specificity in the root hair "curling factor" of Rhizobium sp. Aust.J. Biol. Sci. 22: 413 422.
205. Yarosh, O. K.,, T. C. Charles,, and T. M. Finan. 1989. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Mol. Microbiol. 3: 813 823.
206. Yoon, H. S.,, and J. W. Golden. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282: 935 938.
207. Yost, C. K.,, P. Rochepeau,, and M. F. Hynes. 1998. Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology 144: 1945 1956.
208. Zhan, H. J.,, C. C. Lee,, and J. A. Leigh. 1991. Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J. Bacteriol. 173: 7391 7394.
209. Zhao, J. C.,, Y. T. Tchan,, and J. M. Vincent. 1985. Reproductive capacity of bacteroids in nodules of Trifolium repens L. and Glycine max (L.) Merr. Planta 163: 473 482.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error