Chapter 5 : Cell Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cell Biology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap05-2.gif


Chlamydiae are extremely successful pathogens of humans and animals. The chlamydial developmental cycle may be considered superficially analogous to bacterial sporulation in that it consists of an environmentally stable cell type, called the elementary body (EB), and a functionally and morphologically distinct vegetative cell type, termed the reticulate body (RB). Electrostatic interactions play an important role in at least the initial stages of infection. Attachment is dependent upon cations to neutralize the net negative surface charge of both host and parasite. Several chlamydial components have been proposed at one time or another to function as adhesins. A number of EB surface components have been proposed as potential ligands mediating attachment to host cells. Currently, heparan sulfate-like proteoglycans are considered one of the more promising candidates mediating at least an initial electrostatic interaction between the EB and the host cell surface. The general implication is that chlamydiae, like many other intracellular pathogens, similarly stimulate signal transduction pathways, including tyrosine phosphorylation of host proteins involved in rearrangements of the actin skeleton to promote entry. This chapter talks about intracellular development. Intracellular parasites have evolved diverse strategies for evasion of host cellular defense mechanisms associated with adaptations for survival in distinct intracellular compartments. The chapter discusses effects of the host cell. It is essential that chlamydiae maintain the integrity of the host cell for the duration of their intracellular growth because they are obligate intracellular parasites.

Citation: Hackstadt T. 1999. Cell Biology, p 101-138. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The developmental cycle. Infection is initiated by EBs. Immediately after endocytosis, EBs are found within tightly associated membrane vesicles (0 Hr). Within a few hours, EBs differentiate into the larger, metabolically active RBs (2 Hr). As the chlamydiae multiply, the inclusion increases in size to accommodate the multiplying bacteria. RBs are typically observed juxtaposed to the inclusion membrane (18 Hr). As the infection progresses, increasing numbers of chlamydiae are observed unattached in the interior of the inclusion (36 Hr). These unattached organisms are, for the most part, EBs and intermediate developmental forms. EBs accumulate within the inclusion even as RBs, still associated with the inclusion membrane, continue to multiply until the cell lyses at 40 to 48 h postinfection. Reprinted from with permission.

Citation: Hackstadt T. 1999. Cell Biology, p 101-138. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Models of the vesicular interactions of the chlamydial inclusion before (early inclusion) (A) and after (mature inclusion) (B) modification of the host's response as a result of chlamydial polypeptide synthesis. Endocytosed EBs are internalized into a vesicle that displays minimal interaction with the endocytic pathway and is very restricted in its fusion with lysosomes. No interaction with vesicles delivering sphingomyelin or ceramide is initiated. EBs prevented from modifying the vesicle by inhibitors of chlamydial transcription or translation remain within this vesicle and are eventually degraded within lysosomes. By 2 h postinfection, in a process that requires early protein synthesis, actively transforms the properties of the nascent inclusion. Once these modifications have occurred, the inclusion is believed to exhibit the properties of a mature inclusion. Plasma membrane markers, fluid-phase markers, markers for early (transferrin and transferring receptor) and late (cation-independent mannose-6-phosphate receptor) endosomes, or lysosomes (acid phosphatase, cathepsin D, lysosomal glycoproteins, or the vacuolar H-ATPase) are not associated with the chlamydial inclusion. Instead, the chlamydial inclusion fuses with a subset of sphingomyelin-containing vesicles in transit to the plasma membrane. Fusion of these vesicles exposes the sphingomyelin on the luminal surface of the inclusion membrane from which it is adsorbed by the chlamydiae and incorporated into their cell walls.

Citation: Hackstadt T. 1999. Cell Biology, p 101-138. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alexander, J. J. 1968. Separation of protein synthesis in meningopneumonitis agent from that in L cells by differential susceptibility to cycloheximide. J. Bacteriol 95: 327 332.
2. Allan, I.,, and J. H. Pearce. 1987. Association of Chlamydia trachomatis with mammalian and cultured insect cells lacking putative chlamydial receptors. Microb. Pathog. 2: 63 70.
3. Allen, J. E.,, M. C. Cerrone,, P. R. Beatty,, and R. S. Stephens. 1990. Cysteine-rich outer membrane proteins of Chlamydia trachomatis display compensatory sequence changes between biovariants. Mol. Microbiol. 4: 1543 1550.
4. Banks, J.,, B. Eddie,, J. Schachter,, and K. F. Meyer. 1970. Plaque formation by Chlamydia in L cells. Infect. Immun. 1: 259 262.
5. Bannantine, J. P.,, D. D. Rockey,, and T. Hackstadt. 1998. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol. Microbiol. 28: 1017 1026.
6. Barnewall, R. E.,, Y. Rikihisa,, and E. H. Lee. 1997. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect. Immun. 65: 1455 1461.
7. Barry, C. E., III,, T. J. Brickman,, and T. Hackstadt. 1993. Hcl-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol. Microbiol. 9: 273 283.
8. Barry, C. E., III,, S. F. Hayes,, and T. Hackstadt 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256: 377 379.
9. Baseman, J. B.,, and E. C. Hayes. 1980. Molecular characterization of receptor binding proteins and immunogens of virulent Treponema pallidum. J. Exp. Med. 151: 573 586.
10. Batteiger, B. E.,, W. J. Newhall V,, and R. B. Jones. 1985. Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. Infect. Immun. 50: 488 494.
11. Bavoil, P.,, A. Ohlin,, and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: 479 485.
12. Bavoil, P. M.,, and R. C. Hsia. 1998. Type HI secretion in Chlamydia: a case of deja vu? Mol. Microbiol. 28: 859 862.
13. Becker, Y.,, E. Hochberg,, and Z. Zakay-Rones. 1969. Interaction of trachoma elementary bodies with host cells. Isr. J. Med. Sci. 5: 121 124.
14. Birkelund, S.,, H. Johnsen,, and G. Christiansen. 1994. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect. Immun. 62: 4900 4908.
15. Birkelund, S.,, K. Knudsen,, A. Madsen,, E. Falk,, P. Mygind,, and G. Christiansen,. 1998. Differential expression of Chlamydia pneumoniae Omp4 and Omp5 after infection of C57-black mice, p. 275 282. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, R. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
16. Blyth, W. A.,, and J. Taverne. 1974. Cultivation of TRIC agents: a comparison between the use of BHK-21 and irradiated McCoy cells. J. Hyg. 72: 121 128.
17. Bose, S. K.,, and P. C. Goswami. 1986. Host modification of the adherence properties of Chlamydia trachomatis. J. Gen. Microbiol. 132: 1631 1639.
18. Bose, S. K.,, and H. Liebhaber. 1979. Deoxyribonucleic acid synthesis, cell cycle progression, and division of Chlamydia-infected HeLa 229 cells. Infect. Immun. 24: 953 957.
19. Bose, S. K.,, and R. G. Paul. 1982. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells. J. Gen. Microbiol. 128: 1371 1379.
20. Bose, S. K.,, G. B. Smith,, and R. G. Paul. 1983. Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells. Infect. Immun. 40: 1060 1067.
21. Brickman, T. J.,, C. E. Barry HI,, and T. Hackstadt. 1993. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol. 175: 4274 4281.
22. Burgoyne, R. D.,, and M. J. Clague. 1994. Annexins in the endocytic pathway. Trends Biochem. Sci. 19: 231 232.
23. Byrne, G. I. 1976. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells). Infect. Immun. 14: 645 651.
24. Byrne, G. I. 1978. Kinetics of phagocytosis of Chlamydia psittaci by mouse fibroblasts (L cells): separation of the attachment and ingestion stages. Infect. Immun. 19: 607 612.
25. Byrne, G. I.,, and J. W. Moulder. 1978. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect. Immun. 19: 598 606.
26. Caldwell, H. D.,, J. Kromhout,, and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31: 1161 1176.
27. Caldwell, H. D.,, and J. Schachter. 1982. Antigenic analysis of the major outer membrane protein of Chlamydia spp. Infect. Immun. 35: 1024 1031.
28. Cevenini, R.,, M. Donati,, E. Brocchi,, F. De Simone,, and M. La Placa. 1991. Partial characterization of an 89-kDa highly immunoreactive protein from Chlamydia psittaci A/22 causing ovine abortion. FEMS Microbiol Lett. 81: 111 116.
29. Chen, J. C.,, and R. S. Stephens. 1997. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb. Pathog. 22: 23 30.
30. Chen, J. C.-R.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271: 11134 11140.
31. Chi, E. Y.,, C.-C. Kuo,, and J. T. Grayston. 1987. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR. J. Bacteriol. 169: 3757 3763.
32. Christiansen, G.,, L. B. Pedersen,, J. E. Koehler,, A. G. Lundemose,, and S. Birkelund. 1993. Interaction between the Chlamydia trachomatis histone HI-like protein (Hc1) and DNA. J. Bacteriol. 175: 1785 1795.
33. Clausen, J. D.,, G. Christiansen,, H. U. Hoist,, and S. Birkelund. 1997. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25: 441 449.
34. Clemens, D. L. 1996. Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol. 4: 113 118.
35. Collett, B. A.,, W. J. Newhall V,, R. A. Jersild, Jr.,, and R. B. Jones. 1989. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J. Gen. Microbiol. 135: 85 94.
36. Creutz, C. E. 1992. The annexins and exocytosis. Science 258: 924 931.
37. Croy, T. R.,, C.-C. Kuo,, and S.-P. Wang. 1975. Comparative susceptibility of eleven mammalian cell lines to infection with trachoma organisms. J. Clin. Microbiol. 1: 434 439.
38. Davis, C. H.,, and P. B. Wyrick. 1997. Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect. Immun. 65: 2914 2924.
39. Dehio, C.,, M.-C. Prevost,, and P. J. Sansonetti. 1995. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J. 14: 2471 2482.
40. Desai, S. A.,, D. J. Krogstad,, and E. W. McClesky. 1993. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362: 643 646.
41. Eissenberg, L. G.,, and P. B. Wyrick. 1981. Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-XaAzn vacuoles. Infect. Immun. 32: 889 896.
42. Eissenberg, L. G.,, P. B. Wyrick,, C. H. Davis,, and J. W. Rumpp. 1983. Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect. Immun. 40: 741 751.
43. Everett, K. D.,, A. A. Andersen,, M. Plaunt,, and T. P. Hatch. 1991. Cloning and sequence analysis of the major outer membrane protein gene of Chlamydia psittaci 6BC. Infect. Immun. 59: 2853 2855.
44. Falkow, S.,, R. R. Isberg,, and D. A. Portnoy. 1992. The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8: 333 363.
45. Fan, T.,, H. Lu,, H. Hu,, L. Shi,, G. McClarty,, D. Nance,, A. Greenberg,, and G. Zhong. 1998. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187: 487 496.
46. Fawaz, F. S.,, C. van Ooij,, E. Homola,, S. C. Mutka,, and J. N. Engel. 1997. Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect. Immun. 65: 5301 5308.
47. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718 725.
48. Friis, R. R. 1972. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J. Bacteriol. 110: 706 721.
49. Furness, G.,, D. M. Graham,, and P. Reeve. 1960. The titration of trachoma and inclusion blennorrhoea viruses in cell cultures. J. Gen. Microbiol. 23: 613 619.
50. Garcia-del Portillo, F.,, and B. B. Finlay. 1995. The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol. 3: 373 380.
51. Gennis, R. B. 1989. Biomembranes: Molecular Structure and Function. Springer-Verlag KG, Berlin, Germany.
52. Gill, S. D.,, and R. B. Stewart. 1970. Respiration of L cells infected with Chlamydia psittaci. Can. J. Microbiol. 16: 1033 1039.
53. Grimwood, J.,, W. P. Mitchell,, and R. S. Stephens,. 1998. Phylogenetic analysis of a multigene family conserved between Chlamydia trachomatis and Chlamydia pneumoniae, p. 263 266. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
54. Gutierrez-Martin, C. B.,, R. Hsia,, R. Hellio,, R. M. Bavoil,, and A. Dautry-Varsat. 1997. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells. Microb. Pathog. 22: 47 57.
55. Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eukaryotic cell surface components. J. Bacteriol. 165: 13 20.
56. Hackstadt, T. 1998. The diverse habitats of obligate intracellular parasites. Curr. Opin. Microbiol. 1: 82 87.
57. Hackstadt, T., W, Baehr, and Y. Yuan. 1991. Chlamydia trachomatis developmental^ regulated protein is homologous to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 88: 3937 3941.
58. Hackstadt, T.,, and H. D. Caldwell. 1985. Effect of proteolytic cleavage of surface-exposed proteins on infectivity of Chlamydia trachomatis. Infect. Immun. 48: 546 551.
59. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial inclusion. Trends Microbiol. 5: 288 293.
60. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15: 964 977.
61. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92: 4877 4881.
62. Hackstadt, T.,, M. Scidmore-Carlson,, and E. Fischer,. 1998. Rapid dissociation of the Chlamydia trachomatis inclusion from endocytic compartments, p. 127 130. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, R. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
63. Hackstadt, T.,, W. J. Todd,, and H. D. Caldwell. 1985. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae. J. Bacteriol. 161: 25 31.
64. Hackstadt, T.,, and J. C. Williams. 1981. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc. Natl. Acad. Sci. USA 78: 3240 3244.
65. Hatch, G. M.,, and G. McClarty. 1998. Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem. Biophys. Res. Commun. 243: 356 360.
66. Hatch, T. P. 1975a. Competition between Chlamydia psittaci and L cells for host isoleucine pools: a limiting factor in chlamydial multiplication. Infect. Immun. 12: 211 220.
67. Hatch, T. P. 1975b. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J. Bacteriol. 122: 393 400.
68. Hatch, T. P.,, E. Al-Hossainy,, and J. A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150: 662 670.
69. Hatch, T. P.,, I. Allan,, and J. H. Pearce. 1984. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J. Bacteriol. 157: 13 20.
70. Hatch, T. P.,, M. Miceli,, and J. A. Silverman. 1985. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 162: 938 942.
71. Hatch, T. P.,, M. Miceli,, and J. E. Sublett. 1986. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379 385.
72. Hatch, T. P.,, D. W. Vance, Jr.,, and E. Al-Hossainy. 1981. Attachment of Chlamydia psittaci to formaldehyde-fixed and unfixed L cells. J. Gen. Microbiol. 125: 273 283.
73. Heinzen, R. A.,, and T. Hackstadt. 1997. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low molecular weight compounds. Infect. Immun. 65: 1088 1094.
74. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64: 796 809.
75. Higashi, N. 1955. Electron microscopic studies on the mode of reproduction of trachoma virus and psittacosis virus in cell cultures. Exp. Mol. Pathol. 4: 24 39.
76. Hodinka, R. L.,, C. H. Davis,, J. Choong,, and P. B. Wyrick. 1988. Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect. Immun. 56: 1456 1463.
77. Hodinka, R. L.,, and P. B. Wyrick. 1986. Ultrastructural study of mode of entry of Chlamydia psittaci into L-929 cells. Infect. Immun. 54: 855 863.
78. Hsia, R. C.,, Y. Pannekoek,, E. Ingerowski,, and P. M. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25: 351 359.
79. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
80. Jackson, R. L.,, S. J. Busch,, and A. D. Cardin. 1991. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71: 481 539.
81. Joiner, K. A.,, S. A. Fuhrman,, H. M. Miettinen,, L. H. Kasper,, and I. Mellman. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641 646.
82. Joseph, T. D.,, and S. K. Bose. 1991a. Further characterization of an outer membrane protein of Chlamydia trachomatis with cytadherence properties. FEMS Microbiol. Lett. 84: 167 172.
83. Joseph, T. D.,, and S. K. Bose. 1991b. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae. Proc. Natl. Acad. Sci. USA 88: 4054 4058.
84. Klausner, R. D.,, J. G. Donaldson,, and J. Lippincott-Schwartz. 1992. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116: 1071 1080.
85. Koval, M.,, and R. E. Pagano. 1991. Intracellular transport and metabolism of sphingomyelin. Biochim. Biophys. Acta 1082: 113 125.
86. Kraaipoel, R. J.,, and A. M. van Duin. 1979. Isoelectric focusing of Chlamydia trachomatis. Infect. Immun. 26: 775 778.
87. Krause, D. C.,, and J. B. Baseman. 1982. Mycoplasma pneumoniae proteins that selectively bind to host cells. Infect. Immun. 37: 382 386.
88. Krivan, H. C.,, B. Nilsson,, C. A. Lingwood,, and H. Ryu. 1991. Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GALNACbetal-4GALbetal-4GLC sequences found in asialo-gml and asialo-gm2. Biochem. Biophys. Res. Commun. 175: 1082 1089.
89. Kubo, A.,, and R. Stephens,. 1998. Temporal differences in transcription of type III secretion genes during the Chlamydia trachomatis developmental cycle, p. 539 542. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
90. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
91. Kuo, C.,, N. Takahashi,, A. F. Swanson,, Y. Ozeki,, and S. Hakomori. 1996. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J. Clin. Invest. 98: 2813 2818.
92. Kuo, C.-C.,, E. Y. Chi,, and J. T. Grayston. 1988. Ultrastructural study of entry of Chlamydia strain TWAR into HeLa cells. Infect. Immun. 56: 1668 1672.
93. Kuo, C.-C.,, and J. T. Grayston. 1976. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect. Immun. 13: 1103 1109.
94. Kuo, C.-C.,, S.-P. Wang,, and J. T. Grayston. 1972. Differentiation of TRIC and LGV organisms based on enhancement of infectivity by DEAE-dextran in cell culture. J. Infect. Dis. 125: 313 317.
95. Kuo, C-C.,, S.-P. Wang,, and J. T. Grayston. 1973. Effect of polycations, polyanions, and neuraminidase on the infectivity of trachoma-inclusion conjunctivitis and lymphogranuloma venereum organisms in HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunctivitis. Infect. Immun. 8: 74 79.
96. Lawn, A. M.,, W. A. Blyth,, and J. Taverne. 1973. Interactions of TRIC agents with macrophages and BHK-21 cells observed by electron microscopy. J. Hyg. 71: 515 532.
97. Lechner, J.,, and F. Wieland. 1989. Structure and biosynthesis of prokaryotic glycoproteins. Annu. Rev. Biochem. 58: 173 194.
98. Lee, C. K. 1981. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation. Infect. Immun. 31: 584 591.
99. Levy, N. J. 1979. Wheat germ agglutinin blockage of chlamydial attachment sites: antagonism by N-acetyl-D-glucosamine. Infect. Immun. 25: 946 953.
100. Levy, N. J.,, and J. W. Moulder. 1982. Attachment of cell walls of Chlamydia psittaci to mouse fibroblasts (L cells). Infect. Immun. 37: 1059 1065.
101. Lindquist, E.,, and R. Stephens,. 1998. Transcriptional activity of a sequence variable protein family in Chlamydia trachomatis, p. 259 262. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
102. Lipsky, N. G.,, and R. E. Pagano. 1985a. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol. 100: 27 34.
103. Lipsky, N. G.,, and R. E. Pagano. 1985b. A vital stain for the Golgi apparatus. Science 228: 745 747.
104. Longbottom, D.,, J. Findlay,, E. Vretou,, and S. M. Dunbar. 1998a. Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol. Lett. 164: 111 117.
105. Longbottom, D.,, M. Russell,, S. M. Dunbar,, G. E. Jones,, and A. J. Herring. 1998b. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 66: 1317 1324.
106. Lundemose, A. G.,, S. Birkelund,, P. M. Larsen,, S. J. Fey,, and G. Christiansen. 1990. Characterization and identification of early proteins in Chlamydia trachomatis serovar L2 by two-dimensional gel electrophoresis. Infect. Immun. 58: 2478 2486.
107. Majeed, M.,, J. D. Ernst,, K. E. Magnusson,, E. Kihlstrom,, and O. Stendahl. 1994. Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells. Infect. Immun. 62: 126 134.
108. Majeed, M.,, M. Gustafsson,, E. Kihlstrom,, and O. Stendahl. 1993. Roles of Ca 2+ and F-actin in intracellular aggregation of Chlamydia trachomatis in eukaryotic cells. Infect. Immun. 61: 1406 1414.
109. Majeed, M.,, and E. Kihlstrom. 1991. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eukaryotic cells. Infect. Immun. 59: 4465 4472.
110. Matsumoto, A. 1981. Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J. Bacteriol. 145: 605 612.
111. Matsumoto, A., 1988. Structural characteristics of chlamydial bodies, p. 21 45. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, Fla.
112. Matsumoto, A.,, I. Bessho,, K. Uchira,, and T. Suda. 1991. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J. Electron Microsc. 40: 356 363.
113. Matsumoto, A.,, H. Izutsu,, N. Miyashita,, and M. Ohuchi. 1998. Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J. Clin. Microbiol. 36: 3013 3019.
114. McBride, T.,, and E. Wilde III,. 1990. Intracellular translocation of Chlamydia trachomatis, p. 36 39. In W. R. Bowie,, H. D. Caldwell,, R. P. Jones,, P.-A. Mardh,, G. L. Ridgway,, J. Schachter,, W. E. Stamm,, and M. E. Ward (ed.), Chlamydial Infections. Cambridge University Press, Cambridge, United Kingdom.
115. McClarty, G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Microbiology 2: 157 164.
116. McClarty, G.,, and G. Tipples. 1991. In situ studies on incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. J. Bacteriol. 173: 4922 4931.
117. Misumi, Y.,, A. Miki,, A. Takatsuki,, G. Tamura,, and Y. Ikehara. 1986. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261: 11398 11403.
118. Moulder, J. W. 1970. Glucose metabolism of L cells before and after infection with Chlamydia psittaci. J. Bacteriol. 104: 1189 1196.
119. Moulder, J. W. 1974. Intracellular parasitism: life in an extreme environment. J. Infect. Dis. 130: 300 306.
120. Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49: 298 337.
121. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190.
122. Moulder, J. W.,, T. P. Hatch,, G. I. Byrne,, and K. R. Kellogg. 1976. Immediate toxicity of high multiplicities of Chlamydia psittaci for mouse fibroblasts (L cells). Infect. Immun. 14: 277 289.
123. Mukkada, A. J.,, J. C. Meade,, T. A. Glaser,, and P. F. Bonventre. 1985. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 229: 1099 1101.
124. Murray, A.,, and M. E. Ward. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: the role of calmodulin. J. Gen. Microbiol. 130: 193 201.
125. Newhall, W. J. V.,, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J. Bacteriol. 154: 998 1001.
126. Nichols, B. A.,, P. Y. Setzer,, F. Pang,, and C. R. Dawson. 1985. New view of the surface projections of Chlamydia trachomatis. J. Bacteriol. 164: 344 349.
127. Ojcius, D. M.,, H. Degani,, J. Mispelter,, and A. Dautry-Varsat. 1998. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J. Biol. Chem. 273: 7052 7058.
128. Ojcius, D. M.,, R. Hellio,, and A. Dautry-Varsat. 1997. Distribution of endosomal, lysosomal, and major histocompatibility complex markers in a monocytic cell line infected with Chlamydia psittaci. Infect. Immun. 65: 2437 2442.
129. Pagano, R. E.,, and K. J. Longmuir. 1985. Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatide acid by cultured fibroblasts. J. Biol. Chem. 260: 1909 1916.
130. Pagano, R. E.,, M. A. Sepanski,, and O. C. Martin. 1989. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 109: 2067 2079.
131. Perara, E.,, D. Ganem,, and J. N. Engel. 1992. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 89: 2125 2129.
132. Perara, E.,, T. S. Yen,, and D. Ganem. 1990. Growth of Chlamydia trachomatis in enucleated cells. Infect. Immun. 58: 3816 3818.
133. Peterson, E. M.,, and L. M. de la Maza. 1988. Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. J. Bacteriol. 170: 1389 1392.
134. Pfeffer, S. R.,, and J. E. Rothman. 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56: 829 852.
135. Plaunt, M. R.,, and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56: 3021 3025.
136. Prain, C. J.,, and J. H. Pearce. 1989. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism. J. Gen. Microbiol. 135: 2107 2123.
137. Raulston, J. E. 1997. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65: 4539 4547.
138. Raulston, J. E.,, C. H. Davis,, T. R. Paul,, and P. B. Wyrick,. 1998. Heat shock protein 70 kDa and the chlamydial envelope: an entry-level position, p. 83 86. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
139. Raulston, J. E.,, C. H. Davis,, D. H. Schmiel,, M. W. Morgan,, and P. B. Wyrick. 1993. Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the Hsp70 family of proteins. J. Biol. Chem. 268: 23139 23147.
140. Reynolds, D. J.,, and J. H. Pearce. 1990. Characterization of the cytochalasin D-resistant (pinocytic) mechanisms of endocytosis utilized by chlamydiae. Infect. Immun. 58: 3208 3216.
141. Ridderhof, J. C.,, and R. C. Barnes. 1989. Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect. Immun. 57: 3189 3193.
142. Rockey, D. D.,, D. Grosenbach,, D. E. Hruby,, M. G. Peacock,, R. A. Heinzen,, and T. Hackstadt. 1997. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Microbiol. 24: 217 228.
143. Rockey, D. D.,, R. A. Heinzen,, and T. Hackstadt. 1995. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized to the inclusion membrane of infected cells. Mol. Microbiol. 15: 617 626.
144. Rockey, D. D.,, and J. L. Rosquist. 1994. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect. Immun. 62: 106 112.
145. Rosenwald, A. G.,, and R. E. Pagano. 1993. Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv. Lipid Res. 26: 101 118.
146. Rostand, K. S.,, and J. D. Esko. 1997. Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65: 1 8.
147. Russell, D. G. 1996. Mycobacterium and Leishmanial stowaways in the endosomal network. Trends Cell Biol. 5: 125 128.
148. Schechter, E. M. 1966. Synthesis of nucleic acid and protein in L cells infected with the agent of meningopneumonitis. J. Bacteriol. 91: 2069 2080.
149. Schmiel, D. H.,, S. T. Knight,, J. E. Raulston,, J. Choong,, C. H. Davis,, and P. B. Wyrick. 1991. Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells. Infect. Immun. 59: 4001 4012.
150. Schramm, N.,, C. R. Bagnell,, and P. B. Wyrick. 1996. Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect. Immun. 64: 1208 1214.
151. Schramm, N.,, and P. B. Wyrick. 1995. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect. Immun. 63: 324 332.
152. Schwab, J. C.,, C. J. M. Beckers,, and K. A. Joiner. 1994. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc. Natl. Acad. Sci. USA 91: 509 513.
153. Schwarzmann, G.,, and K. Sandhoff. 1990. Metabolism and intracellular transport of glycosphingolipids. Biochemistry 29: 10865 10871.
154. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 1996a. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134: 363 374.
155. Scidmore, M. A.,, and T. Hackstadt. 1995. Ability of Chlamydia trachomatis to obtain iron from transferrin, abstr. D-161, p. 277. In Abstracts of the 95th General Meeting of the American Society for Microbiology 1995. American Society for Microbiology, Washington, D.C..
156. Scidmore, M. A.,, D. D. Rockey,, E. R. Fischer,, R. A. Heinzen,, and T. Hackstadt. 1996b. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64: 5366 5372.
157. Scidmore-Carlson, M.,, E. I. Shaw,, C. A. Dooley,, and T. Hackstadt 1998,. Identification and characterization of putative Chlamydia trachomatis inclusion membrane proteins, p. 103 106. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
158. Shainkin-Kestenbaum, R.,, Y. Winikoff,, R. Kol,, C. Chaimovitz,, and I. Sarov. 1989. Inhibition of growth of Chlamydia trachomatis by the calcium antagonist verapamil. J. Gen. Microbiol. 135: 1619 1623.
159. Sinai, A. P.,, and K. A. Joiner. 1997. Safe haven: the cell biology of nonfusogenic pathogen vacuoles. Annu. Rev. Microbiol. 51: 415 462.
160. Sinai, A. P.,, P. Webster,, and K. A. Joiner. 1997. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J. Cell Sci. 110: 2117 2128.
161. Small, P. L., C. L. Ramakrishnan,, and S. Falkow. 1994. Remodeling schemes of intracellular pathogens. Science 263: 637 639.
162. Sneddon, J. M.,, and W. M. Wenman. 1985. The effect of ions on the adhesion and internalization of Chlamydia trachomatis by HeLa cells. Can. J. Microbiol. 31: 371 374.
163. Soderlund, G.,, and E. Kihlstrom. 1982. Physicochemical surface properties of elementary bodies from different serotypes of Chlamydia trachomatis and their interaction with mouse fibroblasts. Infect. Immun. 36: 893 899.
164. Soderlund, G.,, and E. Kihlstrom. 1983a. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates. Infect. Immun. 42: 930 935.
165. Soderlund, G.,, and E. Kihlstrom. 1983b. Effect of methylamine and monodansylcadaverine on the susceptibility of McCoy cells to Chlamydia trachomatis infection. Infect. Immun. 40: 534 541.
166. Spears, P.,, and J. Storz. 1979. Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyl-dextran and cycloheximide. Infect. Immun. 24: 224 232.
167. Stephens, R. S. 1993. Challenge of Chlamydia research. Infect. Agents Dis. 1: 279 293.
168. Stephens, R. S. 1994. Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells. Trends Microbiol. 2: 99 101.
169. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759.
170. Struyve, M.,, M. Moons,, and J. Tommassen. 1991. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218: 141 148.
171. Sturgill-Koszycki, S.,, U. E. Schaible,, and D. G. Russell. 1996. Mycobacterium-contaimng phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 15: 6960 6968.
172. Su, H.,, and H. D. Caldwell. 1998. Sulfated polysaccharides and a synthetic sulfated polymer are potent inhibitors of Chlamydia trachomatis infectivity in vitro but lack protective efficacy in an in vivo murine model of chlamydial genital tract infection. Infect. Immun. 66: 1258 1260.
173. Su, H.,, L. Raymond,, D. D. Rockey,, E. Fischer,, T. Hackstadt,, and H. D. Caldwell. 1996. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl. Acad. Sci. USA 93: 11143 11148.
174. Su, H.,, G. J. Spangrude,, and H. D. Caldwell. 1991. Expression of Fc gammaRHI on HeLa 229 cells: possible effect on in vitro neutralization of Chlamydia trachomatis. Infect. Immun. 59: 3811 3814.
175. Su, H.,, N. G. Watkins,, Y.-X. Zhang,, and H. D. Caldwell. 1990. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58: 1017 1025.
176. Su, H.,, Y.-X. Zhang,, O. Barrera,, N. G. Watkins,, and H. D. Caldwell. 1988. Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. Infect. Immun. 56: 2094 2100.
177. Swanson, A. F.,, and C.-C. Kuo. 1990. Identification of lectin-binding proteins in Chlamydia species. Infect. Immun. 58: 502 507.
178. Swanson, A. F.,, and C.-C. Kuo. 1991. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Infect. Immun. 59: 2120 2125.
179. Swanson, A. F.,, and C.-C. Kuo. 1994a. The 32-kDa glycoprotein of Chlamydia trachomatis is an acidic protein that may be involved in the attachment process. FEMS Microbiol. Lett. 123: 113 118.
180. Swanson, A. F.,, and C-C. Kuo. 1994b. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect. Immun. 62: 24 28.
181. Swanson, A. F.,, and C.-C. Kuo. 1996. The 18 kDa lectin-binding protein of Chlamydia trachomatis is different from the 18-kDa histone-like protein. FEMS Microbiol. Lett. 137: 189 192.
182. Tao, S.,, R. Kaul,, and W. M. Wenman. 1991. Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone HI-like protein from Chlamydia trachomatis. J. Bacteriol. 173: 2818 2822.
183. Taraska, T.,, D. M. Ward,, R. S. Ajioka,, P. B. Wyrick,, S. R. Davis-Kaplan,, C. H. Davis,, and J. Kaplan. 1996. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect. Immun. 64: 3713 3727.
184. Ting, L.-M.,, R.-C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63: 3600 3608.
185. Tipples, G.,, and G. McClarty. 1993. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol. Microbiol. 8: 1105 1114.
186. Todd, W. J.,, and H. D. Caldwell. 1985. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells. J. Infect. Dis. 151: 1037 1044.
187. van Meer, G.,, E. H. K. Stelzer,, R. W. Wijnaendts-van Resandt,, and K. Simons. 1987. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J. Cell Biol. 105: 1623 1635.
188. van Ooij, C.,, G. Apodaca,, and J. Engel. 1997. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect. Immun. 65: 758 766.
189. van Ooij, C.,, S. van Ijzendoorn,, M. Nishijima,, K. Hanada,, K. Mostov,, and J. Engel,. 1998. Acquisition of host-derived sphingolipids are essential for the intracellular growth of Chlamydia trachomatis, p. 91 94. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, R. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
190. Vretou, E.,, P. C. Goswami,, and S. K. Bose. 1989. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s). J. Gen. Microbiol. 135: 3229 3237.
191. Wagar, E. A.,, and R. S. Stephens. 1988. Developmental-form-specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56: 1678 1684.
192. Ward, M. E.,, and A. Murray. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J. Gen. Microbiol. 130: 1765 1780.
193. Ward, M. E.,, and H. S. Salari. 1980. Modulation of Chlamydia trachomatis infection by cyclic nucleotides and prostaglandins. FEMS Microbiol. Lett. 7: 141 143.
194. Ward, M. E.,, and H. Salari. 1982. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: modulation by cyclic nucleotides, prostaglandins and calcium. J. Gen. Microbiol. 128: 639 650.
195. Watson, M. W.,, P. R. Lambden,, M. E. Ward,, and I. N. Clarke. 1989. Chlamydia trachomatis 60 kDa cysteine rich outer membrane protein: sequence homology between trachoma and LGV biovars. FEMS Microbiol Lett. 65: 293 298.
196. Wenman, W. M.,, and R. U. Meuser. 1986. Chlamydia trachomatis elementary bodies possess proteins which bind to eukaryotic cell membranes. J. Bacteriol. 165: 602 607.
197. Willingham, M. C.,, J. A. Hanover,, R. B. Dickson,, and I. Pastan. 1984. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc. Natl. Acad. Sci. USA 81: 175 179.
198. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179: 7233 7242.
199. Wyrick, P. B.,, and E. A. Brownridge. 1978. Growth of Chlamydia psittaci in macrophages. Infect. Immun. 19: 1054 1060.
200. Wyrick, P. B.,, J. Choong,, C. H. Davis,, S. T. Knight,, M. O. Royal,, A. S. Maslow,, and C. R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378 2389.
201. Yong, E. C.,, E. Y. Chi,, and C.-C. Kuo. 1987. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J. Immunol. 139: 1297 1302.
202. Zeichner, S. L. 1983. Isolation and characterization of macrophage phagosomes containing infectious and heat-inactivated Chlamydia psittaci: two phagosomes with different intracellular behaviors. Infect. Immun. 40: 956 966.
203. Zhang, J. P.,, and R. S. Stephens. 1992. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69: 861 869.
204. Zhu, Z.,, M. D. Gershon,, R. Ambron,, C. Gabel,, and A. A. Gershon. 1995. Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proc. Natl. Acad. Sci. USA 92: 3546 3550.
205. Zychlinsky, A.,, and P. J. Sansonetti. 1997. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5: 201 204.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error