Chaper 1 : Sequencing Microbial Genomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sequencing Microbial Genomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap01-2.gif


This chapter gives an overview of the strategies developed to sequence entire microbial genomes, and discusses the advantages and disadvantages of various approaches. For total-genome shotgun sequencing, the genomic DNA is fragmented into random pieces and subcloned directly into pUC, Ml3, or other vectors that accept insert sizes of 1 to 5 kbp. Typically, 6 to 10 genome equivalents are sequenced to cover the DNA molecule completely by using standard primers that prime at the end of the cloning vector. The primer-walking strategy has been tried primarily in the context of the yeast sequencing project. The method requires an ordered library of clones, either an overlapping set of large clones (e.g., a cosmid library) or an ordered set of discrete subclones (e.g., two 6-base cutter restriction digest libraries from a cosmid). Regardless of the sequencing strategy chosen in a particular project, there are four general phases of the sequencing process. They are , , , and. Only one genome project, the effort at the University of Wisconsin, made substantial progress with radioactive sequencing before changing to automated-sequencing strategies. There are two different kinds of sequencing laboratories that produce genomic sequence: sequencing factories and smaller laboratories with an output of 2 to 5 Mbp of genomic sequence per year. With increasing levels of automation, the sequence production costs will be reduced, and in the future it may be possible to reach 10 cents per finished base pair.

Citation: Sensen C. 1999. Sequencing Microbial Genomes, p 1-9. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ansorge, W.,, B. Sproat,, J. Stegemann,, and C. Schwager. 1986. A non-radioactive automated method for DNA sequence determination. J. Biochem. Biophys. Methods 13: 315 323.
2. Baer, R.,, A. T. Bankier,, M. D. Biggin,, P. L. Deininger,, P. J. Farrell,, T. G. Gibson,, G. Hatfull,, G. S. Hudson,, S. C. Satchwell,, C. Sequin,, P. S. Tuffiiell,, and B. G. Barrell. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207 211.
3. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glassner,, C. K. Rhode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453 1474.
4. Bonfield, J. K.,, K. F. Smith,, and R. Staden. 1995. A new DNA sequence assembly program. Nucleic Acids Res. 23: 4992 4999.
5. Burland, V.,, G. Plunkett III,, D. L. Daniels,, and F. R. Blattner. 1993. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics 16: 551 561.
6. Charlebois, R. L.,, T. Gaasterland,, M. A. Ragan,, W. F. Doolittle,, and C. W. Sensen. 1996. The Sulfolobus solfataricus P2 genome project. FEBS Lett. 389: 88 91.
7. Dolan, M.,, A. Ally,, M. S. Purzycki,, W. Gilbert,, and P. M. Gillevet. 1995. Large-scale genomic sequencing: optimization of genomic chemical sequencing reactions. BioTechniques 19: 264 274.
8. Elliott, S. J.,, L. A. Wainwright,, T. K. McDaniel,, K. G. Jarvis,, Y. K. Deng,, L.-C. Lai,, B. P. McNamara,, M. S. Donnenberg,, and J. B. Kaper. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol 28: 1 4.
9. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J.-F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenny,, G. Sutton,, W. FitzHugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L.-I. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
10. Fräser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley,, J. L. Fritchman,, J. F. Weidman,, K. V. Small,, M. Sandusky,, J. Fuhrmann,, D. Nguyen,, T. R. Utterback,, D. M. Saudek,, C. A. Phillips,, J. M. Merrick,, J.-F. Tomb,, B. A. Dougherty,, K. F. Bott,, P.-C. Hu,, T. S. Lucier,, S. N. Peterson,, H. O. Smith,, C. A. Hutchison III,, and J. C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium . Science 270: 397 403.
11. Gaasterland, T.,, and C. W. Sensen. 1996. Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie (Paris) 78: 302 310.
12. Glaser, V. 1997. TIGR Conference highlights crucial issues of speed and cost of genome sequencing. Genet. Eng. News 17: 1.
13. Gordon, P., et al. Unpublished data.
14. Haas, S.,, M. Vingron,, A. Poustka,, and S. Wiemann. 1998. Primer design for large scale sequencing. Nucleic Acids Res. 26: 3006 3012.
15. Koop, B. F.,, L. Rowan,, W.-Q. Chen,, P. Deshpande,, H. Lee,, and L. Hood. 1993. Sequence length and error analysis of Sequenase and automated Taq cycle sequencing methods. BioTechniques 14: 442 447.
16. Kunst, F.,, N. Ogasawara,, I. Moszer, A. M. Albertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessières,, A. Bolotin,, S. Bordiert,, R. Borriss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S.-K. Choi,, J.-J. Codani,, I. F. Connerton,, N. J. Cummings,, R. A. Daniel,, F. Denizot,, K. M. Devine,, A. Düsterhöft,, S. D. Ehrlich,, P. T. Emmerson,, K. D. Entian,, J. Errington,, C. Fabret,, E. Ferrari,, D. Foulger,, C. Fritz,, M. Fujita,, Y. Fujita,, S. Fuma,, A. Galizzi,, N. Galleron,, S.-Y. Ghim,, P. Glaser,, A. Goffeau,, E. J. Golightly,, G. Grandi,, G. Giuseppi,, B. J. Guy,, K. Haga,, J. Haiech,, C. R. Harwood,, A. Henaut,, H. Hilbert,, S. Holsappel,, S. Hosono,, M.-F. Hullo,, M. Itaya,, L. Jones,, B. Joris,, D. Karamata,, Y. Kashahara,, M. Klaerr-Blanchard,, C. Klein,, Y. Kobayashi,, P. Koetter,, G. Koningstein,, S. Krogh,, M. Kumano,, K. Kurita,, A. Lapidus,, S. Lardinois,, J. Lauber,, V. LazareviC,., S.-M. Lee,, A. Levine,, H. Liu,, S. Masuda,, C. Mauël,, C. Médigue,, N. Medina,, R. P. Mellado,, M. Mizuno,, D. Moestl,, S. Nakai,, M. Noback,, D. Noone,, M. O'Reilly,, K. Ogawa,, A. Ogiwara,, B. Oudega,, S.-H. Park,, V. Parro,, T. M. Pohl,, D. Porteteile,, S. Porwollik,, A. M. Prescott,, E. Presecan,, P. PujiC,., B. Purnelle,, G. Rapoport,, M. Rey,, S. Reynolds,, M. Rieger,, C. Rivolta,, E. Rocha,, B. Roche,, M. Rose,, Y. Sadaie,, T. Sato,, E. Scanlan,, S. Schleich,, R. Schroeter,, F. Scoffone,, J. Sekiguchi,, A. Sekowska,, S. J. Seror,, P. Serror,, B.-S. Shin,, B. Soldo,, A. Sorokin,, E. Tacconi,, T. Takagi,, H. Takahashi,, K. Takemaru,, M. Takeuchi,, A. Tamakoshi,, T. Tanaka,, P. Terpstra,, A. Tognoni,, V. Tosato,, S. Uchiyama,, M. Vandenbol,, F. Vannier,, A. Vassarotti,, A. Viari,, R. Wambutt,, E. Wedler,, H. Wedler,, T. Weitzenegger,, P. Winters,, A. Wipat,, H. Yamamoto,, K. Yamane,, K. Yasumoto,, K. Yata,, K. Yoshida,, H.-F. Yoshikawa,, E. Zumstein,, H. Yoshikawa,, and A. Danchin. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390: 249 256.
17. Lee, L. G.,, C. R. Cornell,, S. L. Woo,, R. D. Cheng,, B. F. McArdle,, C. W. Fuller,, N. D. Halloran,, and R. K. Wilson. 1992. DNA sequencing with dye-labelled terminators and T7 polymerase: effect of dyes and dNTPs on the incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res. 20: 2471 2483.
18. Panussis, D. A.,, M. W. Cook,, L. L. Rifkin,, J. E. Snider,, J. T. Strong,, R. M. McGrane,, R. K. Wilson,, and E. R. Mardis. 1998. A pneumatic device for rapid loading of DNA sequencing gels. Genome Res. 8: 543 548.
19. Sensen, C. W.,, H. P. Klenk,, R. K. Singh,, G. Allard,, C. C.-Y. Chan,, Q. Liu,, S. Penny,, F. Young,, M. Schenk,, T. Gaasterland,, W. F. Doolittle,, M. A. Ragan,, and R. L. Charlebois. 1996. Organizational characteristics and information content of an archaeal genome: 156 kbp of contiguous sequence from Sulfolobus solfataricus P2. Mol. Microbiol 22: 175 191.
20. Smith, L. M.,, J. Z. Sanders,, R. J. Kaiser,, P. Hughes,, C. Dodd,, C. R. Connel,, C. Heiner,, S. B. H. Kent,, and L. E. Hood. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321: 674 679.
21. Studier, F. 1989. A strategy for high-volume sequencing of cosmid DNAs: random and directed priming with a library of oligonucleotides. Proc. Natl. Acad. Sci. USA 86: 6917 6921.
22. Venter, J. C.,, H. O. Smith,, and L. Hood. 1996. A new strategy for genome sequencing. Nature 381: 364 366.
23. Voss, H.,, S. Wiemann,, U. Wirkner,, C. Schwager,, J. Zimmermann,, J. Stegemann,, H. Erfle,, N. A. Hewitt,, T. Rupp,, and W. Ansorge. 1992. Automated DNA sequencing system resolving 1000 bases with fluorescein*-15-dATP as internal label. Methods Mol. Cell. Biol 3: 153 155.
24. Voss, H.,, S. Wiemann,, D. Grothues,, C. Sensen,, J. Zimmermann,, C. Schwager,, J. Stegemann,, H. Erfle,, T. Rupp,, and W. Ansorge. 1993. Automated low-redundancy large-scale DNA sequencing by primer walking. BioTechniques 15: 714 721.
25. Watson, J. D. 1990. The human genome project. Science 248: 44 49.
26. Wiemann, S.,, H. Voss,, C. Schwager,, T. Rupp,, J. Stegemann,, J. Zimmermann,, D. Grothues,, C. Sensen,, H. Erfle,, A. Banrevi,, and W. Ansorge. 1993. Sequencing and analysis of 51.6 kilobases on the left arm of chromosome XI from Saccharomyces cerevisiae reveals 23 open reading frames including the fas1 gene. Yeast 9: 1343 1348.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error