Chapter 11 : Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap11-2.gif


The gram-negative anaerobic bacterium is the principal causative agent, since only can initiate the infection when applied to the hoof as a pure culture. The virulence-associated protein () regions of the chromosome were isolated as DNA sequences which were present in the virulent strain A198 but absent from the benign strain C305. It also resulted in the isolation of a different segment of the genome associated with virulence, the virulence-related locus () region, which is discussed in this chapter. The determination of the complete DNA sequence of several bacterial genomes has allowed us to search for homologs of the genes and to examine their arrangement. A putative origin of replication has been identified within the regions, consisting of repeats of two related 21-bp sequences flanked by two AT-rich sequences, with a DnaA box located nearby. The regions may influence virulence by altering the expression of neighboring genes or by direct action of the gene products, such as inhibition of cell division. The major reason for disputing the classification of the regions of as pathogenicity islands (PAIs) is that there is at present no evidence for a direct role of the gene products in virulence. In addition to the regions, five other genetic elements that are integrated into the genome have been identified. Some of these may also be classified as PAIs when their role in virulence has been determined.

Citation: Cheetham B, Whittle G, Katz M. 1999. Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?, p 203-218. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Map of the regions from A198 and H1215 and the plasmid from strain AC3577. The numbers show the distance (in kilobases) from the leftmost site in region 1, strain A198. The restriction sites shown are HI (B), RI (E), III (H), I (K), I (N), l (S), and I (X). The major potential genes are indicated by open arrows. Repeated sequences ( ) are indicated as follows: 19-bp sites are indicated by small open boxes, 103-bp repeats or partial copies are indicated by small shaded boxes, 102-bp repeats or partial copies are indicated by small solid boxes, and the putative origin of replication is indicated by a large shaded box. The tRNA- genes are indicated by solid triangles. DNA sequences found in region 2 but not in region 1 are indicated by boxes on the scale line for region 2. The complete DNA sequence of regions 1 and 3 ( ) and part of the DNA sequences of region 2 ( ) and the plasmid ( ) have been determined. The map of the region of strain H1215 is based on the results of Southern blotting and PCR experiments ( ).

Citation: Cheetham B, Whittle G, Katz M. 1999. Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?, p 203-218. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Positions of integrated genetic elements in A198 (virulent) and C305 (benign). The tRNA genes are shown as black triangles. The figure is not drawn to scale.

Citation: Cheetham B, Whittle G, Katz M. 1999. Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?, p 203-218. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Beveridge, W. I. B. 1941. Footrot in sheep: a transmissible disease due to infection with Fusiformis nodosus. C. S. I. R. O. Bull. 140: 1 40.
2. Billington, S. J.,, M. Sinistaj,, B. F. Cheetham,, A. Ayres,, E. K. Moses,, M. E. Katz,, and J. I. Rood. 1996. Identification of a native Dichelobacter nodosus plasmid and implications for the evolution of the vap regions. Gene 172: 111 116.
3. Bloomfield, G. A.,, M. E. Katz,, and B. F. Cheetham. Unpublished data.
4. Bloomfield, G. A.,, G. Whittle,, M. B. McDonagh,, M. E. Katz,, and B. F. Cheetham. 1997. Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143: 553 562.
5. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschaepe,, and J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62: 606 614.
6. Brynestad, S.,, L. A. Iwanejiko,, G. S. A. B. Stewart,, and P. E. Granum. 1994. A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A. Microbiology 140: 97 104.
7. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli,, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93: 14648 14653.
8. Cheetham, B. F.,, D. B. Tattersall,, G. A. Bloomfield,, J. I. Rood,, and M. E. Katz. 1995. Identification of a bacteriophage-related integrase gene in a vap region of the Dichelobacter nodosus genome. Gene 162: 53 58.
9. Claxton, P. D.,, L. A. Ribeiro,, and J. R. Egerton. 1983. Classification of Bacteroides nodosus by agglutination tests. Aust. Vet. J. 60: 331 334.
10. Cui, Y.,, A. Chatterjee,, Y. Liu,, C. K. Dumenyo,, and A. K. Chatterjee. 1995. Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L; -homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J. Bacteriol. 177: 5108 5115.
11. Dalrymple, B.,, and J. S. Mattick. 1987. An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J. Mol. Evol. 25: 261 269.
12. Depiazzi, L. J.,, and R. B. Richards. 1985. Motility in relation to virulence of Bacteroides nodosus. Vet. Microbiol. 10: 107 116.
13. Depiazzi, L. J.,, and J. I. Rood. 1984. The thermostability of proteases from virulent and benign strains of Bacteroides nodosus. Vet. Microbiol. 9: 227 236.
14. Dewhirst, F. E.,, B. J. Paster,, S. La Fontaine,, and J. I. Rood. 1990. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb, nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb, nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int. J. Syst. Bacteriol. 40: 426 433.
15. Egerton, J. R., 1989. Footrot of cattle, goats and deer, p. 47 56. In J. R. Egerton,, W. K. Yong,, and G. G. Riffkin (ed.), Footrot and Foot Abscess of Ruminants. CRC Press, Inc., \
16. Faubladier, M.,, and J.-P. Bouche. 1994. Division inhibitor gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J. Bacteriol. 176: 1150 1156.
17. Fleischmann, R. D. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
18. Galli, D. M.,, and D. J. LeBIanc. 1994. Characterization of pVT736-l, a rolling circle plasmid from the gram-negative bacterium Actinobacillus actinomycetemcomitans. Plasmid 31: 31 39.
19. Galli, D. M.,, and D. J. LeBlanc. 1997. Identification of a maintenance system on rolling circle replicating plasmid pVT736-l. Mol. Microbiol. 25: 649 659.
20. Ghisotti, D.,, R. Chiaramonte,, F. Forti,, S. Zangrossi,, G. Sironi,, and G. Deho. 1992. Genetic analysis of the immunity region of phage-plasmid P4. Mol. Microbiol. 6: 3405 3413.
21. Gulig, P. A.,, A. I., Caldwell,, and V. A. Chiodo. 1992. Identification, genetic analysis and DNA sequence of a 7.8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol. Microbiol. 6: 1395 1411.
22. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
23. Hailing, C.,, R. Calendar,, G. E. Christie,, E. C. Dale,, G. Deho,, S. Finkel,, J. Flensburg,, D. Ghisotti,, M. L. Kahn,, K. B. Lane,, B. H. Lindqvist,, L. S. Pierson III,, E. W. Six,, M. G. Sunshine,, and R. Ziermann. 1990. DNA sequence of satellite bacteriophage P4. Nucleic Acids Res. 18: 1649.
24. Haring, V.,, S. J. Billington,, C. L. Wright,, A. S. Huggins,, M. E. Katz,, and J. I. Rood. 1995. Delineation of the virulence-related locus ( vrl) of Dichelobacter nodosus. Microbiology 149: 2081 2086.
25. Holdeman, L. V.,, R. W. Kelley,, and W. E. C. Moore,. 1984. Genus I. Bacteroides, p. 604 631. In N. G. Krieg, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore, Md.
26. Kaneko, T. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803II. Sequence determination of the entire genome and assignation of potential protein-coding regions. DNA Res. 3: 109 136.
27. Katayama, S.,, B. Dupuy,, T. Garnier,, and S. T. Cole. 1995. Rapid expansion of the physical and genetic map of the chromosome of Clostridium perfringens CPN50. J. Bacteriol. 177: 5680 5686.
28. Katz, M. E.,, P. M. Howarth,, W. K. Yong,, G. G. Riffkin,, L. J. Depiazzi,, and J. I. Rood. 1991. Identification of three gene regions associated with virulence in Dichelobacter nodosus, the causative agent of ovine footrot. J. Gen. Microbiol. 137: 2117 2124.
29. Katz, M. E.,, R. A. Strugnell,, and J. I., Rood. 1992. Molecular characterization of a genomic region associated with virulence in Dichelobacter nodosus. Infect. Immun. 60: 4586 4592.
30. Katz, M. E.,, C. L. Wright,, T. S. Gartside,, B. F. Cheetham,, C. V. Doidge,, E. K. Moses,, and J. I. Rood. 1994. Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J. Bacteriol. 176: 2663 2669.
31. Klose, K. E.,, and J. J. Mekalanos. 1998. Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180: 303 316.
32. Li, Z.,, and M. P. Deutscher. 1994. The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J. Biol. Chem. 269: 6064 6071.
33. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina,, and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527 543.
34. Mattick, J. S.,, B. J. Anderson,, P. T. Cox,, B. P. Dalrymple,, M. M. Bills,, M. Hobbs,, and J. R. Egerton. 1991. Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serotypes A to I: class I and class II strains. Mol. Microbiol. 5: 561 573.
35. Moses, E. K.,, R. T. Good,, M. Sinistaj,, S. J. Billington,, C. J. Langford,, and J. I. Rood. 1995. A multiple site-specific inversion model for the control of Ompl phase and antigenic variation in Dichelobacter nodosus. Mol. Microbiol. 17: 183 196.
36. Pearson, J. P.,, E. C. Pesci,, and B. H. Iglewski. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179: 5756 5767.
37. Pullinger, G. D.,, and A. J. Lax. 1992. A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol. Microbiol. 6: 1631 1643.
38. Radnedge, L.,, M. A. Davis,, B. Youngren,, and S. J. Austin. 1997. Plasmid maintenance functions of the large virulence plasmid of Shigella flexneri. J. Bacteriol. 179: 3670 3675.
39. Reiter, W.-D.,, P. Palm,, and S. Yeats. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17: 1907 1914.
40. Ritter, A.,, G. Blum,, L. Emody,, M. Kerenyi,, A. Bock,, B. Neuhier,, W. Rabsch,, F. Scheutz,, and J. Hacker. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol. 17: 109 121.
41. Romeo, T.,, M. Gong,, M. Y. Liu,, and A.-M. Brun-Zinkernagel. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size and surface properties. J. Bacteriol. 175: 4744 4755.
42. Rood, J. I.,, P. A. Howart,, V. Haring,, W. K. Yong,, D. Liu,, M. A. Palmer,, D. R. Pitman,, I. Links,, D. J. Stewart,, and J. A. Vaughan. 1996. Comparison of gene probe and conventional methods for the diagnosis of ovine footrot. Vet. Microbiol 52: 127 142.
43. Simonet, M.,, and S. Falkow. 1992. Invasin expression in Yersinia pseudotuberculosis. Infect. Immun. 60: 4414 4417.
44. Stewart, D. J. 1979. The role of elastase in the differentiation of Bacteroides nodosus infections in sheep and cattle. Res. Vet. Sci. 27: 99 105.
45. Tian, Q. B.,, M. Ohnishi,, A. Tabuchi,, and Y. Terawaki. 1996. A new plasmid-encoded killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rtsl. Biochem. Biophys. Res. Commun. 220: 280 284.
46. Tominaga, H.,, S. Kawagishi,, H. Ashida,, Y. Sawa,, and H. Ochiai. 1995. Structure and replication of cryptic plasmids, pMAl and pMA2, from a unicellular cyanobacterium, Microcystis aeruginosa. Biosci. Biotechnol. Biochem. 59: 1217 1220.
47. Tyagi, J. S.,, and A. K. Klinger. 1992. Identification of the lOSa RNA structural gene of Mycobacterium tuberculosis. Nucleic Acids Res. 20: 138.
48. Whittle, G.,, G. A. Bloomfield,, M. E. Katz,, and B. F. Cheetham. Modulation of virulence by the integration of genetic elements into the genome of Dichelobacter nodosus, the causative agent of ovine footrot. Submitted for publication.
49. Whittle, G.,, M. E. Katz,, E. H. Clayton,, and B. F. Cheetham. Unpublished data.


Generic image for table
Table 1

Sequence analysis of regions 1 and 3of A198

Citation: Cheetham B, Whittle G, Katz M. 1999. Are the vap Regions of Dichelobacter nodosus Pathogenicity Islands?, p 203-218. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error