Chapter 9 : Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap09-2.gif


Cholera is acquired by ingesting food or water contaminated with the bacterium . The genome contains a variety of potentially mobile genetic elements including plasmids, bacteriophages, and pathogenicity islands (PAIs), which are reviewed in this chapter. The chapter describes recent exciting and provocative discoveries that the PAIs in epidemic can be acquired by horizontal gene transfer by bacteriophages. The genes encoding the most important virulence factors, cholera enterotoxin (CT) and the toxin-coregulated pilus (TCP), are not usually present in strains that are commonly isolated from the environment. All epidemic strains of contain ctxAB genes, which encode CT. The major protein forming the pilus structure (TcpA) is encoded by the tcpA gene and is 20.5 kDa in size. The determination of the genomic sequence of will undoubtedly reveal additional virulence factors, PAIs, and other mobile virulence elements. The recent findings described in the chapter should lead to future studies that will help us understand the emergence, pathogenesis, and spread of cholera, a disease which still surprises and challenges us after a century of study.

Citation: Karaolis D, Kaper J. 1999. Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae, p 167-187. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Schematic map of the CTXΦ genome integrated in the chromosome.

Citation: Karaolis D, Kaper J. 1999. Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae, p 167-187. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic map of the VPIΦ genome integrated in the chromosome.

Citation: Karaolis D, Kaper J. 1999. Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae, p 167-187. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albert, M. J. 1996. Epidemiology and molecular biology of Vibrio cholerae 0139 Bengal. Indian J. Med. Res. 104: 14 27.
2. Albert, M. J. 1994. Vibrio cholerae 0139 Bengal. J. Clin. Microbiol. 32: 2345 2349.
3. Albert, M. J.,, A. K. Siddique,, M. S. Islam,, A. S. G. Faruque,, M. Ansaruzzaman,, S. M. Faruque,, and R. B. Sack. 1993. A large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341: 704.
4. Aim, R. A.,, U. H. Stroeher,, and P. A. Manning. 1988. Extracellular proteins of Vibrio cholerae: nucleotide sequence of the structural gene ( hlyA) for the haemolysin of the haemolytic El Tor strain 017 and characterization of the hlyA mutation in the non-haemolytic classical strain 569B. Mol. Microbiol. 2: 481 488.
5. Almeida, R. J.,, D. N. Cameron,, W. L. Cook,, and I. K. Wachsmuth. 1992. Vibriophage VcA-3 as an epidemic strain marker for the U.S. Gulf Coast Vibrio cholerae O1 clone. J. Clin. Microbiol. 30: 300 304.
6. Barker, A.,, C. A. Clark,, and P. A. Manning. 1994. Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1. J. Bacteriol. 176: 5450 5458.
7. Bartowsky, E. J.,, S. R. Attridge,, C. J. Thomas,, G. Mayrhofer,, and P. A. Manning. 1990. Role of the P plasmid in attenuation of Vibrio cholerae Ol. Infect. Immun. 58: 3129 3134.
8. Barua, D. 1972. The global epidemiology of cholera in recent years. Proc. R. Soc. Med. 65: 423 428.
9. Barua, D.,, and C. Z. Gomez. 1967. Observations on some tests commonly employed for the characterization of El Tor vibrios. Bull. W. H. O. 37: 800 803.
10. Benenson, A. S., 1995. Cholera, p. 94 100. In A. S. Benenson (ed.), Control of Communicable Diseases in Man, 16th ed. American Public Health Association, New York, N.Y.
11. Bik, E. M.,, A. E. Bunschoten,, R. D. Gouw,, and F. R. Mooi. 1995. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14: 209 216.
12. Bik, E. M.,, A. E. Bunscoten,, R. J. L. Willems,, A. C. Y. Chang,, and F. R. Mooi. 1996. Genetic organization and functional analysis of the otn DNA essential for cell-wall polysaccharide synthesis in Vibrio cholerae 0139. Mol. Microbiol. 20: 799 811.
13. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschape,, and J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62: 606 614.
14. Carroll, P. A.,, K. T. Tashima,, M. B. Rogers,, V. J. DiRita,, and S. B. Calderwood. 1997. Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol. Microbiol. 25: 1099 1111.
15. Chen, F.,, G. M. Evins,, W. L. Cook,, R. Almeida,, N. Hargrett-Bean,, and I. K. Wachsmuth. 1991. Genetic diversity among toxigenic and nontoxigenic Vibrio cholerae O1 isolated from the western hemisphere. Epidemiol. Infect. 107: 225 233.
16. Cholera Working Group International Centre for Diarrhaeal Diseases Research, Bangladesh. 1993. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal. Lancet 342: 387390.
17. Clark, C. A.,, L. Purins,, P. Kaewrakon,, and P. A. Manning. 1997. VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. Mol. Microbiol. 26: 1137 1138.
18. Comstock, L. E.,, J. A. Johnson,, J. M. Michalski,, J. G. Morris Jr.,, and J. B. Kaper. 1996. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae 0139 and characterization of the insertion site in the chromosome of V. cholerae O1. Mol. Microbiol. 19: 815 826.
19. Cook, W. L.,, K. Wachsmuth,, S. R. Johnson,, K. A. Birkness,, and A. R. Samadi. 1984. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1. Infect. Immun. 45: 222 226.
20. DiRita, V. J.,, and J. J. Mekalanos. 1991. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64: 29 37.
21. DiRita, V. J.,, C. Parsot,, G. Jander,, and J. J. Mekalanos. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 88: 5403 5407.
22. Ehara, M.,, S. Shimodori,, F. Kojima,, Y. Ichinose,, T. Hirayama,, M. J. Albert,, K. Supawat,, Y. Honma,, M. Iwanaga,, and K. Amako. 1997. Characterization of filamentous phages of Vibrio cholerae O139 and Ol. FEMS Microbiol. Lett. 154: 293 301.
23. Everiss, K. D.,, K. J. Hughes,, M. E. Kovach,, and K. M. Peterson. 1994. The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect. Immun. 62: 3289 3298.
24. Faruque, A. S. G.,, G. J. Fuchs,, and M. J. Albert. 1996. Changing epidemiology of cholera due to Vibrio cholerae 01 and 0139 Bengal in Dhaka, Bangladesh. Epidemiol. Infect. 116: 275 278.
25. Faruque, S. M.,, A. R. M. A. Alim,, M. M. Rahman,, A. K. Siddique,, R. B. Sack,, and M. J. Albert. 1993. Clonal relationships among classical Vibrio cholerae 01 strains isolated between 1961 and 1992 in Bangladesh. J. Clin. Microbiol. 31: 2513 2516.
26. Faruque, S. M.,, M. J. Albert,, and J. J. Mekalanos. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62: 1301 1314.
27. Feeley, J. C. 1965. Classification of Vibrio cholerae (Vibrio comma), including El Tor vibrios, by intrasub-specific characteristics. J Bacteriol. 89: 665 678.
28. Felsenfeld, O.,, S. Mukerjee,, and N. Nasunya. 1962. Some characteristics of El Tor vibrios isolated from the 1961-62 epidemics. J. Trop. Med. Hyg. 65: 200 202.
29. Fiore, A. E.,, J. M. Michalski,, R. G. Russell,, C. L. Sears,, and J. B. Kaper. 1997. Cloning, characterization, and chromosomal mapping of a phospholipase (lecithinase) produced by Vibrio cholerae. Infect. Immun. 65: 3112 3117.
30. Gallut, J., 1974. The cholera vibrios, p. 17 40. In D. Barua, and W. Burrows (ed.), Cholera. The W. B. Saunders Co., Philadelphia, Pa.
31. Gangarosa, E. J.,, A. Sanati,, H. Saghari,, and J. C. Feeley. 1967. Multiple serotypes of Vibrio cholerae isolated from a case of cholera. Lancet i: 646 648.
32. Girón, J. A.,, A. S. Y. Ho,, and G. K. Schoolnick. 1991. An inducible bundle-forming pilus of enteropatho-genic Escherichia coli. Science 254: 710 713.
33. Goldberg, I.,, and J. J. Mekalanos. 1986. Effect of a recA mutation on cholera toxin gene amplification and deletion events. J. Bacteriol. 165: 723 731.
34. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre,, and W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vivo and in vitro in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8: 213 225.
35. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
36. Harkey, C. W.,, K. D. Everiss,, and K. M. Peterson. 1995. Isolation and characterization of a Vibrio cholerae gene ( tagA) that encodes a ToxR-regulated lipoprotein. Gene 153: 81 84.
37. Häse, C. C.,, and J. J. Mekalanos. 1998. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 95: 730 734.
38. Herrington, D. A.,, R. H. Hall,, G. A. Losonsky,, J. J. Mekalanos,, R. K. Taylor,, and M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168: 1487 1492.
39. Hill, D. F.,, N. J. Short,, R. N. Perham,, and G. B. Peterson. 1991. DNA sequence of the filamentous bacteriophage Pfl. J. Mol. Biol. 218: 349 363.
40. Hobbs, M.,, and J. S. Mattick. 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10: 233 243.
41. Hochhut, B.,, and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99 110.
42. Hughes, K. J.,, K. D. Everiss,, C. W. Harkey,, and K. M. Peterson. 1994. Identification of a Vibrio cholerae ToxR-activated gene ( tagD) that is physically linked to the toxin-coregulated pilus ( tcp) gene cluster. Gene 148: 97 100.
43. Hughes, K. J.,, K. D. Everiss,, M. E. Kovach,, and K. M. Peterson. 1994. Sequence analysis of the Vibrio cholerae acfD gene reveals the presence of an overlapping reading frame, orfZ, which encodes a protein that shares sequence similarity to the FliA and FliC products of Salmonella. Gene 146: 79 82.
44. Iredell, J. R.,, U. H. Stroeher,, H. M. Ward,, and P. A. Manning. 1998. Lipopolysaccharide O-antigen expression and the effect of its absence on virulence in rfb mutants of Vibrio cholerae Ol. FEMS Immunol. Med. Microbiol. 20: 45 54.
45. Jouravleva, E. A.,, G. A. McDonald,, C. F. Garon,, M. Boesman-Finkelstein,, and R. A. Finkelstein. 1998. Characterization and possible functions of a new filamentous bacteriophage from Vibrio cholerae 0139. Microbiology 144: 315 324.
46. Jouravleva, E. A.,, G. A. McDonald,, J. W. Marsh,, R. K. Taylor,, M. Boesman-Finkelstein,, and R. A. Finkelstein. 1998. The Vibrio cholerae mannose-sensitive hemagglutinin is the receptor for a filamentous bacteriophage from V. cholerae O139. Infect. Immun. 66: 2535 2539.
47. The seventh pandemic of cholera, p. 114. In D. Barua, and W. Burrows (ed.), Cholera. The W. B. Saunders Co., Philadelphia, Pa.
48. Kaper, J. B.,, and M. M. Baldini,. 1992. Genetics, p. 69 94. In D. Barua, and W. B. Greenough III (ed.), Cholera. Plenum Medical Book Co., New York, N.Y.
49. Kaper, J. B.,, J. Michalski,, J. M. Ketley,, and M. M. Levine. 1994. Potential for reacquisition of cholera enterotoxin genes by attenuated Vibrio cholerae vaccine strain CVD103-HgR. Infect. Immun. 62: 1480 1483.
50. Kaper, J. B.,, J. G. Morris Jr.,, and M. M. Levine. 1995. Cholera. Clin. Microbiol. Rev. 8: 48 86.
51. Kar, S.,, R. K. Ghosh,, A. N. Ghosh,, and A. Ghosh. 1996. Integration of the DNA of a novel filamentous bacteriophage VSK from Vibrio cholerae 0139 into the host chromosomal DNA. FEMS Microbiol. Lett. 145: 17 22.
52. Karaolis, D. K. R.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper,, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 3134 3139.
53. Karaolis, D. K. R.,, R. Lan,, and P. R. Reeves. 1994. Molecular evolution of the 7th pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae strains. J. Bacteriol. 176: 6199 6206.
54. Karaolis, D. K. R.,, R. Lan,, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-01 Vibrio cholerae. J. Bacteriol. 177: 3191 3198.
55. Karaolis, D. K. R.,, S. Somara,, D. R. Maneval Jr.,, J. A. Johnson,, and J. B. Kaper. A bacteriophage encoding a pathogenicity island, type IV pilus, and phage receptor in cholera bacteria. Nature, in press.
56. Koblavi, S.,, F. Grimont,, and P. A. D. Grimont. 1990. Clonal diversity of Vibrio cholerae Ol evidenced by rRNA gene restriction patterns. Res. Microbiol. 141: 645 657.
57. Koonin, E. V. 1992. The second cholera toxin, Zot, and its plasmid-encoded and phage encoded homologues constitute a group of putative ATP-ases with an altered purine NTP-binding motif. FEBS Lett. 312: 3 6.
58. Kovach, M. E.,, K. J. Hughes,, K. D. Everiss,, and K. M. Peterson. 1994. Identification of a ToxR-activated gene, tagE, that lies within the accessory colonization factor gene cluster of Vibrio cholerae 0395. Gene 148: 91 95.
59. Kovach, M. E.,, M. D. Shaffer,, and K. M. Peterson. 1996. A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142: 2165 2174.
60. Levine, M. M.,, J. B. Kaper,, D. Herrington,, G. Losonsky,, J. G. Morris,, M. Clements,, R. E. Black,, B. Tall,, and R. Hall. 1988. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect. Immun. 56: 161 167.
61. Lin, W.,, K. J. Fullner,, R. Clayton,, J. A. Sexton,, M. B. Rogers,, K. E. Calia,, S. B. Calderwood,, C. Frasier,, and J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc. Natl. Acad. Sci. USA 96: 1071 1076.
62. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina,, and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527 543.
63. Manning, P. A. 1997. The tcp gene cluster of Vibrio cholerae. Gene 192: 63 70.
64. Manning, P. A.,, U. W. Stroeher,, and R. Morona,. 1994. Molecular basis for O-antigen biosynthesis in Vibrio cholerae Ol: Ogawa-lnaba switching, p. 77 94. In I. K. Wachsmuth,, P. A. Blake,, and ø. Olsvik (ed.), Vibrio cholerae and Cholera. American Society for Microbiology, Washington, D.C.
65. Mazel, D.,, B. Dychinco,, V. A. Webb,, and J. Davies. 1998. A distinctive class of integren in the Vibrio cholerae genome. Science 280: 605 608.
66. Mekalanos, J. J. 1985. Cholera toxin: genetic analysis, regulation, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 118: 97 118.
67. Mekalanos, J. J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 253 263.
68. Michalski, J.,, J. E. Galen,, A. Fasano,, and J. B. Kaper. 1993. CVD110, an attenuated Vibrio cholerae Ol El Tor live oral vaccine strain. Infect. Immun. 61: 4462 4468.
69. Miller, V. L.,, R. K. Taylor,, and J. J. Mekalanos. 1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271 279.
70. Model, P.,, and M. Russel,. 1988. Filamentous bacteriophage, p. 375 456. In R. Calender (ed.), The Bacteriophages. Plenum Publishing Corp., New York, N.Y.
71. Morris, J. G. Jr.,. 1994. Non-Ol group 1 Vibrio cholerae strains not associated with epidemic disease, p. 103 115. In I. K. Wachsmuth,, P. A. Blake,, and ø Olsvik (ed.). Vibrio cholerae and Cholera: Molecular to Global Perspectives. American Society for Microbiology, Washington, D.C.
72. Mukhopadhyay, A. K.,, A. Basu,, P. Garg,, P. K. Bag,, A. Ghosh,, S. K. Bhattacharya,, Y. Takeda,, and G. B. Nair. 1998. Molecular epidemiology of reemergent Vibrio cholerae 0139 Bengal in India. J. Clin. Microbiol. 36: 2149 2152.
73. Nesper, J.,, J. Blass,, M. Fountoulakis,, and J. Reidl. 1999. Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration. J. Bacteriol. 181: 2902 2913.
74. Ogawa, A.,, and T. Takeda. 1993. The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol. Immunol. 37: 607 616.
75. Ogierman, M. A.,, A. FaUarino,, T. Riess,, S. G. Williams,, S. R. Attridge,, and P. A. Manning. 1997. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J. Bacteriol. 179: 7072 7080.
76. Olsvik, ø.,, J. Wahlberg,, B. Petterson,, M. Uhlen,, T. Popovic,, I. K. Wachsmuth,, and P. I. Fields. 1993. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae Ol strains. J. Clin. Microbiol. 31: 22 25.
77. Parsot, C.,, and J. J. Mekalanos. 1991. Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J. Bacteriol. 173: 2842 2851.
78. Pearson, G. D. N.,, A. Woods,, S. L. Chiang,, and J. J. Mekalanos. 1993. CTX genetic element encodes a site-specific recombinase system and an intestinal colonization factor. Proc. Natl. Acad. Sci. USA 90: 3750 3754.
79. Peterson, K. M.,, and J. J. Mekalanos. 1988. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56: 2822 2829.
80. Pollitzer, R. 1959. Cholera. World Health Organization, Geneva, Switzerland.
81. Popovic, T.,, C. A. Bopp,, 0. Olsvik,, and K. Wachsmuth. 1993. Epidemiologic application of a standardized ribotype scheme for V. cholerae Ol. J. Clin. Microbiol. 31: 2474 2482.
82. Rader, A. E.,, and J. R. Murphy. 1988. Nucleotide sequences and comparison of the hemolysin determinants of Vibrio cholerae El Tor RV79(Hly +) and RV79(Hly ) and classical 569B(Hly ). Infect. Immun. 56: 1414 1419.
83. Ramamurthy, T.,, S. Garg,, R. Sharma,, S. K. Bhattacharya,, G. B. Nair,, T. Shimada,, T. Takeda,, T. Karasawa,, H. Kurazano,, A. Pal,, and Y. Takeda. 1993. Emergence of a novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341: 703 704.
84. Reidl, J.,, and J. J. Mekalanos. 1995. Characterization of Vibrio cholerae bacteriophage K139 and use of a novel mini-transposon to identify a phage-encoded virulence factor. Mol. Microbiol. 18: 685 701.
85. Rhine, J. A.,, and R. K. Taylor. 1994. TcpA pilin sequences and colonization requirements for Ol and 0139 Vibrio cholerae. Mol. Microbiol. 13: 1013 1020.
86. Rowe, B.,, and J. A. Frost,. 1992. Vibrio phages and phage-typing, p. 95 105. In D. Barua, and W. B. Greenough III (ed.), Cholera. Plenum Publishing Corp., New York, N.Y.
87. Rubin, E. J.,, W. Lin,, J. J. Mekalanos,, and M. K. Waldor. 1998. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol. Microbiol. 28: 1247 1254.
88. Rubin, E. J.,, M. K. Waldor,, and J. J. Mekalanos,. 1998. Mobile genetic elements and the evolution of new epidemic strains of Vibrio cholerae, p. 147 161. In. M. Krause (ed.), Emerging Infections. Academic Press, Inc., New York, N.Y.
89. Russel, M. 1995. Moving through the membrane with filamentous phages. Trends Microbiol. 3: 223 228.
90. Salles, C. A.,, and H. Momen. 1991. Identification of Vibrio cholerae by enzyme electrophoresis. Trans. R. Soc. Trap. Med. Hyg. 85: 544 547.
91. Samadi, A. R.,, N. Shahid,, A. Eusof,, M. Yunus,, M. I. Huq,, M. U. Khan,, A. S. M. M. Rahman,, and A. S. G. Faruque. 1983. Classical Vibrio cholerae biotype displaces El Tor in Bangladesh. Lancet i: 805 807.
92. Sears, C. L.,, and J. B. Kaper. 1996. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60: 167 215.
93. Sharma, D. P.,, C. Thomas,, R. H. Hall,, M. M. Levine,, and S. R. Attridge. 1989. Significance of toxin-coregulated pilus as protective antigens of Vibrio cholerae on the infant mouse model. Vaccine 7: 451 456.
94. Shaw, C. E.,, and R. K. Taylor. 1990. Vibrio cholerae 0395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins. Infect. Immun. 58: 3042 3049.
95. Shimada, T.,, G. B. Nair,, B. C. Deb,, M. J. Albert,, R. B. Sack,, and Y. Takeda. 1993. Outbreak of Vibrio cholerae non-O1 in India and Bangladesh. Lancet 341: 1346.
96. Shimodori, S.,, K. Iida,, F. Kojima,, A. Takade,, M. Ehara,, and K. Amako. 1997. Morphological features of a filamentous phage from Vibrio cholerae 0139 Bengal. Microbiol. Immunol. 41: 757 763.
97. Shousha, A. T. 1947. Cholera epidemic in Egypt: a preliminary report. Bull. W. H. O. 1: 353 381.
98. Stroeher, U. H.,, K. E. Jedani,, B. K. Dredge,, R. Morona,, M. H. Brown,, L. E. Karageorgos,, M. J. Albert,, and P. A. Manning. 1995. Genetic rearrangements in the rfb regions of Vibrio cholerae O1 and O0139. Proc. Natl. Acad. Sci. USA 92: 10374 10378.
99. Stroeher, U. H.,, K. E. Jedani,, and P. A. Manning. 1998. Genetic organization of the genes associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum 01 and 02: a review. Gene 223: 269 282.
100. Stroeher, U. H.,, L. E. Karageorgos,, R. Morona,, and P. A. Manning. 1992. Serotype conversion in Vibrio cholerae O1. Proc. Natl. Acad. Sci. USA 89: 2566 2570.
101. Stroeher, U. H.,, G. Parasivam,, B. K. Dredge,, and P. A. Manning. 1997. Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J. Bacteriol. 179: 2740 2747.
102. Sun, D.,, J. J. Mekalanos,, and R. K. Taylor. 1990. Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cholerae provide protection in the infant mouse experimental cholera model. J. Infect. Dis. 161: 1231 1236.
103. Tacket, C. O.,, R. K. Taylor,, G. Losonsky,, Y. Lim,, J. P. Nataro,, J. B. Kaper,, and M. M. Levine. 1998. Investigation of the roles of toxin-coregulated pili and mannose sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae 0139 infection. Infect. Immun. 66: 692 695.
104. Taylor, R. K.,, V. L. Miller,, D. B. Furlong,, and J. J. Mekalanos. 1987. The use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84: 2833 2837.
105. Taylor, R. K.,, C. E. Shaw,, K. M. Peterson,, P. Spears,, and J. J. Mekalanos. 1988. Safe, live Vibrio cholerae vaccines? Vaccine 6: 151 154.
106. Trucksis, M.,, J. E. Galen,, J. Michalski,, A. Fasano,, and J. B. Kaper. 1993. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl. Acad. Sci. USA 90: 5267 5271.
107. Trucksis, M.,, J. Michalski,, Y. K. Deng,, and J. B. Kaper. 1998. The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA 95: 14464 14469.
108. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 1914.
109. Waldor, M. K.,, E. J. Rubin,, G. D. N. Pearson,, H. Kimsey,, and J. J. Mekalanos. 1997. Regulation, replication, and integration functions of the Vibrio cholerae CTX�� are encoded by region RS2. Mol. Microbiol. 24: 917 926.
110. Waldor, M. K.,, H. Tschape,, and J. J. Mekalanos. 1996. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178: 4157 4167.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error