1887

Chapter 5 : Microsporidian Biochemistry and Physiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microsporidian Biochemistry and Physiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818227/9781555811471_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818227/9781555811471_Chap05-2.gif

Abstract:

The microsporidia are a large group of highly specialized obligate intracellular protozoan parasites. Disturbances in the biochemical composition of tissues infected by intracellular parasites are of interest because such infections often significantly alter the electrolyte, carbohydrate, protein, and free amino acid pools of host cells. Until recently, biochemical investigations of the metabolic processes of the microsporidia have suffered because of insufficient numbers of the different parasite stages and inadequate methods for the in vitro cultivation and maintenance of these organisms. The authors have observed the disappearance of glycogen granules in the host cell cytoplasm during the early stages of parasite development without any concomitant change in the size or quantity of lipid droplets. The microsporidian species is a model for investigating externally mediated signal transduction and subsequent activation of the internal signal pathway for triggering of a missile cell, the microsporidian spore. Microsporidian meront stages appear to have actin-myosin and kinesin-associated molecular motors. This chapter focuses on keratin filaments found in two domains: (i) within the spore stage, the microsporidian sporophorous vesicle, and (ii) keratin in the host cell cytoplasm domain but situated at its interface with the parasite. Recently, however, some success has been achieved in isolating and maintaining meronts and discharged sporoplasms in extracellular support medium. Developing a simple in vitro model will be useful for many subsequent biochemical analyses.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effect of infection on the skeletal muscle composition of the blue crab (). Data are presented as the percentage difference in protein, free amino acid (NPS), and carbohydrate (CHO) levels of thoracic versus cheliped skeletal muscle. Bar direction indicates whether values for thoracic muscle were higher (+) or lower (-) than those for cheliped muscle (mean ± 95% confidence interval).

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Lactate concentrations in the hemolymph, thoracic skeletal muscle, and hepatopancreas of normal, lightly infected, and heavily infected blue crabs (mean ± 95% confidence interval).

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Glucose utilization, lactate production, and pyruvate production by isolated sporoplasms incubated in medium 199 containing 5.5 mM glucose. Data are presented as (cumulative) micromoles of solute per 10 sporoplasms (mean ± 95% confidence interval).

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Uptake of U-C-D-glucose by isolated sporoplasms. Data are presented as micromoles of glucose taken up per 10 sporoplasms. Incubations in low-substrate (minimum essential medium, 0.5 mM glucose) and high-substrate (medium 199, 5.5 mM glucose) media are compared (mean ± 95% confidence interval).

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

A proposed scheme of energy metabolism in microsporidian spores.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Polarographic measurement of oxygen consumption by mitochondria isolated from a (Lepidoptera: Noctuidae) fat body infected with

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Surface topography of the outer envelope surrounding spores. (A) Platinum-shadowed spore with the outer envelope partially dispersed after preincubation in urea and a rinse in distilled water. Arrows indicate envelope is compartmentalized. (B) Isolated spore envelope stained with phosphotungstic acid. Arrows indicate compartments with internal matrix which probably buffer proteins within these domains. (C) Isolated spore envelope stained with uranyl acetate. Visualized proteins (arrows) are weakly stained within the compartments so clearly delineated in panel B. The compartmental channels are 75 to 100 nm in width.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Immunoblot analyses of spore envelope proteins specific for G protein (α-subunits). Antisera GC/2 recognizes Goα (lanes 1 and 2); CO/1 recognizes Goα and Giα 3 (lanes 3 and 4) and RM/1 is specific for Gsα (lanes 5 and 6). For controls, rat brain membrane proteins are in lanes 2, 4 and 6, and envelope peptides are in lanes 1, 3 and 5.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

spore envelope isolate. (A) Uranyl acetate-stained proteins partially isolated from spore envelope but still in the native linear arrangement (arrows). (B) Isolate of envelope with proteins tested against anticlathrin and reacted with a second antibody coupled to peroxidase. Arrows indicate peroxidase reaction is limited to threadlike elements. Magnification, × 200,000.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

spore polar aperture area. Arrows indicated precipitate that frequently accumulated near spore aperture after CaCl incubation. Since precipitation was confined to this site, one assumption is that the calcium salt accumulates here because of the channel proteins at this aperture (where the Cainflux is believed to occur). Magnification, × 200,000.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Nucleotidase activity in the isolated spore envelope of . The envelopes were incubated in nitrophenyl phosphate or ATP (1 mM), and the substrate was incubated in medium with the capture agent cerium. The cytochemical medium contained 0.1 M Tris-maleate (pH 7.4), CeCl, ATP, or nitrophenyl phosphate (Robinson and Karnovsky, 1983). Reaction was confined to the envelope channels. Magnification, × 35,000.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

The presumed anatomy of a sporophorous vesicle with keratin and plaque proteins. The arrow indicates the position of the jacket assemblage (bearing the keratin) that envelops the spore. The evidence for channel continuity with the vesicle exterior is indicated by the permeation of lanthanum and dyes into the area between the jacket and the spores; no probe material penetrated the primary space between the jacket and the vesicle envelope.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

Electron micrograph showing spore colony removed from host neuron after 6 h in culture medium. Filament bundles still persist and comprise the matrix between the spores or meronts and hold these cells together. Magnification, ×30,000.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14
FIGURE 14

Images of sporoplasms in extracellular culture media. (A) Phase light micrograph of sporoplasms after 12 h in medium. (B) Electron micrograph of sporoplasms. Arrows indicate apparent interiorizing on surface of cell. (C and D) DAPI-stained sporoplasms after 24 h in culture. Arrows indicate presumptive divider cells. (E) Sporoplasms after 10-min incubation in rhodamine-albumin with some accumulation of label in small fluorescent domains at the surface (arrows). (F and G) DAPI-stained sporoplasms after 24 h in culture. Arrows show a cell in apparent division. (H and I) Sporoplasms incubated for 20 min in dextran. Arrows point to vacuoles as possible sites of dextran endocytosis. Sporoplasms are 2 μm in diameter.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 15
FIGURE 15

The periphery of an isolated extracellular meront colony after 6 h in culture medium. Cells at the border of the colony (seen here) were apparently in better physical condition than interior cells of the colony, indicating that the dense matrix between meronts may affect nutrient infiltration. Magnification, X25.000.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818227.chap5
1. Alaqui, H. E.,, J. Bata,, D. Bauchart,, and C. P. Vivares. 1997. Sporal lipid analysis of two microsporidian species parasites of fishes. J. Eukaryot. Microbiol. 44: 74S.
2. Albers, K.,, and E. Fuchs. 1992. The molecular biology of intermediate filament proteins. Int. Rev. Cytol. 134: 243 279.
3. Anderson, R. G. W. 1993. Caveolae: where incoming and outgoing messengers meet. Proc. Natl. Acad. Sci. USA 90: 10909 10913.
4. Aronow, B.,, K. Kaur,, K. McCartan,, and B. Ullman. 1987. Two high affinity nucleoside transporters in Leishmania donovani. Mol. Biochem. Parasitol. 22: 29 37.
5. Baburina, G. N.,, T. M. Ephimenko,, I.V. Issi,, M. C. Klyanvinsh,, E. G. Rappoport,, and Y. Y. Sokolova. 1989. Respiration activity of mitochondria isolated from winter moth larvae infected with microsporidia. Bull. All-Union Inst. Plant Protection. 73: 7 10.
6. Baker, M. D.,, C. R. Vossbrinck,, E. S. Didier,, J.V. Maddox,, and J. A. Shadduck. 1995. Small sub-unit ribosomal DNA phylogeny of various Microsporidia with emphasis on AIDS related forms. J. Eukaryot. Microbiol. 42: 564 570.
7. Bartnik, E.,, and K. Weber. 1989. Widespread occurrence of intermediate filaments in invertebrates: common principles and aspects of diversion. Eur. J. Cell Biol. 50: 17 33.
8. Biderre, C.,, E. Peyretaillade,, F. Duffleux,, P. Peyret,, G. Metenier,, and C. Vivares. 1997. The rDNA unit of Encephalitozoon: complete 23S sequence and copy number. J. Eukaryot. Microbiol. 44: 76S.
9. Braun, A. P.,, and H. Schulman. 1995. The multifunctional Ca 2+/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57: 417 445.
10. Burke, E. M. 1979. Aerobic and anaerobic metabolism during activity and hypoxia in two species of intertidal crabs. Biol. Bull. 156: 157 168.
11. Cali, A.,, D. P. Kotler,, and J. M. Orenstein. 1993. Septata intestinalis n. g., n. sp., intestinal microsporidian associated with chronic diarrhea and dissemination in AIDS patients. J. Eukaryot. Microbiol. 40: 101 112.
12. Cali, A.,, and R. L. Owen. 1990. Intracellular development of Enterocytozoon, a unique microsporidian found in the intestine of AIDS patients. J. Protozool. 37: 145 155.
13. Canning, E. U. 1962. The pathogenicity of Nosema locustae Canning. J. Insect Pathol. 4: 248 256.
14. Canning, E. U., 1977. Microsporidia, p. 155 196. In J. P. Kreier (ed.), Parasitic Protozoa, vol. IV. Academic Press, New York.
15. Canning, E. U.,, and W. S. Hollister. 1991. In vitro and in vivo investigations of human Microsporidia. J. Protozool. 38: 631 635.
16. Canning, E. U.,, and J. Lom. 1986. Microsporidia of Vertebrates. Academic Press, New York.
17. Casero, R. A., 1995. Pages 1 3. In R. A. Casero (ed.), Polyamines: Regulation and Molecular Interaction. Springer-Verlag, New York.
18. Chapman, P. F. 1995. The alpha-Ca 2+/calmodulin kinase. II.A bidirectional modulator of presynaptic plasticity. Neuron 14: 491 497.
19. Choi, I.,, and R. Mikkelsen. 1990. Plasmodium falciparum: ATP/ADP transport across the parasitophorous vacuolar and plasma membranes. Exp. Parasitol. 71: 452 462.
20. Coyle, C.,, C. Bacchi,, N. Yarlett,, H. B. Tanowitz,, M. Wittner,, and L. M. Weiss. 1996. Polyamine metabolism as a therapeutic target for microsporidia. J. Eukaryot. Microbiol. 43: 96A.
21. Darwish, A.,, E. Weidner,, and J. Fuxa. 1989. Vairimorpha necatrix in adipose cells of Trichoplusia ni. J. Protozool. 36: 308 311.
22. da Silva, A. C. R.,, and F. C. Reinach. 1991. Calcium binding induces conformational changes in muscle regulation proteins. Trends Biochem. Sci. 16: 53 57.
23. Dedinger, J. E.,, and F. C. Schatzlein. 1973. Carbohydrate metabolism in the shore crab, Pachygrapsus crassipes. II. Glycolytic rates of muscle, gill and hepatopancreas. Comp. Biochem. Physiol. 45B: 699 708.
24. de Graaf, D. C.,, H. Raes,, G. Sabbe,, P. H. de Rycke,, and F. J. Jacobs. 1994. Early development of Nosema apis (Microspora: Nosematidae) in the midgut epithelium of the honey bee ( Apis mellifera) J. Invertebr. Pathol. 63: 74 81.
25. Dimaria, P.,, B. Palic,, B. A. Debrunner-Vossbrinck,, J. Lapp,, and C. R. Vossbrinck. 1996. Characterization of the highly divergent 42 RNA homolog in the microsporidian Vairimorpha necatrix. Nucleic Acid Res. 24: 515 522.
26. Dolgikh, V.V.,, M.V. Grigoryev,, Y. Y. Sokolova,, and I.V. Issi. 1995. An influence of infection with microsporidian Nosema grylli and coccidia Adelina sp. on an activity and isozyme pattern of lactate dehydrogenase in a fat body of the cricket Gryllus bimaculatus. Parasitologiya 26: 520 524.
27. Dolgikh, V. V.,, M. V. Grigoryev,, Y. Y. Sokolova,, and I. V. Issi. 1996. Influence of the microsporidian Nosema grylli and the coccidia Adelina sp. on the ovary development and on the activities of three dehydrogenases in fat body of female crickets Gryllus bimaculatus. Parasitologiya 30: 70 75.
28. Dolgikh, V.,, J. Sokolova,, and I. Issi. 1997. Activities of enzymes of carbohydrate and energy metabolism of the spores of the microsporidian Nosema grylii. J. Eukaryot. Microbiol. 44: 246 249.
29. Dufort, M.,, Y. Valero,, and M. Poguet. 1987. Particular distribution de la mitochondrias de Mytilicola intestinalis (Crustacea, Copepoda) en celulas para-sitadas por Unikaryon mytilicolae (Microspora, Unikaryonidae). Rev. Iber. Parasitol. Vol. Extraord: 1 11.
30. Findley, A. M.,, E.W. Blakeney, Jr.,, and E. H. Weidner. 1981. Ameson michaelis (Microspora) in the blue crab, Callinectes sapidus: parasite-induced alterations in the biochemical composition of host tissues. Biol. Bull. 161: 115 125.
31. Findley, A. M.,, and E. H. Weidner. Unpublished observations.
32. Franke, W. W.,, M. Hergt,, and C. Grund. 1987. Rearrangement of vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49: 131 141.
33. Frixione, E.,, L. Ruiz,, J. Certon,, and A. H. Undeen. 1997. Germination of Nosema algerae (Microspora) spores: conditional inhibition by D 2O, ethanol and Hg + suggests dependence of water influx upon membrane hydration and specific trans-membrane pathways. J. Eukaryot. Microbiol. 44: 109 116.
34. Georgatos, S. D.,, and G. Blobel. 1987. Two distinct attachment sites for vimentin along the plasma membrane and nuclear envelope in avian erythrocytes: a basis for vectorial assembly of intermediate filaments. J. Cell. Biol. 105: 105 115.
35. Georgatos, S. D.,, G. Blobel,, and M. Chirico. 1989. Molecular interactions between intermediate filament proteins in heat shock proteins. J. Cell Biol. 109: 1417A.
36. Germot, A.,, H. Philipp,, and H. LeGuyader. 1997. Evidence for loss of mitochondria in microsporidia Mm a mitochondria type HSP70 in Nosema locustae. Mol. Biochem. Parasitol. 87: 159 168.
37. Halonen, S.,, E. Weidner,, and J. F. Siebenaller. 1996. Evidence of heterotrimer GTP-binding protein in Toxoplasma gondii. J. Eukaryot. Microbiol. 43: 187 193.
38. Haugland, R. P., 1996. In M. Spence (ed.), Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Eugene, Oreg..
39. Hazard, E. I.,, E. A. Ellis,, and D. J. Joslyn,. 1981. Identification of Microsporidia, p. 163 182. In: H. D. Burgess (ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, New York.
40. Hinkle, G.,, H. L. Morrison,, and M. L. Sogin. 1997. Genes coding for reverse transcriptase, DNA-directed RNA polymerase and chitin synthase for the microsporidian Spraguea lophii. Biol. Bull. 193: 250 251.
41. Horst, M.,, A. Azem,, G. Schatz,, and T. B. Glick. 1997. What's the driving force for import into mitochondria? Biochim. Biophys.Acta 1318: 71 78.
42. Jackson, A. P.,, H. Seow,, N. J. Holmes,, K. Drickamar,, and P. Parham. 1987. Clathrin light chains contain brain-specific insertion sequences and a region of homology with intermediate filaments. Nature 336: 154 159.
43. Koleske, A.,, J. D. Baltimore,, and M. P. Lisanti. 1995. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92: 1381 1385.
44. Kucera, M.,, and J. Weiser. 1975. The different course of lactate and glutamate dehydrogenases activity in the larvae of Barathra brassicae (Lepidoptera) during microsporidian infection. Acta ntomol. Behemoslov. 72: 370 373.
45. Lewis, L. C.,, J. A. Mutchmor,, and R. E. Lynch. 1971. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17: 2457 2468.
46. Liao, G.,, and G. G. Gunderson. 1997. Kinesin is a candidate for crossbridging microtubules and intermediate filaments: selectively binding of kinesin to detyrosinated tubulin and vimentin. Mol. Biol. Cell 8: 379A.
47. Liu, P.,, Y. Ying,, Y. G. Ko,, and R. G. W. Anderson. 1996. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J. Biol. Chem. 271: 10299 10303.
48. Lom, J.,, and J. Vávra. 1963. The mode of sporoplasm extrusion in microsporidian spores. Acta Protozool. 1: 81 92.
49. Manale, S. B. 1996. Spore envelope proteins of Spraguea lophii. Ph.D. thesis. Louisiana State University, Baton Rouge.
50. Matouschek, A.,, A. Azem,, K. Ratliff,, B. S. Glick,, K. Schmid,, and G. Schatz. 1997. mtHSP70 can act as an ATP-driven force generating motor during protein import. EMBO J. 16: 6727 6736.
51. McCormack, S. Personal communication.
52. McPhalen, C. A.,, N. C. J. Strynadka,, and M. N. G. James. 1991. Ca 2+-binding sites in proteins: a structural perspective. Adv. Protein Chem. 42: 77 144.
53. Muresan, V.,, R. Zerfas,, A. Lyass,, T. Reese,, and B. J. Schnapp. 1997. Different vesicle populations in axoplasm contain different kinesin motors. Mol. Biol. Cell 8: 379A.
54. Olsen, G. J.,, and C. R. Woese. 1993. Ribosomal RNA: a key to phylogeny. FASEB J. 7: 113 123.
55. Opperdoes, F. R. 1987. Compartmentation of carbohydrate metabolism in trypanosomes. Ann. Rev. Microbiol. 41: 127 151.
56. Orenstein, J. M.,, J. Chiang,, W. Steinberg,, P. D. Smith,, H. Rotterdam,, and D. P. Kotler. 1990. Intestinal microsporidiosis as a cause of diarrhea in human immunodeficiency virus-infected patients: a report of 20 cases. Hum. Pathol. 21: 475 481.
57. Pegg, A. G. 1986. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234: 249 262.
58. Philippe, H.,, and A. Adoutte,. 1995. How reliable is our current view of eukaryotic phylogeny? p. 17 33. In G. Brugerolle, and J. P. Mignot (ed.), Protistological Actualities. Proceedings of the Second European Congress of Protistology and Eighth European Conference on Ciliate Biology. Clermont-Ferrand, France.
59. Phillips, J. W.,, J. W. McKinney,, F. J. R. Hird,, and D. L. MacMillan. 1977. Lactic acid formation in crustaceans and the liver function of the midgut gland questioned. Comp. Biochem. Physiol. 56B: 427 433.
60. Pleshinger, J.,, and E. Weidner. 1985. The microsporidian spore invasion tube. IV. Discharge activation begins with pH-triggered Ca 2+ influx. J. Cell Biol. 100: 1834 1838.
61. Raper, J. R.,, and H. S. Flexer. 1970. The road to diploidy with emphasis on a detour, p. 401 432. In Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge.
62. Robinson, J. M.,, and M. J. Karnovsky. 1983. Ultra-structural localization of nucleotidase in guinea pig neutrophils based on the use of cerium as a capture agent. J. Histochem. Cytochem. 31: 1190 1196.
63. Satir, B. H. 1989. Signal transduction events associated with exocytosis in ciliates. J. Protozool. 36: 382 389.
64. Scarborough-Bull, A.,, and E. Weidner. 1985. Some properties of discharged Glugea hertwigi (Microspora) sporoplasms. J. Protozool. 32: 284 289.
65. Schatzlein, F. C.,, H. M. Carpenter,, M. R. Rodgers,, and J. L. Sutko. 1973. Carbohydrate metabolism in the striped shore crab, Pachygrapsus crassipes. I. The glycolytic enzymes of gill, hepatopancreas, heart and leg muscle. Comp. Biochem. Physiol. 45B: 393 405.
66. Selesnjov, K.,, I. Issi,, V. Dolgikh,, G. Belostotskaya,, O. Antonova,, and J. Sokolova. 1995. Fractionation of different life cycle stages of Microsporidia Nosema grylli from crickets Gryllus bimaculatus by centrifugation in Percoll density gradient for biochemical research. J. Eukaryot. Microbiol. 42: 288 292.
67. Selesnjov, K. V.,, A. O. Antonova,, and I. V. Issi. 1996. The microsporidiosis of the crickets Gryllus bimaculatus (Gryllidae) caused by the Microsporidia Nosema grylli (Nosematidae). Parasitologiya 30: 250 262.
68. Shadduck, J. A. 1969. Nosema cuniculi: in vitro isolation. Science 166: 516 517.
69. Shawtz, L. M.,, and A. E. Pegg. 1994. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neo-plastic transformation. Cancer Res. 54: 2313 2316.
70. Sibley, L. D.,, T. R. Niesman,, T. Asai,, and T. Takeuchi. 1994. Toxoplasma gondii: secretion of a potent nucleoside triphosphate hydrolase at the parasitophorous vacuole. Exp. Parasitol. 79: 301 311.
71. Sinderman, C. J. 1970. Principal Diseases of Marine Fish and Shellfish. Academic Press, New York.
72. Sokolova, Y. Y.,, K. V. Selesnjov,, V. V. Dolgikh,, and I.V. Issi. 1994. Microsporidia Nosema grylli n.sp. from the cricket Gryllus bimaculatus. Parasitologiya 28: 488 493.
73. Sokolova, Y. Y.,, S. A. Timoshenko,, and I.V. Issi. 1988. Morphogenesis and ultrastructure of life cycle stages of Nosema mesnili Paillot Microsporidia, Nosematidae). Citologiya 30: 26 33.
74. Sorensen, W.,, A. J. Billington,, S. A. Norris,, J. E. Briggs,, M.T. Reding,, and G. A. Filice. 1987. Toxoplasma gondii: metabolism of intracellular tachyzoites is affected by host cell ATP production. Exp. Parasitol. 85: 101 104.
75. Steinbuchel, A.,, and M. Muller. 1986a. Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol. Biochem. Parasitol. 20: 45 55.
76. Steinbuchel, A.,, and M. Muller. 1986b. Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 20: 57 65.
77. Strynadka, N. C.,, and M. N. G. Jans. 1991. Towards an understanding of the effects of calcium on protein structure and function. Curr. Opin. Struct. Biol. 1: 905 914.
78. Trager, W. 1974. Some aspects of intracellular parasitism. Science 183: 269 273.
79. Trager, W. 1986. Living Together: The Biology of Animal Parasites. Plenum Press, New York.
80. Undeen, A. H. 1975. Growth of Nosema algerae in pig kidney cell cultures. J. Protozool. 22: 107 110.
81. Undeen, A. H. 1990. A proposed mechanism for the germination of microsporidian (Protozoa: Microspora) spores. J. Theor. Biol. 142: 223 235.
82. Undeen, A. H.,, and S.W. Avery. 1988a. Ammonium chloride inhibition of germination of spores of Nosema algerae (Microspora: Nosematidae). J. Invertebr. Pathol. 52: 326 334.
83. Undeen, A. H.,, and S. W. Avery. 1988b. Effects of anions on the germination of Nosema algerae (Microspora: Nosematidae). J. Invertebr. Pathol. 52: 84 89.
84. Undeen, A. H.,, L. M. Elgazzar,, R. K. Vander Meer,, and S. Narang. 1987. Trehalose levels and trehalase activity in germinated and ungerminated spores of Nosema algerae (Microspora: Nosematidae). J. Invertebr. Pathol. 50: 230 237.
85. Undeen, A. H.,, and R. K. Vander Meer. 1994. Conversion of intrasporal trehalose into reducing sugars during germination of Nosema algerae (Protista: Microspora) spores: a quantitative study. J. Eukaryot. Microbiol. 41: 129 132.
86. Vander Meer, J. W.,, and T. A. Gochnauer. 1969. Some effects of sublethal heat on spores of Nosema apis. J. Invert. Pathol. 13: 442 446.
87. Vander Meer, J. W.,, and T. A. Gochnauer. 1971. Trehalase activity associated with spores of Nosema apis. J. Invertebr. Pathol. 17: 38 41.
88. Vikstrom, K. L.,, G. G. Borisy,, and R. D. Goldman. 1989. Dynamic aspects of intermediate filaments networks in BHK-21 cells. Proc. Natl. Acad. Sci. USA 86: 549 553.
89. von Brand, T. 1973. Biochemistry of Parasites. Academic Press, New York.
90. Vossbrinck, C. R.,, M. D. Baker,, E. S. Didier,, B. A. Debrunner-Vossbrinck,, and J. A. Shadduck. 1993. Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogetic construction. J. Eukaryot. Microbiol. 40: 354 362.
91. Vossbrinck, C. R.,, J.V. Maddox,, S. Friedman,, B. A. Debrunner-Vossbrinck,, and C. R. Woese. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411 414.
92. Vossbrinck, C. R.,, and C. R. Woese. 1986. Eukaryotic ribosomes that lack a 5.8S RNA. Nature 320: 287 288.
93. Weidner, E. 1970. Ultrastructural study of microsporidian development. I. Nosema sp. Sprague, 1965 in Callinectes sapidus Rathbun. Z. Zellforsch. 105: 33 54.
94. Weidner, E. 1972. Ultrastructural study of microsporidian invasion into cells. Z. Parasitenkd. 40: 227 242.
95. Weidner, E. 1976. The microsporidian spore invasion tube. J. Cell Biol. 71: 23 34.
96. Weidner, E. 1982. The microsporidian spore invasion tube. III. Tube extrusion and assembly. J. Cell Biol. 93: 976 979.
97. Weidner, E. 1992. Cytoskeletal proteins expressed by microsporidian cells. Subcell. Biochem. 18: 385 399.
98. Weidner, E. Unpublished observations.
99. Weidner, E.,, and W. Byrd. 1982. Microsporidian spore invasion tube. II. Role of Ca 2+ in the activation of the invasion tube discharge. J. Cell Biol. 93: 970 975.
100. Weidner, E.,, and S. K. Halonen. 1993. Microsporidian spore envelope keratins phosphory-late and disassemble during spore activation. J. Eukaryot. Microbiol. 40: 783 788.
101. Weidner, E.,, S. B. Manale,, S. K. Halonen,, and J. W. Lynn. 1995. Protein-membrane interactions essential to normal assembly of microsporidian spore invasion tube. Biol. Bull. 188: 128 135.
102. Weidner, E.,, R. M. Overstreet,, B. Tedeschi,, and J. Fuseler. 1990. Cytokeratin and desmoplakin analogues within an intracellular parasite. Biol. Bull. 179: 237 243.
103. Weidner, E.,, and W. Trager. 1973. Adenosine triphosphate in the extracellular survival of an intracellular parasite ( Nosema michaelis, Microsporidia). J. Cell Biol. 57: 586 591.
104. Weiser, J., 1976. Microsporidia in invertebrates: Host-parasite relations at the organismal level, p. 163 201. In L. A. Bulla, Jr.,, and T. C. Cheng (ed.), Comparative Pathobiology, vol. 1. Plenum Press, New York.
105. Weissenberg, R. 1968. Intracellular development of the microsporidian Glugea anomala Moniez in hypertrophied migrating cells of the fish Gasterosteus aculeatus L., an example of formation of xenoma tumors. J. Protozool. 15: 44 57.
106. Weissenberg, R., 1976. Microsporidian interaction with host cells, p. 203 237. In L. A. Bulla, Jr.,, and T. C. Cheng (ed.), Comparative Pathobiology, vol. 1. Plenum Press, New York.
107. Winkler, H. H. 1976. Rickettsial permeability: an ADP-ATP transport system. J. Biol. Chem. 251: 389 396.
108. Wordeman, L.,, and J. Mitchison. 1995. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell. Biol. 128: 95 104.
109. Xie, W. D.,, and E. U. Canning. 1986. Pyrothecas hydropsycheae n.sp. a microsporidian parasite of caddis fly larvae. J. Protozool. 33: 462 467.
110. Yokoyama, S.,, and W. Starmer. 1992. Phylogeny and evolutionary rates of G protein alpha subunit genes. J. Mol. Evol. 35: 230 238.
111. Zhu, X.,, M. Wittner,, H. B. Tanowitz,, A. Cali,, and L. M. Weiss. 1994. Ribosomal RNA sequences of Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis: phylogenetic construction and structural correspondence. J. Eukaryot. Microbiol. 41: 204 209.

Tables

Generic image for table
TABLE 1

Activities of enzymes in microsporidian spores

Figure in parentheses indicates the number of separate spore purification procedures.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5
Generic image for table
TABLE 2

Activities of enzymes in the fat body of control and infected crickets ()

Figure in parentheses indicates the number of independently examined crickets.

Citation: Weidner E, Findley A, Dolgikh V, Sokolova J. 1999. Microsporidian Biochemistry and Physiology, p 172-195. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error